生物脱氮工艺设计(1)

沈阳化工大学

《环境工程课程设计》

题目:A1/O生物脱氮工艺设计

院系:环境与安全工程学院

专业:

班级:

学生姓名:

指导教师:

2012年9 月日

前言 (3)

1综述 (3)

1.1城市污水 (3)

1.2污水处理的方法及意义 (3)

2.设计依据和原则 (4)

2.1 设计依据 (4)

(1) 《污水综合排放标准》GB8978-1996 (4)

(2) 有关法律、法规及设计规范 (4)

2.2设计原则 (4)

3 工艺流程图及设计任务 (4)

3.1 工艺流程图 (5)

3.2设计任务 (5)

3.2.1 设计水量 (5)

3.2.2 设计水质 (5)

4设计计算 (6)

4.1好氧区容积V1(动力学计算方法) (6)

4.1.1出水溶解性BOD (6)

4.1.2设计污泥龄 (7)

4.1.3好氧区容积V1, m3 (7)

4.2缺氧区容积V2(动力学计算方法) (7)

4.2.1需还原的硝酸盐氮量 (7)

4.2.2反硝化速率qdn,T (8)

4.2.3缺氧池容积 (8)

V,3m (8)

4.3曝气池总容积

4.4碱度校核 (8)

4.5污泥回流比及混合液回流比 (9)

4.5.1污泥回流比R (9)

4.5.2混合液回流比 (9)

4.6剩余污泥量生物污泥产量: (10)

4.7反应池主要尺寸 (10)

4.7.1好氧反应池(按推流式反应池设计) (10)

4.7.2缺氧反应池尺寸 (11)

4.8反应池进、出水计算 (11)

4.8.1进水管 (11)

4.8.2回流污泥管道 (12)

4.8.3进水竖井 (12)

4.8.4出水堰及出水竖井 (12)

4.8.5出水管 (13)

4.9曝气系统设计计算 (13)

4.9.1设计需氧量AOR (13)

4.9.2标准需氧量 (14)

4.9.3所需空气压力p(相对压力) (16)

4.9.4曝气器数量计算(以单组反应池计算) (16)

4.9.5供风管道计算 (17)

4.10缺氧设备的选择 (17)

4.11污泥回流设备选择 (18)

4.12混合液回流泵 (18)

参考文献 (20)

前言

1综述

1.1城市污水

城市污水主要包括生活污水和工业污水,由城市排水管网汇集并输送到污水处理厂进行处理。 城市污水处理工艺一般根据城市污水的利用或排放去向并考虑水体的自然净化能力,确定污水的处理程度及相应的处理工艺。处理后的污水,无论用于工业、农业或是回灌补充地下水,都必须符合国家颁发的有关水质标准。现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理工艺。

1.2污水处理的方法及意义

污水一级处理应用物理方法,如筛滤、沉淀等去除污水中不溶解的悬浮固体和漂浮物质。污水二级处理主要是应用生物处理方法,即通过微生物的代谢作用进行物质转化的过程,将污水中的各种复杂的有机物氧化降解为简单的物质。生物处理对污水水质、水温、水中的溶氧量、pH值等有一定的要求。污水三级处理是在一、二级处理的基础上,应用混凝、过滤、离子交换、反渗透等物理、化学方法去除污水中难溶解的有机物、磷、氮等营养性物质。污水中的污染物组成非常复杂,常常需要以上几种方法组合,才能达到处理要求。 污水一级处理为预处理,二级处理为主体,处理后的污水一般能达到排放标准。三级处理为深

度处理,出水水质较好,甚至能达到饮用水质标准,但处理费用高,除在一些极度缺水的国家和地区外,应用较少。目前我国许多城市正在筹建和扩建污水二级处理厂,以解决日益严重的水污染问题。

2.设计依据和原则

2.1 设计依据

(1) 《污水综合排放标准》GB8978-1996

(2) 有关法律、法规及设计规范

2.2设计原则

本工程设计方案报告的编制遵循以下原则:

(1)认真执行国家有关法规、标准及规定,根实际情况,采用切

实可行的治理方案,符合处理效果好、建设投资少、运行费用低、管理操作简便的要求。

(2)污水进行综合治理,化害为利,解决生产污水造成的污染,

力求充分发挥建设项目的环境效益、社会效益和经济效益。

(3)根据污水水质的特点,做到投资省、运行费用低,技术可靠、运行稳定、处理效果好。

3 工艺流程图及设计任务

3.1 工艺流程图

A/O 系统又称前置硝化系统或循环脱氮系统。一般采用硝化混合液回流,将BOD 去除与反硝化脱氮在同一池中完成。A/O 生物脱氮系统具有以下特征:反硝化池在前,硝化池在后;反硝化反应以原废水中的有机物为碳源;硝化池内的含有大量硝酸盐的硝化液回流到反硝化池,进行反硝化脱氮反应;在反硝化反应过程中,产生的碱度可补偿硝化反应碱度的一半左右,对含氮浓度不高的废水可不必另行投加碱;硝化池在后,使反硝化残留的有机污染物得以进一步去除,无需建后曝气池。

3.2设计任务

3.2.1 设计水量

平均日污水量Q=30000m 3/d ,总变化系数K=1.2

3.2.2 设计水质

进水水质:

BOD 5=L mg /180, L X TSS 180mg/

0=浓度, L mg VSS /126= f=0.7

L mg TN /35= L mg NH /253= 碱度L mg SALK /280=

PH=7.0-7.5

最低水温12℃,最高水温26℃ 出水水质:

L mg BOD /305= L mg SS /20= L mg TN /12< L mg NH /73<

4设计计算

4.1好氧区容积V1(动力学计算方法)

)

1()

(01c K X S S Q Y V d V C θθ+-=

式中 V--------好氧区有效容积,m 3; Q--------设计流量,m 3/L;

S 0-------进水BOD 5浓度,mg/L;

S--------出水所含溶解性BOD 5浓度,mg/L

Y--------污泥产率系数,kgVSS/kgBOD 5,取Y=0.6; K d-------内源代谢系数,取Kd=0.05; ?c -------固体停留时间,d;

X v-------混合液挥发性悬浮固体浓度(MLVSS ),mg/L,Xv=fX; F---------混合液中VSS 与SS 之比,取f=0.7;

X---------混合液悬浮固体浓度(MLVSS),mg/L,X 取4000mg/L. X v =fX=0.7×4000=2800(mg/L)

4.1.1出水溶解性BOD

为使出水BOD 降到30mg/L,出水溶解性BOD 浓度S 应为:

)1(42.130kt e TSS TSS

VSS

S --?-= =30-1.42×0.7×20×(1-e -0.23×5)

=16.41(mg/L)

4.1.2设计污泥龄

首先确定消化速率μN (取设计pH=7.2),计算公式 ]

[])2.7(833.011047.022)158.105.0()

15(098.02pH O k O N N e

o T T N --???

?

????+??????+=--μ 式中 N-----NH 3-N 的浓度,mg/L;

K o2----氧的半速常数,mg/L;

O 2-----反应池中溶解氧浓度,mg/L 。

μN =0.47e 0.098(12-15)×8/7+10(0.05×12-1.158)×2/1.3+2 =0.35×0.962×0.606=0.204(d -1)

硝化反应所需的最小污泥龄θ

m c

)(90.4204

.01

1

d N

m c ==

=

μθ

选用安全系数K=3;

设计污泥龄m c c k θθ==3×4.90=14.7(d)

4.1.3好氧区容积V1, m3

)(23.8910)

7.1405.01(8.27

.14)01641.018.0(300006.031m V =?+??-??=

好氧区水力停留时间)(1.7)(297.030000

23.891011h d Q V t ====

4.2缺氧区容积V2(动力学计算方法)

V

T dn T X q N V ,21000

?=

4.2.1需还原的硝酸盐氮量

微生物同化作用去除的总氮N w::

)/(02.77

.1405.01)

41.16180(6.0124.01)(124.00L mg K S S Y N c d W =?+-??=+-=θ

被氧化的NH-N=进水总氮量-出水氨氮量-用于合成的总氮量

=35-7-7.02=20.98(mg/L )

所需脱硝量=进水总氮量-出水总氮量-用于合成的总氮量

=35-12-7.02=15.98(mg/L )

需还原的硝酸盐氮量)/(4.4791000

1

98.1530000d kg N T =?

?= 4.2.2反硝化速率qdn,T

2020,,-=T dn T dn q q θ

式中 q dn,T----------20℃ 时的反硝化速率常数,取0.12kg );/(3d kgMLVSS N NO ?--

Θ------------温度系数,取1.08。

)/(065.008.112.032012,kgMLVSS N kgNO q T dn -=?=--

4.2.3缺氧池容积

)(1.26342800

065.01000

4.47932m V =??=

缺氧区水力停留时间

)(1.2)(0878.030000

1.263422h d Q V t ====

4.3曝气池总容积总V ,3m

)m (33.115441.263423.8910321=+=+=V V V 总 系统设计污泥龄=好氧池泥龄+缺氧池泥龄

)(05.1923

.89101

.26347.147.14d =?

+= 4.4碱度校核

每氧化N mgNH -31需要氧化7.14mg 碱度;去除51mgBOD 产生0.1mg 碱度;每

还原N mgNO --

31产生3.57mg 碱度。

产生碱度去除反硝化产生碱度硝化消耗碱度进水碱度剩余碱度5-BOD S ALKI ++= )4.16180(1.098.1557.398.2014.7280-?+?+?-= =))(/(100)/(95.1973计以CaCO L mg L mg > 此值可维持pH ≥7.2

4.5污泥回流比及混合液回流比

4.5.1污泥回流比R

设,150=SVR 回流污泥浓度计算公式为:

r S V R

X R ?=

6

10 式中,r 为考虑污泥在沉淀池中停留时间、池深、污泥厚度等因素的系数,取1.2。

)/(80002.1150106

L mg X R =?= 混合液悬浮固体浓度)/(4000

)(L mg MLSS X = 污泥回流比%100?=-X

X X R R

%1004000

80004000

?-=

)100%

-50%%(100一般取= 4.5.2混合液回流比

混合液回流比内R 取决于所需要的脱氮率。脱氮率ηN 可用下式粗略估算: ηN %71.6535

12

35=-=-=

TN TN TN 进水出水进水

%200%192657

.01657

.01≈=-=-=

ηηγ 4.6剩余污泥量 生物污泥产量:

c

d X K S S YQ P θ+-=1)

(0

)/(22.150805

.1905.01)

0164.018.0(300006000d kg =?+-??=

对存在的惰性物质和沉淀池的固体流失量可采用下式计算:

)(1e S X X Q P -=

式中 X 1--------进水悬浮固体中惰性部分(进水TSS-进水VSS )的含量,3/m kg S P --------非生物污泥量,;/d kg

)(1e S X X Q P -=

=30000×(0.18-0.126-0.02)=1020)/(d kg

剩余污泥量△)/(22.2528102022.1508d kg P P X X s =+=+= 去除每51kgBOD 产生的干污泥量

)/(56.030000

)03.018.0(22

.2528)(50kgBOD kgDs S S Q X e =?-=-?=

4.7反应池主要尺寸

4.7.1好氧反应池(按推流式反应池设计)

总容积3123.8910m V =,设反应池两组。

单组池容)(12.44552

23

.89102311m V V ===

单 有效水深h=4.0m,单组有效面积)(m 78.11130

.412

.4455211===h V S 单单

采用三廊道式,廊道宽m b 2.6=,反应池长度)60(m 2

.6378

.111311=?==

B S L 单 校核:

10)

-5L/b (68.92.6/60/)2-1/(55.14/2.6/======满足满足b L h b h b

超高取1.0米,则反映池总高H=4.0+1.0=5.0(m)

4.7.2缺氧反应池尺寸

总容积)(1.263432m V = 设缺氧池2组,单组池容)(单32m 05.13172

1

.2634==

V 有效水深h=4.1m,单组有效面积23.3211

.405.13171.422===单单

V S )(2m 长度与好氧池宽度相同,为L=18.6m,池宽=

)(单m 3.176

.1823

.3212==L S 4.8反应池进、出水计算

4.8.1进水管

两组反应池合建,进水与回流污泥进入进水竖井,经混合后经配水渠、进水浅孔

进入缺氧池。

单组反映池进水管设计流量s m Q Q /(347.086400

30000

31==

=) 管道流速采用./8.0s m v =

管道过水断面)(434.08.0347

.02m v Q A ==

= 管径)(74.014

.3434

.044m A

d =?=

=

π

取进水管管径DN700mm.

校核管道流速)/(90.0)2

7.0(434

.02s m A Q v ===π

4.8.2回流污泥管道

单组反映池回流污泥渠道设计流量R Q

)

/(347.086400

30000

13s m Q R Q R =?

=?= 渠道流速v=0.7m/s;

则渠道断面积)(496.07

.0347

.02m v Q A R ==

= 取渠道断面m m h b 5.00.1?=?

校核流速)/(69.05

.00.1347

.0s m v =?=

渠道超高取0.3m; 渠道总高为)(8.03.05.0m =+

4.8.3进水竖井

反应池进水孔尺寸: 进水孔过流量)/(347.086400

30000

2)11(2)1(32s m Q Q R Q ==?+=?+= 孔口流速v=0.6m/s; 孔口过水断面积)(58.06

.0347.02m v Q A ===

孔口尺寸取?1.2m ×0.5m; 进水竖井平面尺寸2.0m ×1.6m 。

4.8.4出水堰及出水竖井

按矩形堰流量公式:

)

(347.02

)11(2)1(866.1242.0332

323

3m Q Q

Q R Q H

b H gb Q ==+=+=??==

式中 b----堰宽,b=6.0m; H----堰上水头高,m 。

)(10.0)0.686.1347.0()86.1(2

3233m b Q H =?==

出水孔过流量)/(347.0334s m Q Q ==

孔口流速v=0.6m 孔口过水断面积)(58.06

.0347.02m v Q A ===

孔口尺寸取?1.2m ×0.5m; 进水竖井平面尺寸2.0m ×1.6m 。

4.8.5出水管

单组反应池出水管设计流量 )/(347.0335s m Q Q == 管道流速v=0.8m/s; 管道过水断面)(434.08.0347

.025m v Q A ==

= 管径)(743.014

.3434

.044m A

d =?=

=

π

取进水管管径DN700mm.

校核管道流速)/(9.0)2

7.0(347

.025s m A Q v ===π

4.9曝气系统设计计算

4.9.1设计需氧量AOR

反硝化脱氮产氧量硝化需氧量碳化需氧量-+=AOR

=+)-(5氧当量剩余污泥中需氧量去除u BOD BOD

-)-(33的氧当量剩余污泥中硝化需氧量H NH N NH --反硝化脱氮产氧量 a.碳化需氧量1D X kt

P S S Q D 42.1-e

1)

(-01--=

式中 k----BOD 的分解速率常数,;23.0,1-=k d 取

t----.5t 5d BOD =的试验时间,取 22.150842.1-1)

0164.018.0(300005

23.0-1?--?=

?e

D /d)(kgO 45.504067.2141-12.71822== b.硝化需氧量2D

X e P N N Q D ??-=%4.126.4-)(6.402

22.1508%4.126.4)007.0035.0(300006.42??--??=D

)/(71.300329.86038642d kgO =-= C.反硝化脱氮产生的氧量3D T N D 86.23=

式中,T N 为反硝化脱除的硝态氮量,取T N =479.4kg/d

)/(08.13714.47986.223d kgO D =?= 故总需氧量321D D D AOR -+=

)/(05.278)/(08.667308.137171.300345.504022h kgO d kgO ==-+= 最大需氧量与平均需氧量之比为1.4,则:

AOR AOR 4.1max =

/h)(kgO 26.389)/(31.934208.66734.12==?=d kgO 去除每1kg 5BOD 的需氧量)

(0e S S Q AOR

-=

)/kgBOD (kgO 48.1)

03.0-18.0(3000008

.667352=?=

4.9.2标准需氧量

采用鼓风曝气,微孔曝气器辐射于池底,距池底0.2m,淹没深度3.8m,氧转移效率%,20=A E 将实际需氧量AOR 换算成标准状态下的需氧量SOR.

)

20()()

20(024

.1)(-?-?=

T L T sm S C C C AOR SOR βρα

T----设计污水温度,T=26℃;

L C ----好氧反应池中溶解氧浓度,取2mg/L ;

α----污水传氧速率与清水传氧速率之比,取0.82;

ρ----压力修正系数,取1;

β----污水中饱和溶解氧与清水中饱和溶解氧之比,取0.95. 查表得水中溶解氧饱和度:

L mg C L mg C S S /22.8,/17.9)26()20(== 空气扩散器出口处绝对压力:

H p p b 3108.9?+=

式中,H----空气扩散器的安装深度,m ; P----大气压力,Pa p 510013.1?=。 )(10358.18.3108.910013.1535Pa p b ?=??+?= 空气离开好氧反应池时氧的百分比t O : %100)

1(2179)

1(21?-?+-=

A A t E E O

式中,A E 为空气扩散装置的氧的转移效率,取%20=A E .

%

54.17)

2.01(2179)

1(21=-?+-=

A t E O 好氧反应池中平均溶解氧饱和度:

)42

10066.2(

5)25()26(t

b S sm O P C C +?= )/(94.8)42

54

.1710066.210358.1(

38.855L mg =+???= 标准需氧量为:

)

2026(024

.1)294.8198.0(82.017

.908.6673-?-????=

SOR )/(36.415)/(66.9968

h kg d kg ==

相应最大时标准需氧量为:

)/(51.581)/(12.1395666.99684.14.1max h kg d kg SOR SOR ==?== 好氧反应池平均供气量为:

)/(67.69221003

.03.036

.4151003.03h m E SOR G A S =??=?=

最大时供气量为:)/(74.96914.13max h m G G s ==

4.9.3所需空气压力p (相对压力)

h h h h h p ?++++=4321

式中,4h ----曝气器阻力,微孔曝气MPa h MPa h 004.0,005.0004.044取-≤; h ?----富余水头,。取MPa h MPa h 005.0,005.0003.0?-=? 取MPa h h 002.021=+

)(49)(049.0005.0004.0038.0002.0kPa MPa p ==+++=

4.9.4曝气器数量计算(以单组反应池计算)

a.按计算氧能力所需要曝气器数量。 c

q SOR h max

1=

式中 1h ----按供氧能力所需曝气器个数,个;

c q ----曝气器标准状态下,与好氧反应池工作条件接近时的供氧能力,

)/(2个?h kgO 。

采用微孔曝气器,参照有关手册,工作水深4.3m,在供风量q=1-3()个?h m /3时,曝气器氧利用率%20=A E ,在服务面积0.3-0.75㎡,充氧能力

,则个)/(14.02?=h kgO q c )(207714

.051

.5811个==

h

b.以微孔曝气器服务面积进行校核

)(75.0)(54.02077

6362221m m h F f <=??==

4.9.5供风管道计算

供风管道指风机出口至曝气器的管道。 a.干管。供风干管采用环状布置。

流量)/(87.484574.96912

1

213max h m G Q s S =?=?=

流速v=10m/s; 管径)(414.03600

1014.387

.484544m v Q d =???==

π 取干管管径为DN400mm 。

b.支管。单侧供气(向单侧廊道供气)支管(布气横管);

/h)(m 29.161574.969161

2313max =?=?=G Q s 单

流速v=10m/s ;

取支管管径为DN250㎜。 双侧供气(向两侧廊道供气):

/h)(m 58.323074.969131

2323max =?=?=G Q S 双

流速v=10m/s ; 管径338.03600

1014.358

.323044=???==

v Q d π(m ) 取支管管径为DN400㎜。

4.10缺氧设备的选择

缺氧池分为三格串联,每格内设一台机械搅拌器。缺氧池内设3台潜水搅拌机,所需功率按5W/3m 污水计算。

厌氧池有效容积)(单3m 43.13571.46.183.17=??=V 混合全池污水所需功率)

(单W N 15.6787543.1357=?=

4.11污泥回流设备选择

污泥回流比R=100%;

污泥回流量)/(1250)/(3000033h m d m RQ Q R === 设回流污泥泵房1座,内设3台潜污泵(2用1备)

单泵流量/h)625(m 12502

1

213=?==R R Q Q 单

水泵扬程根据竖向流程确定。

4.12混合液回流泵

混合液回流比;

内200%=R 混合液回流量/h)2500(m /d)60000(m 30000233==?==Q R Q R 内

每池设混合液回流泵2台,单泵流量)(单h m Q R /6254

2500

3== 混合液回流泵采用潜污泵。

新型生物脱氮工艺

新型生物脱氮工艺 摘要介绍六种新型生物脱氮工艺的基本原理和研究现状。随后介绍新型生物脱氮工艺 的原理和特征及工艺的发展前景。 关键词SHARON工艺;ANAMMOX工艺;SHARON-ANAMMOX组合工艺;OLAND 工艺;CANON工艺; 随着现代工业的不断发展、化肥的普遍应用及大量生活污水的排放,废水中的氮污染日益严重。各种水体富营养污染事件频繁爆发,破坏了水体原有的生态平衡,严重污染了周围环境。我国作为水资源十分短缺的国家,严格控制脱氮污水的超标排放是十分必要的。对于氮素污染的治理,国内外常见的工程技术有空气吹脱法、选择性离子交换法、折点氯化法、磷酸铵镁沉淀法、生物脱氮法等。其中,生物脱氮法使用范围广,投资及运转成本低,操作简单,无二次污染,处理后的废水易达标排放,已成为脱氮常用处理方法。 1 传统生物脱氮工艺 传统生物脱氮一般包括硝化和反硝化两个阶段,分别由硝化菌和反硝化菌完成。硝化反应是由一类化能自养好样的硝化细菌完成,主要包括两个步骤:第1步称为亚硝化过程,由亚硝酸菌将氨态氮转化为亚硝酸盐;第2步称为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐。 反硝化作用是在厌氧或缺氧条件下反硝化菌把硝酸盐转化为氮气排除。该转化过程有许多中间产物,如HNO2、NO2和N2O。反硝化菌多数是兼性厌氧菌,在无分子态氮存在 的环境下,利用硝酸盐作为电子受体,有机物作为碳源和电子供体提供能量并被转化为CO2、H2O。 传统生物脱氮工艺在废水脱氮方面起到了一定的作用,但任存在以下问题[1]: (1)在低温冬季硝化菌群增殖速度慢且难以维持较高的生物浓度。造成系统总水力停留时间(HRT)长,有机负荷较低,增加了基建投资和运行费用。 (2)硝化过程是在有氧条件下完成的,需要大量的能耗; (3)反硝化过程需要一定的有机物,废水中的COD经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源; (4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用; (5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;

德国生物脱氮计算

德国生物脱氮工艺中曝气池的设计计算 作者:屈计宁高廷耀 阅读:1904次 上传时间:2004-12-13 推荐人:yiming (已传论文1137套) 简介:德国是世界上环境保护工作开展较好的国家,在污水处理的脱氮除磷方面积累了很多值得借鉴的经验。现将德国排水技术协会(ATV)最新制定的城市污水设计规范A131中关于生物脱氮(硝化和反硝化)的曝 气池设计方法介绍给大家,以供参考。 关键字:生物脱氮曝气池脱氮除磷 相关站中站:曝气技术及设备产品应用 A131的应用条件: ①进水的COD/BOD5≈2,TKN/BOD5≤0.25; ②出水达到废水规范VwV的规定。 对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于: ①希望达到的脱氮效果; ②曝气池进水中硝酸盐氮NO-3-N和BOD5的比值; ③曝气池进水中易降解BOD5占的比例; ④泥龄ts; ⑤曝气池中的悬浮固体浓度X; ⑥污水温度。 图1为前置反硝化系统流程。 1 计算N DN/BOD5和V DN/V T N DN表示需经反硝化去除的氮,它与进水的BOD5之比决定了反硝化区体积V DN占总体积V T的大小。 由氮平衡计算N DN/BOD5: N DN=TKN i-N oe-N me-N s 式中TKN i——进水总凯氏氮,mg/L N oe——出水中有机氮,一般取1~2mg/L

N me——出水中无机氮之和,包括氨氮、硝酸盐氮和亚硝酸盐氮,是排放控制值。按德国标准控制在 18mg/L以下,则设计时取0.67×18=12mg/L N s——剩余污泥排出的氮,等于进水BOD5的0.05倍,mg/L 由此可计算N DN/BOD5之值,然后从表1查得V DN/V T。 2泥龄 泥龄ts是活性污泥在曝气池中的平均停留时间,即 ts=曝气池中的活性污泥量/每天从曝气池系统排出的剩余污泥量 t S=(X×V T)/(Q S×X R+Q×X E) 式中t S——泥龄,d X——曝气池中的活性污泥浓度,即MLSS,kg/m3 V T——曝气池总体积,m3 Q S——每天排出的剩余污泥体积,m3/d X R——剩余污泥浓度,kg/m3 Q——设计污水流量,m3/d X E——二沉池出水的悬浮固体浓度,kg/m3 根据要求达到的处理程度和污水处理厂的规模,从表2选取应保证的最小泥龄。

废水生物处理基本原理—生物脱氮原理

废水生物处理基本原理 ——废水生物脱氮原理 1.1.1 废水中氮的存在形式 氮在废水中有以下几种形式 无机氮 N anorgan .: ? 氨氮 NH 4-N ? 亚硝氮 NO 2-N ? 硝氮 NO 3-N 有机氮 N organ . 总氮 N total = N anorgan . + N organ . 总凯氏氮 TKN = N organ . + NH 4-N 以氮的形式氮化合物的换算关系如下: NH NH N NH NO NO N NO NO NO N NO 4128541285 4 2328523285 2 3442834428 3 ++ -- -- ?→??-?→???→??-?→???→??-?→??/,*,/,*,/,*, 1.1.2 废水生物脱氮的基本过程 ①氨化(Ammonificaton ):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification ):废水中的氨氮在好氧自养型微生物(统称为硝化菌)的作用下被转化为NO 2- 和NO 3-的过程; ③反硝化(Denitrification ):废水中的NO 2- 和/或NO 3-在缺氧条件下在反硝化菌(异养型细菌)的作用下被还原为N 2的过程。

1.1.3 氨化作用基本原理 在废水中部分氮以无机物的形式存在。蛋白质被生化降解为氨氮 的作用成为氨化作用。尿素在酶的催化下降解也属于该作用。 举例: COOH O ∣∣ R - C - H + H2O + 1/2 O2 ----> R - C + NH4+ + OH-∣∣ NH2COOH NH2 ∣ C=0 + 3 H2O 尿素酶> 2 NH4++ 2 OH-+ CO2 ∣ NH2

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

影响生物脱氮的主要因素

影响生物脱氮的主要因素 1、酸碱度(pH值) 大量研究表明,氨氧化菌和亚硝酸盐氧化菌的适宜的pH分别为7.0~8.5和6.0~7.5,当pH值低于6.0或高于9.6时,硝化反应停止。硝化细菌经过一段时间驯化后,可在低pH值(5.5)的条件下进行,但pH值突然降低,则会使硝化反应速度骤降,待pH值升高恢复后,硝化反应也会随之恢复。 反硝化细菌最适宜的pH值为7.0~8.5,在这个pH值下反硝化速率较高,当pH值低于6.0或高于8.5时,反硝化速率将明显降低。此外pH值还影响反硝化最终产物,pH值超过7.3时终产物为氮气,低于7.3时终产物是NO。2硝化过程消耗废水中的碱度会使废水的pH值下降(每氧化1g 将消耗7.14g碱度,以CaCO计)。3相反,反硝化过程则会产生一定量的碱度使pH值上升(每反硝化1g 将产生3.57g碱度,以CaCO计)3但是由于硝化反应和反硝化过程是序列进行的,也就是说反硝化阶段产生的碱度并不能弥补硝化阶段所消耗的碱度。因此,为使脱氮系统处于最佳状态,应及时调整pH值。 2、温度(T) 硝化反应适宜的温度范围为5~35℃,在5~35℃范围内,反应速度随温度升高而加快,当温度小于5℃时,硝化菌完全停止活动;在同时去除COD和硝化反应体系中,温度小于15℃时,硝化反应速度会迅速降低,对硝酸菌的抑制会更加强烈。 反硝化反应适宜的温度是15~30℃,当温度低于10℃时,反硝化作用停止,当温度高于30℃时,反硝化速率也开始下降。有研究表明,温度对反硝化速率的影响取与反应设备的类型、负荷率的高低都有直接的关系,不同碳源条件下,不同温度对反硝化速率的影响也不同。 3、溶解氧(DO) 在好氧条件下硝化反应才能进行,溶解氧浓度不但影响硝化反应速率,而且影响其代谢产物。为满足正常的硝化反应,在活性污泥中,溶解氧的浓度至少要有2mg/L,一般应在2~3mg/L,生物膜法则应大于3mg/L。当溶解氧的浓度低于0.5~0.7mg/L时,硝化反应过程将受到限制。 传统的反硝化过程需在较为严格的缺氧条件下进行,因为氧会同竞争电子供体,且会抑制微生物对硝酸盐还原酶的合成及其活性。但是,在一般情况下,活性污泥生物絮凝体内存在缺氧区,曝气池内即使存在一定的溶解氧,反硝化作用也能进行。研究表明,要获得较好的反硝化效果,对于活性污泥系统,反硝化过程中混合液的溶解氧浓度应控制在0.5mg/L 以下;对于生物膜系统,溶解氧需保持在1.5mg/L以下。 4、碳氮比(C/N) 在脱氮过程中,C/N将影响活性污泥中硝化菌所占的比例。因为硝化菌为自养型微生物,代谢过程不需要有机质,所以污水中的BOD/TKN越小,即BOD5的浓度越低硝化菌所占的比例越大,硝化反应越容5易进行。硝化反应的一般要求是BOD/TKN>5,COD/TKN>8,下表是Grady C.P.L.Jr推荐的不同的C/N对5脱氮的效果的影响: 不同的C/N的脱氮效果 氨氮是硝化作用的主要基质,应保持一定的浓度,但氨氮浓度超过100~200mg/L时,会对硝化反应起抑制作用,其抑制程度随着氨氮浓度的增加而增加。 专业文档供参考,如有帮助请下载。. 反硝化过程需要有足够的有机碳源,但是碳源种类不同亦会影响反硝化速率。反硝化碳源可以分为三类:第一类是易于生物降解的溶解性的有机物;第二类是可慢速降解的有机物;第三类是细胞物质,细菌利用细胞成分进行内源硝化。在三类物质中,第一类有机物作为碳源的反应速率最快,第三类最慢。

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

生物脱氮的基本原理

摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键词:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。 废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1. 氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 (2-3) (2-4)

(2-5) 2. 硝化作用 硝化作用是指将NH3-N氧化为NO x--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为: 亚硝化反应 (2-6) 硝化反应 (2-7) 总反应式(2-8) 亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。亚硝酸菌和硝酸菌统称为硝化菌[22]。发生硝化反应时细菌分别从氧化NH3-N 和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为: 亚硝化反应 (2-9) 硝化反应 (2-10) 在综合考虑了氧化合成后,实际应用中的硝化反应总方程式为: (2-11) 由上式可以看出硝化过程的三个重要特征: ⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2; ⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季; ⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化1g的NH3-N需要碱度5.57g(以NaCO3计)。

污水生物脱氮工艺研究

污水生物脱氮工艺研究 短程硝化是将传统的硝化反应控制在亚硝化阶段,与传统工艺相比,短程硝化反硝化需氧量减少25% ,碳源需求减少40% ,具有节省曝气能耗、缩短反应时间、减少污泥生成量、减少反应器有效容积和节约基建费用等优点 ,因此如何实现与维持稳定的短程硝化成为目前污水生物脱氮领域的研究热点。 硝化菌是一种自养菌,生长缓慢,对环境因子变化十分敏感,采用微生物固定化技术可解决硝化菌流失问题,提高系统中硝化菌浓度,已得到广泛的研究和应用。但是大部分实验还都停留在传统的以包埋材料为载体的“滴下造粒法”和“成型切断法”阶断,由于载体材料自身(微球和包埋块)的限制,活性填料在机械强度、传质、稳定性和处理效率等方面都存在一定的问题,更为主要的缺陷是这些填料不具有较好的水力学特征,无法充分发挥填料的硝化活性。因此,开发出稳定性好、处理效率高、传质效果好的固定化生物活性填料对氨氮废水的处理具有十分重要意义。 本研究从污水处理厂获取的剩余污泥经筛选富集培养得到的硝化菌群(混合菌)为菌源,采用包埋法制备的固定化填料为载体,重点研究了溶解氧(dissolved oxygen,DO) 对活性填料发生短程硝化的影响,利用高游离氨(free ammonia,FA)对亚硝酸盐氧化菌(nitrite oxidizing bacteria,NOB)产生抑制作用使氨氧化细菌(ammonia oxidizing bacteria,AOB)成为优势菌群(混合菌),实现了在高氨氮负荷下序批次反应器(SBR)短程硝化的快速启动及稳定运行,填料中的实验还考察该新型活性填料的抗冲击负荷能力。 1 材料与方法 1. 1实验用水 实验用水采用人工模拟配水,按氨氮浓度为100 mg·L - 1 时各基质组分质量浓度为:NH4 Cl 382. 81mg·L - 1 ,NaHCO3 1 272. 02 mg·L - 1 ,KH2 PO4 112 mg·L - 1 ,CaCl2 ·2H2 O 111 mg·L - 1 ,MgSO4 15 mg·L - 1 ,FeSO4 ·7H2 O 11. 1 mg·L - 1 ,NaCl 500 mg·L - 1 ,进水投加的微量元素:H3 BO3 14 mg·L - 1 ,MnCl2 ·4H2 O 990 mg·L - 1 ,CuSO4 ·5H2 O 250 mg·L - 1 ,CoCl2 ·6H2 O 240 mg·L - 1 ,ZnSO4 ·7H2 O 430 mg·L - 1 ,NiCl2 ·6H2 O 190 mg·L - 1 ,NaMoO4 ·2H2 O 220 mg·L - 1 (每1 L 进水投加1 mL 微量元素溶液,以满足微生物生长需求),进水氨氮浓度发生变动时,其他组分按比例增减。 1. 2 分析项目及测试方法 NH 4+ -N:纳氏试剂分光光度法;NO2- -N:N-(1-萘基)-乙二胺分光光度法;NO3- -N:紫外分光光度法;pH值:PHS-2C 实验室pH 计;DO:德国WTW inoLab Oxi 7310 实验室台式溶氧仪; 1. 3 菌种的来源及活性填料的制备 本实验包埋所用菌源来自于北京市某污水处理厂二沉池剩余污泥,经筛选富集培养后的硝化菌群。具体做法如下:首先将剩余污泥过度曝气,利用气体扰动作用和异氧菌的内源呼吸代谢使污泥絮体解体;然后将解体污泥用纱布进行过滤去除无机颗粒杂质,保留滤液;最后对

生物脱氮基本原理

生物脱氮基本原理 摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键词:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程[1]。 废水中存在着有机氮、NH3-N、NOx--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NOx--N,最后通过反硝化作用使NOx--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

1. 氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 (2-3) (2-4) (2-5)

2. 硝化作用 硝化作用是指将NH3-N氧化为NOx--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为: 亚硝化反应 (2-6) 硝化反应 (2-7) 总反应式 (2-8) 亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。亚硝酸菌和硝酸菌统称为硝化菌[22]。发生硝化反应时细菌分别从氧化NH3-N和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为:亚硝化反应 (2-9) 硝化反应 (2-10) 在综合考虑了氧化合成后,实际应用中的硝化反应总方程式为: (2-11) 由上式可以看出硝化过程的三个重要特征:

污水生物脱氮技术研究现状

污水生物脱氮技术研究现状 摘要:概述了传统生物脱氮技术原理及传统的生物脱氮技术,分析了传统生物脱氮工艺的不足,并介绍了同时硝化反硝化、短程硝化反硝化、厌氧氨氧化等几种生物脱氮新技术的机理、特点和研究现状。最后对生物脱氮技术的今后的发展趋势进行了展望及建议,指出高效、低能耗的可持续脱氮工艺是污水处理的发展方向。 关键词:生物处理;生物脱氮;短程硝化反硝化;同步硝化反硝化;厌氧氨氧化Research Status of Biological Removal of Nitrogen from Wastewater Abstract:Summarizes the conventional biodenitrification technology principle and conventional biological removal of nitrogen technology, analyzes the deficiencies of conventional biological removal of nitrogen, and introduces nitration denitrification, shortcut nitrification and denitrification anaerobic ammonium oxidation ,and the features, the mechanism and the current research status of the several biological new technologies,. Finally have a outlook and Suggestions of the new technologies , points out that high efficiency, low energy consumption is the development direction of removal of nitrogen in sewage treatment. Keywords:biological disposal;nitrogen removal;shortcut nitrification;Simultaneous nitrification and denitrifieation;anaerobic ammonium

生物脱氮工艺新旧比较及其发展

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 生物脱氮工艺新旧比较及其发展 水处理技术:本文对传统生物脱氮技术和目前新型的生物脱氮技术进行了介绍。 1传统生物脱氮工艺 中的氮以有机氮、氨氮、亚硝氮和硝酸盐4种形态存在。如污水有机氮占含氮量的4O%~60%,氨氮占5O%~60%,硝态氮仅占0%一5%。传统生物脱氮技术遵循已发现的自然界氮循环机理,中的有机氮依次在氨化菌、亚硝化菌、硝化菌和反硝化菌的作用下进行氨化反应、亚硝化反应、硝化反应和反硝化反应后最终转变为氮气而溢出水体,达到了脱氮目的。 传统生物脱氮技术是目前应用最广的脱氮技术。硝化工艺虽然能把氨氮转化为硝酸盐,消除氨氮的污染,但不能彻底消除氮污染。而反硝化工艺虽然能根除氮素的污染,但不能直接去除氨氮。因此,传统生物脱氮工艺通常由硝化工艺和反硝化工艺组成。由于参与的菌群不同和工艺运行参数不同,硝化和反硝化两个过程需要在两个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中进行传统生物脱氮途径就是人为创造出硝化菌、反硝化菌的生长环境,使硝化菌和反硝化菌成为反应池中的优势菌种。由于对环境条件的要求不同,硝化反硝化这两个过程不能同时发生,而只能序列式进行,即化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。 常见的工艺有三级生物脱氮工艺、二级生物脱氮工艺和合建式缺氧一好氧活性污泥法脱氮系统等。传统生物脱氮工艺存在不少问题:(1)工艺流程较长,占地面积大,基建投资高。(2)由于硝化菌群增殖速度慢且难以维持较高的生物浓度,特别是在低温冬季,造成系统的HRT较长,需要较大的曝气池,增加了投资和运行费用。(3)系统为维持较高的生物浓度及获得良好

微生物脱氮原理

简介:介绍了生物脱氮基本原理及影响因素,为环境工作者掌握生物脱氮。废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为NO3-N和NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快。在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键字:生物脱氮基本原理影响因素 废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为NO3-N和NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快。在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1 氨化作用 1.1 概念 氨化作用是指将有机氮化合物转化为氨态氮的过程,也称为矿化作用。 1.2 细菌 参与氨化作用的细菌成为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌,兼性的变形杆菌和厌氧的腐败梭菌等。 1.3 降解方式(分好氧和厌氧) 在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。例如氨基酸生成酮酸和氨: [2-1] 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们式好氧菌,其反应式如下: [2-2]

废水生物脱氮基本原理

废水生物脱氮基本原理 关于氨氮消耗碱度的理论计算问题书上写的理论上降解1克氨氮要消耗7.14克碱度(以碳酸钙计算),这里是不是说就是消耗7.14克碳酸钙啊? 果换算成纯碱又如何计算?换算成小苏打又怎么计算呢?

消耗的是碳酸氢根。碳酸钙分子量100,纯碱106。以碳酸钙计算的量乘以1.06就是需要的纯碱量。 在不考虑细菌增值硝化消耗的碱度为1g氨氮7.14g碱度(碳酸钙),在考虑细菌增值的情况下是8.62g碱度(碳酸钙)。 碱度与硝化的比例系数为7.1 即每氧化1mg氨氮为硝酸根需消耗7.1mg碱度而发生反硝化反应时每反应掉1mg硝酸根可以产生3.57mg碱度所以,脱氮反应时为了取得好的效果必须不断补充碱度积磷菌、反硝化菌和硝化细菌生长的最佳pH值在中性或弱碱性范围,当 pH 值偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH值维持在中性附近,池中剩余总碱度宜大于 70mg/L。每克氨氮氧化成硝态氮需消耗 7.14g 碱度,大大消耗了混合液的碱度。反硝化时,还原 1g 硝态氮成氮气,理论上可回收 3.57g 碱度,此外,去除1g五日生化需氧量可以产生0.3g 碱度。出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量一7.14×硝化氮量,式中 3 为美国 EPA(美国环境保护署)推荐的还原1g硝态氮可回收3g碱度。 由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N 约消耗7.14g碱度(以CaC03计)。因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0

最新城镇污水处理厂工艺设计(生物脱氮除磷工艺

城镇污水处理厂工艺设计(生物脱氮除磷 工艺)

精品好文档,推荐学习交流 目录 1.设计任务书 (3) 2.设计说明书 (4) 2.1 工程概况 (4) 2.2污水处理厂设计规模及污水水质 (5) 2.2.1 设计规模 (5) 2.2.2 污水水质及污水处理程度 (5) 2.3 污水处理厂工艺设计 (5) 2.3.1污水处理工艺设计要求 (5) 2.3.2污水处理工艺选择 (6) 2.3.3污泥处理工艺选择 (10) 2.4 污水处理厂工程设计 (12) 2.4.1污水处理厂总平面设计 (12) 2.4.2污水处理厂总高程设计 (15) 2.5 各主要构筑物及设备说明 (16) 2.5.1粗格栅间 (16) 2.5.2水提升泵房 (17) 2.5.3细格栅间 (18) 2.5.4曝气沉砂池 (18) 2.5.5氧化沟 (19) 2.5.6二沉池 (19) 2.5.7 接触池 (19) 2.5.8加氯间 (20) 2.5.9污泥回流泵房 (21) 2.5.10污泥浓缩池 (21) 2.5.11污泥脱水间 (21) 2.5.12其他建筑物 (22) 3.设计计算书 (22) 3.1 设计依据 (22) 3.2设计流量 (23) 3.3格栅设计 (23) 3.3.1设计参数 (23) 3.3.2设计计算 (23) 3.4曝气沉砂池 (28) 3.4.1设计参数 (28) 3.4.2设计计算 (28) 3.5氧化沟 (30)

精品好文档,推荐学习交流 3.5.1设计参数 (30) 3.5.2设计计算 (30) 3.6辐流式二沉池 (36) 3.6.1设计参数 (36) 3.6.2 设计计算 (36) 3.7消毒池 (38) 3.7.1设计参数 (38) 3.7.2 设计计算 (38) 3.8液氯投配系统 (39) 3.8.1设计参数 (39) 3.8.2设计计算 (39) 3.9计量堰 (39) 3.10泥回流泵房 (40) 3.11浓缩池 (40) 3.12泥脱水间 (41) 4.污水厂成本概算 (41) 4.1 水厂工程造价 (41) 4.1.1 计算依据 (41) 4.1.2 单项构筑物工程造价计算 (41) 4.2 污水处理成本计算 (43) 参考文献 (44)

污水处理厂A-A-O生物脱氮除磷工艺简介

龙源期刊网 https://www.360docs.net/doc/c16240565.html, 污水处理厂A-A-O生物脱氮除磷工艺简介 作者:孟永进 来源:《硅谷》2009年第15期 中图分类号:X7文献标识码:A文章编号:1671-7597(2009)0810007-01 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产 生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷,其工艺流程如图1所示。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP 保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有

生物脱氮的过程和条件

生物脱氮的过程和条件 一、废水当中的氮分为有机氮和氨氮即硝酸及亚硝酸盐氮,氮的脱除经过以下 三步反应 1、反硝化反应。在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物, 成为菌体,大部分异化为气态(70~75%)。 2、硝化反应。在亚硝化及硝化菌的作用下,氨氮进一步分解氧化为亚硝酸及硝酸盐氮。 a)氨化反应。在氨化菌的作用下,有机氮化合物分解,转化为氨氮。 二、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面: 3、适宜温度20~30℃。 a)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH值为8.0~8.4。 4、抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓 度氨氮、NOx-N以及络合阳离子。 5、(有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有 机基质浓度高,将使异氧菌快速增殖而成为优势。 6、硝化过程NH3-N耗于异化氧化和同化的经典公式NH4++1.83O2+1.98HCO3- 0.98NO3-+0.021C5H7NO2+1.88H2CO3+1.04H2O因此表明,去除1gNH3-N约:耗 去4.33gO2;生成0.15g细胞干物质;减少7.14g碱度;耗去0.08g无机碳。 7、硝化菌在反应器中的停留时间必须大于最小世代时间。 三、反硝化反应的适宜条件: 8、最适宜温度为20~40℃,低于15℃,反硝化反应速率降低。 a)最适宜的PH值为6.5~7.5。PH高于8或低于6,反硝化速率将大为降低。 9、BOD/TN≥3~5。反硝化菌是异氧兼性厌氧菌,可作为其碳源的有机物较多。 10、反硝化菌需要缺氧、好氧(合成酶系统)条件交替存在,系统DO≤0.5mg/l 11、(5)反硝化过程 NO3-+1.08CH3OH+0.24H2CO3→0.06C5H7NO2+0.47N2+1.68H2O+HCO3-

生物脱氮除磷原理

生物脱氮原理 (碳源) (碳源)图1 硝化和反硝化过程 图2 A2/O工艺流程

水体中氮的存在形态 生物脱氮原理 1、氨化作用 在好氧或厌氧条件下,有机氮化合物在氨化细菌的作用下,分解产生氨氮的过程,常称为氨化作用。 有机氮 氨氮 2、硝化作用 以A 2/O 工艺为例,硝化作用主要发生在好氧反应器中,污水中的氨氮NH 4+-N 在亚硝酸 细菌的作用下转化为亚硝酸氮NO 2--N ,亚硝酸氮NO 2--N 在硝酸细菌的作用下进一步转化为硝酸氮NO 3 --N 。(见图 1左边) 亚硝酸细菌和硝酸细菌统称为硝化细菌,属于好氧自养型微生物,不需要有机物作为营养物质。 3、反硝化作用 反硝化作用主要发生在缺氧反应器中,好氧反应器中生成的硝酸氮NO 3--N 和亚硝酸氮NO 2--N 通过内循环回流到缺氧池中,在有一定碳源的条件下,由反硝化细菌先将硝酸氮NO 3--N 转化为亚硝酸氮NO 2--N ,亚硝酸氮再进一步转化为氮气N 2,水体中的氮从化合物转化为氮气进入到空气中,才能最终将污水中TN 降低。(见图1右边) 反硝化细菌是异养兼性缺氧型微生物,其反应需要在缺氧环境中才能进行。 氨化菌

生物除磷原理 磷在自然界以2 种状态存在:可溶态(正磷酸盐PO43-)或颗粒态(多聚磷酸盐)。 所谓除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。 厌氧释磷 污水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生自身生长所需的所需的能量,称该过程为磷的释放。 好氧吸磷 进入好氧环境后,聚磷菌活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。 富含磷的污泥通过剩余污泥外排的方式最终使磷得到去除。

生物脱氮原理

水体中氮素过多所引起的危害—水体的富营养化:水体中含 氮量大于0.2~0.3m g/L就会引起水体的富营养化。 经富营养化污染的水体,治理关键是要脱氮除磷,而脱氮最常用的是生物脱氮。 生物脱氮原理:生物脱氮是在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下的反硝化反应将硝酸盐还原成气态氮从水中去除。生物脱氮通过氨化、硝化、反硝化三个步骤完成。 1、氨化反应:氨化作用是指将有机氮化合物转化为N H -N的过程,也称为 3 矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨,另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 2、硝化反应:在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(N H4 + )转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。 影响硝化反映的因素: 1、好样环境条件下,并保持一定的碱度:溶解氧在1.2~2.0m g/L。 2、pH:硝化反应的pH在8.0~8.4 3、温度:硝化反应的适宜温度在20~30℃ 4、尽量减少有毒有害物质的进入,且高浓度的氨氮和硝态氮对硝化作用有抑 制。 以上因素之所以会对硝化作用有影响,主要是因为他们对硝化细菌的生长环境造成了影响。 3、反硝化反应:反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮(N2 )的过程。进行这类反应的细菌主要有变形杆菌属、微球菌属、假单胞菌属、芽胞杆菌属、产碱杆菌属、黄杆菌属等兼性细菌,它们在自然界中广泛存在。 影响反硝化作用的因素: 1、要有充足的碳源 2、pH:反硝化反应的pH在6.5~7.5 3、溶解氧浓度:反硝化菌是异养兼性厌氧菌,溶解氧应控制在0.5mg/L以下 4、温度:反硝化反应的适宜温度在20~40℃ 生物脱氮工艺 主要有传统生物脱氮工艺(三级生物脱氮工艺)、A/O 工艺、A2/O 工艺(脱

生物脱氮基本原理精选版

生物脱氮基本原理 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

生物脱氮基本原理 作者:weidongwin 阅读:994次 上传时间:2005-10-13 推荐人:weidongwin 简介:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施 中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键字:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。 废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1.氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮 酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱 水脱氨三种途径的氨化反应。 (2-3)

相关文档
最新文档