低温外热重铬酸钾氧化——比色法测定脱水污泥有机碳

低温外热重铬酸钾氧化——比色法测定脱水污泥有机碳
低温外热重铬酸钾氧化——比色法测定脱水污泥有机碳

有机质的测定 重铬酸钾氧化外加热法

FHZDZTR0046 土壤 有机质的测定 重铬酸钾氧化外加热法 F-HZ-DZ-TR-0046 土壤—有机质的测定—重铬酸钾氧化外加热法 1 范围 本方法适用于土壤有机质的测定和土壤碳氮比的计算。 2 原理 土壤有机质包括各种动植物残体以及微生物及其生命活动的各种有机产物,它在土壤中的累积、移动和分解的过程是土壤形成作用中最主要的特征。土壤有机质不仅能为作物提供所需的各种营养元素,同时对土壤结构的形成和改善土壤物理性状有决定作用,因此是一项基础分析项目。土壤有机质的分析采用测定有机碳再乘以一定换算系数而求得。土样用重铬酸钾加热消煮,使有机质中的碳氧化成二氧化碳,而重铬酸离子被还原成三价铬离子,剩余的重铬酸钾用硫酸亚铁铵标准溶液滴定,然后根据有机碳被氧化前后重铬酸离子量的变化,就可算得有机碳和有机质的含量。 3 试剂 3.1 重铬酸钾标准溶液:0.8000mol/L ,称取经150℃烘干2h 的39.2248g 重铬酸钾(K 2Cr 2O 7) ,精确至0.0001g ,加400mL 水,加热溶解,冷却后,加水稀释至1000mL 。 3.2 硫酸亚铁铵标准溶液:0.2mol/L ,称取80g 硫酸亚铁铵[Fe(NH 4)2(SO 4)2·6H 2O],溶解于水,加15mL 硫酸(ρ1.84g/mL ),再加水稀释至1000mL 。 标定:吸取10.00mL 重铬酸钾标准溶液置于250mL 锥形瓶中,加入40mL 水和10mL 硫酸(1+1),再加3滴~4滴邻菲啰啉指示剂,用硫酸亚铁铵标准溶液滴定至溶液由橙黄色经蓝绿色至棕红色为终点。同时做空白试验。 硫酸亚铁铵标准溶液浓度按下式计算: 211V V V C C ?×= 式中: C ——硫酸亚铁铵标准溶液浓度,mol/L ; C 1——重铬酸钾标准溶液浓度,mol/L ; V 1——重铬酸钾标准溶液体积,mL ; V 2——硫酸亚铁铵标准溶液用量,mL ; V 0——空白试验消耗硫酸亚铁铵标准溶液体积,mL 。 3.3 N-苯基邻胺基苯甲酸指示剂:称取0.2g N-苯基邻胺基苯甲酸(C 13H 11O 2N ),溶于100mL 2g/L 碳酸钠溶液中,稍加热并不断搅拌,促使浮于表面的指示剂溶解。 3.4 邻菲啰啉指示剂:称取 1.485g 邻菲啰啉(C 12H 8N 2·H 2O )和0.695g 硫酸亚铁 (FeSO 4·7H 2O ) ,溶于100mL 水中,形成的红棕色络合物贮于棕色瓶中。 3.5 硫酸,(ρ 1.84g/mL )。 3.6 硫酸银,研成粉末。 4 仪器 4.1 硬质试管,25mm ×100mm 。 4.2 注射器,5mL 。 4.3 油浴锅,内装固体石蜡或植物油。 4.4 温度计,250℃。 4.5 铁丝笼架,形状与油浴锅配套,内设若干小格,每格内可插一支试管。 4.6 锥形瓶,250mL 。

污泥脱水性能实验

污泥脱水性能实验 通过这个实验能够测定污泥脱水性能,以次作为选定脱水工艺流程和脱水机械型号的根据,也作为确定药剂种类,用量及运行条件的依据。 【实验目的】 (1)加深理解污泥比阻的概念。 (2)评价污泥脱水性能。 (3)选择污泥脱水性能的药剂种类、浓度、投药量。 【实验原理】 污泥经重力浓缩或消化后,含水率约在97%,体积大不便于运输。因此一般多采用机械脱水,以减小污泥体积。常用的脱水方法有真空过滤,压滤、离心等方法。污泥机械脱水是以过滤介质两面的压力差作为动力,达到泥水分离,污泥浓缩的目的。根据压力差来源的不同,分为真空过滤法,(抽真空造成介质两面压力差)压缩法(介质一面对污泥加压,造成两面压力差)。 影响污泥脱水的因数较多,主要有, (1)污泥浓度,取决于污泥性质及过滤前浓缩程度。 (2)污泥性质,含水率, (3)污泥预处理方法。 (4)压力差大小 (5)过滤介质种类、性质。 设备 【实验步骤】 (1)准备待测污泥(消化后的污泥) (2)按表4-36所给出的因素、水平表,利用L9(3的4次幂)正交表安排污泥比阻实验。 1)测定污泥含水率,求其污泥浓度; 2)布氏漏斗内放置滤纸,用水喷湿。开动真空泵,使量筒中成为负压,滤纸紧贴漏斗,关闭真空泵;

3)把100mL调节好的泥样倒入漏斗内,再次开动真空泵,使污泥在一定的条件下过滤脱水; 4)记录不同过滤时间t的滤液体积V值; 5)记录当过滤到泥面出现皲裂,或滤液达到85mL时。所需要的时间t.此指标也可用来衡量污泥过滤性能的好坏; 6)测定滤饼浓度; 7)记录见表4-37 【注意事项】 (1)滤纸烘干称重,放到布氏漏斗内,而后再用真空泵抽吸一下,滤纸一定要贴近不能漏气。 (2)污泥倒入布氏漏斗内有部分滤液流入量筒,所以在正常开始实验时,应记录量筒内滤液体积Vo值。 【思考题】 (1)判断生污泥,消化污泥脱水性能好坏,分析其原因。 (2)在上述实验结果的条件下,重新编排一张正交表,以便通过实验能得到更好的污泥脱水条件。

土壤有机质的测定(重铬酸钾容量法)(1)

实验八土壤有机质的测定(重铬酸钾容量法) 一、目的意义 土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源,且含有刺激植物生长的胡敏酸类等物质,又是土壤中异养型微生物的必不可少的碳源和能源物质。由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性,它还能使土壤疏松和形成团粒结构,从而改善土壤的物理性。一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标,所以测定有机质含量对于了解土壤肥力状况有着重要的意义。 二、方法原理 本法是在外加热源的条件下,用一定量的标准重铬酸钾-硫酸溶液来氧化土壤有机质(碳),剩余的重铬酸钾用标准硫酸亚铁来滴定。由消耗的重铬酸钾量计算有机碳的含量,再间接计算有机质的含量。一般来说,土壤有机质平均含碳量为58%,要换算成有机质则应乘100/58=1.742。另外,由于该方法对土壤有机质的氧化约为90%。故测定结果还应乘以较正系数100/90=1.1。 氧化和滴定时的化学反应式如下: 2K2Cr2O7+8H2SO4+3C—2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4+7H2SO4—K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7 H2O 三、测定方法 用分析天平准确称取过孔筛的土样0.1~0.5g(含有机质>7%的称0.1g,4~7%称0.2g,2~4%称0.3g,<2%称0.5g),放入干燥的硬质试管中。(应直接倒入试管底部,避免沾在管壁上)。用滴定管准确加入0.8N K2Cr2O75ml,轻

轻摇动试管,使管内土样分散。(勿使土壤粘在试管上部)。再沿管壁缓慢加入浓H2SO45ml,在试管口加一小漏斗,以冷凝蒸出之水汽。 把试管插入铁丝笼中并放入预先加热至180~190℃的油浴锅中,此时油温下降至170~180℃,保持此温度。当试管内容物开始沸腾时,计时煮沸5分钟(温度和时间对测定结果影响较大,应准确计时)。取出试管,稍冷后擦净管外油液。 将试管内容物用蒸馏水洗入三角瓶中,瓶内总体积不要超过60~70ml,加入2~3滴邻菲罗啉指示剂,用0.2N FeSO4滴定,溶液颜色由橙黄变绿再突变到棕红色即为终点。 若以二苯胺做指示剂,应于溶液中先加入NaF粉末1小勺或50% H3PO43ml (使溶液中Fe3+与其络合成无色络离子,以消除滴定时产生的红褐色Fe2(SO4)3的干扰,然后加入二苯胺1ml,此时溶液呈暗紫色,用0.2N FeSO4滴定至暗绿色即为终点。 同时做空白试验(以消除药品不纯等的影响),加石英砂、防止暴沸。 四、结果计算 有机质 式中:V0—滴定空白时消耗的FeSO4毫升数; V—滴定样品时消耗的FeSO4毫升数; N— FeSO4的当量浓度; 0.003—1毫克当量碳的克数。 五、试剂配制及仪器设备

重铬酸钾外加热法

重铬酸钾容量法——外加热法 方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,其反应如下:

重铬酸钾法

1原理 在强酸性溶液中,一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂、用硫酸亚铁铵溶液回滴。根据用量算出水样中还原性物质消耗的氧。 2干扰及其消除 酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链脂肪族化合物可完全被氧化,而芳香族有机物却不易被氧化,吡啶不被氧化,挥发性直链脂肪族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。氯离子含量高于2000mg/L的样品应先作定量稀释、使含量降低至2000mg/L,再行测定。 3访法的适用范围 用0.25mol/L浓度的重铬酸钾溶液可测定大于50mg/L的COD值。用0.025mol/L浓度的重铬酸钾溶液可测定5—50mg/L的COD值,但准确度较差。 4测定过程 取水样20mL(原样或经稀释)于锥形瓶中 加入HgSO4 0.4g(消除CL离子干扰)混匀 加入0.25mol/L 重铬酸钾10mL 和沸石若干混匀接上回流装置 从冷凝管上口加入AgSO4-H2SO4 溶液30mL (催化剂)混匀 回流加热2小时 冷却30分钟 从冷凝管上口加入80mL水于反应液中 取下锥形瓶 加入铁灵试剂3滴 此时溶液应呈黄色(既过量重铬酸钾中六价铬颜色) 用0.1mol/L 硫酸亚铁铵标准溶液滴定此时溶液颜色逐渐变成蓝绿色(既六价铬被亚铁试剂还原成三价铬的颜色)

继续滴定至溶液呈现红棕色停止(此时水样中重铬酸钾全部被还原亚铁离子和亚铁试剂产生红棕色)记录硫酸亚铁铵溶液的用量V1mL。 以蒸馏水为空白水样,同上法测定硫酸亚铁铵溶液的用量V0mL。 按下面公式计算CODcr值: CODcr(O2,mL/L)=(V0-V1)*c*8*1000/V V表示水样体积mL,c表示硫酸亚铁铵溶液浓度mol/L,8表示氧的摩尔质量g/mol,*号表示乘以 仪器 (1)回流装置:带250ml锥形瓶的全玻璃回流装置(如取样量在30ml以上,采用500ml 锥形瓶的全玻璃回流装置)。 (2)加热装置:电热板或变组电炉。 (3)50ml酸式滴定剂。 试剂 (1)重铬酸钾标准溶液(1/6 =0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。 (2)试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。 (3)硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边搅拌边缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前用重铬酸钾标准溶液标定。 (4)硫酸-硫酸银溶液:与2500ml浓硫酸中加入25g硫酸银。放置1-2d,不时摇动使其溶解(如无2500ml容器,可在500ml浓硫酸中加入5g硫酸银)。 (5)硫酸汞:结晶或粉末。 注意事项 (1)使用0.4g硫酸汞络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸汞,保持硫酸汞:氯离子=10:1(W/W)。如出现少量氯化汞沉淀,并不影响测定。

污泥深度脱水技术方案

污泥深度脱水 技术方案设计 编制单位: 编制时间:二○一一年月

目录 一、工程概况及规模要求 (3) 二、承接方公司简介 (4) 三、污泥处理处置现状及政策 (4) 四、污泥特性与脱水难度 (5) 五、污泥脱水技术在国内外的现状与发展趋势 (6) 六、污泥脱水技术路线确定 (8) 七、污泥脱水工艺流程及流程简述 (9) 八、技术路线机理及效果 (9) 九、技术优点与创新 (11) 十、设备投资估算 (12) 十一、土建工程投资估算 (13) 十二、技术经济分析 (13) 十三、工程工期与进度 (13) 十四、安全及环保措施 (14) 十五、售后服务 (15)

一、工程概况及规模要求 (一)建设单位及工程概况(略) (二)设计基本条件与要求 1、污泥品种:污水处理厂终端污泥 2、前端污泥含水率:80~85% 3、处理后污泥含水率:50% 3、日处理量:含水80%污泥10吨 4、环保目标:确保终端污泥不增加有毒有害成分 5、建设用地:约70㎡ 6、建设地点:污水处理厂污泥脱水车间 (三)设计原则 根据建设方的实际情况,本工程设计原则如下: ?严格执行环境保护的各项规定,采用科学合理的处理工艺,确保污泥脱水达标。 ?合理设计,尽可能地降低工程造价和运行费用。 ?采用品质优良的设备,使系统的操作管理方便,运行稳定可靠。 ?对污泥脱水处理区域合理布局,精心设计,环境美观协调。 为此,我方根据建设方提供的相关资料,编制本方案供贵方审核选用。

二、承接方公司简介 三、污泥处理处置现状及政策 随着社会经济的发展,我国目前的城市污水处理厂约2200座,随着中国城市化进程的加快,城市污水处理厂仍不断增加,污泥产量也呈持续快速增长之势。据不完全统计,全国每年产生含水80%的湿污泥为3000多万吨,并逐年以10 %左右递增。 长期以来,我国在污水处理厂从设计到运行,普遍存在“重水轻泥”的倾向。污水处理厂出水水质是达标了,但污泥处理处置基本处于缓慢发展状态。要解决污泥处理处置问题,首先必须强化污泥“处理”与“处置”的基本概念问题。污泥处理是将饱含水份的原生污泥,通过浓缩、脱水及后续的生物活化处理使其达到稳定化状态。污泥处置是在污泥减量化、稳定化处理后进行的最终处理。 我国城镇污水厂普遍采用机械方式对污泥进行脱水,脱水污泥含水率一般在75~85%,呈胶质粘结状。污泥具有“四高”特点:一是含水率高;二是有机物含量高,很容易腐烂恶臭;三是重金属含量较高;四是病菌含量高,含有大量的细菌、寄生虫、病毒。污泥不经过无害化处理,任意弃置,简单填埋,容易污染空气、土壤和水源,严重威胁人体健康和环境安全,污泥具有“环境杀手”之称,因此世界上许多国家将污泥视为“危险品”,污泥造成二次污染后再去治理,将付出更高代价。

土壤有机质测定——重铬酸钾容量法——稀释热法

土壤有机质测定——重铬酸钾容量法——稀释热法 一、原理 稀释热法(水合热法)是利用浓硫酸和重铬酸钾迅速混合时产生的热来氧化有机质,以代替外加热法中的油浴加热,操作更加方便。由于产生的热,温度较低,对有机质氧化程度较低,只有77%。因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7 + 8H2SO4+ 3C → 2K2SO4 + 2Cr2 (SO4) 3 + 3CO2+ 8H2O K2Cr2O7 + 6FeSO4 + 7H2SO4 → K2SO4 + Cr2(SO4)3 + 3Fe2(SO4)3 + 7H2O 二、试剂 ⑴1.0mol/L(1/6 K2Cr2O7)溶液。准确称取K2Cr2O7(分析纯,105℃烘干)49.04g,溶于水中,稀释至1L。 ⑵0.4mol/L(1/6 K2Cr2O7)的基准溶液。准确称取K2Cr2O7(分析纯,130℃烘干3h) 19.6132g于250烧杯中,用少量水溶解,将全部洗入1000ml容量瓶中,加入浓H2SO4约70ml,冷却后用水定容至刻度,充分摇匀备用(其中含浓硫酸约为2.5 mol/L1/2 H2SO4)。 ⑶0.5mol/LFeSO4溶液。称取FeSO4·7H2O140g溶于水中,加入浓硫酸15mL,冷却稀释至1L或称取Fe(NH4)2(SO4) 2·6H2O196.4g溶解于含有200ml浓H2SO4的800ml 水中,稀释至1L。此溶液的准确浓度以0.4mol/L(1/6 K2Cr2O7)的基准溶液标定之。即准确分别吸取3份0.4mol/L(1/6 K2Cr2O7)的基准溶液各25ml于150ml 三角瓶中,加入邻菲啰啉指示剂2~3滴,然后用0.5mol/LFeSO4溶液滴定至终点,并计算出基准FeSO4的浓度。FeSO4溶液在空气易被氧化,需新鲜配制或以标准K2Cr2O7溶液每天标定之。 ⑷邻菲啰啉指示剂:称取1.485g邻菲啰啉与FeSO4·7H2O0.695g溶于100mL水中。 ⑸SiO2。二氧化硅粉末状。 三、操作步骤 准确称取0. 5000g土样于500ml三角瓶中,然后准确加入10mL1.0mol/L(1/6 K2Cr2O7)溶液于土壤样品中,转动瓶子使之混合均匀,然后加入浓H2SO4 20ml,将三角瓶缓慢转动1min,促使混合以保证试剂与土壤充分作用,并在石棉板上放置约30min,加水稀释至250ml,加3~4滴邻菲啰啉指示剂,用0.5 mol/LFeSO4标准溶液滴定至近终点时溶液颜色由绿色变为暗绿色,逐渐加入FeSO4直至生成砖红色沉淀。 用同样的方法做2~3个空白测定(即不加土样)。即称取0.5000g粉末二氧化硅代替土样,其他手续与试样测定相同。记取FeSO4滴定毫升数(VO),取其平均值。 四、结果计算 土壤有机碳(g/kg)=[c (VO -V)X0.001X3.0 X 1.33/m]X1000 土壤有机质(g/kg)=土壤有机碳(g/kg)X1.724 式中: 1.33——为氧化校正系数; C——为0.5mol/LFeSO4标准溶液的浓度; V0——空白滴定用去FeSO4体积(ml); V——样品滴定用去FeSO4体积(ml); m----风干试样的质量; 3.0——1/4碳原子的摩尔质量(g/mol) 0.001——将ml换算成L; 1000----换算成每千克含量。

(样本)重铬酸钾-氧化剂

化学品安全技术说明书 第一部分化学品名称编号:028 化学品中文名:重铬酸钾 化学品英文名:potassium dichromate 化学品中文名2:红矾钾 化学品英文名2:/ 第二部分成分/组成信息 纯品√混合物× 有害物成分浓度CAS No. 重铬酸钾≥98.0% 7778-50-9 第三部分危险性概述 危险性类别:氧化性固体 侵入途径:吸入、食入、经皮吸收 健康危害:急性中毒:吸入后可引起急性呼吸道刺激症状、鼻出血、声音嘶哑、鼻粘膜萎缩,有时出现哮喘和紫绀。重者可发生化学性肺炎。口服可刺激和腐蚀消化道,引起恶心、呕吐、腹痛和血便等;重者出现呼吸困难、紫绀、休克、肝损害及急性肾功能衰竭等。 慢性影响:有接触性皮炎、铬溃疡、鼻炎、鼻中隔穿孔及呼吸道炎症等。 环境危害:无资料 燃爆危险:本品助燃,为致癌物,具强腐蚀性、刺激性,可致人体灼伤。 第四部分急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,用清水或 1%硫代硫酸钠溶液洗胃。给饮牛奶或蛋清。就医。 第五部分消防措施 危险特性:强氧化剂。遇强酸或高温时能释出氧气,促使有机物燃烧。与还原剂、有机物、

易燃物如硫、磷或金属粉末等混合可形成爆炸性混合物。有水时与硫化钠混合能引起自燃。与硝酸盐、氯酸盐接触剧烈反应。具有较强的腐蚀性。 有害燃烧产物:可能产生有害的毒性烟雾。 灭火方法:采用雾状水、砂土灭火。 第六部分泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。建议应急处理人员戴防尘面具(全面罩),穿防毒服。勿使泄漏物与还原剂、有机物、易燃物或金属粉末接触。小量泄漏:用洁净的铲子收集于干燥、洁净、有盖的容器中。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:收集回收或运至废物处理场所处置。 第七部分操作处置与储存 操作注意事项:密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴头罩型电动送风过滤式防尘呼吸器,穿聚乙烯防毒服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。远离易燃、可燃物。避免产生粉尘。避免与还原剂接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不超过35℃,相对湿度不超过75%。包装密封。应与易(可)燃物、还原剂等分开存放,切忌混储。储区应备有合适的材料收容泄漏物。 第八部分接触控制/个体防护 职业接触限值: MAC(mg/m3): TWA(mg/m3): STEL(mg/m3): 监测方法:二苯碳酰二肼比色法 工程控制:生产过程密闭,加强通风。提供安全淋浴和洗眼设备。 呼吸系统防护:可能接触其粉尘时,应该佩戴头罩型电动送风过滤式防尘呼吸器。必要时,佩戴自给式呼吸器。 眼睛防护:呼吸系统防护中已作防护。 身体防护:穿聚乙烯防毒服。 手防护:戴橡胶手套。

污泥脱水及干化工艺调研

污泥脱水及干化工艺调研

污泥的产生在人类活动过程中是不可避免的。污水处理产生的大量污泥的任意堆放和投弃对环境造成了新的污染,如何妥善处置这些污泥已成为全球共同关注的课题。 一、污泥概述 污泥(sludge) 是由水和污水处理过程所产生的固体沉淀物质。 1. 污泥的分类 根据其来源,污泥可以划分为: 1)市政污泥(sewage sludge),主要指来自污水厂的污泥,这是数量最大的一类污泥。此外,自来水厂的污泥也来自市政设施,可以归入这一类。 2)管网污泥,来自排水收集系统的污泥。 3)河湖淤泥,来自江河、湖泊的淤泥。 4)工业污泥,来自各种工业生产所产生的固体与水、油、化学污染、有机质的混合物。 在非特指环境下,污泥一般指市政排水污泥。 污水处理厂的污泥根据处理的工艺级别不同,又可以分为以下几种: 1)初沉污泥(Primary):只经过物理-化学处理 2)二沉污泥(Secondary):生物处理后的污泥 3)三沉污泥(Tertiary):脱磷/脱氮后的污泥 根据污泥的性质,又可以区分为: 1)未消化生污泥(undigested) 2)消化污泥(digested) 污泥的消化又有好氧消化与厌氧消化之分。各个级别的污泥的物理化学性质不同,消化和未消化污泥的性质差别更大。很多后端处理工艺必须了解前端污泥的性质才能确定其处理方式。2. 污泥的主要成分 因污泥成分不同,未消化的市政污水污泥的有机物含量可能占到干物质的60%-75%,高效消化处理后减半。 有机硝酸盐是污泥中的主要有效成分。施用到土壤里,硝酸盐经生物降解可改善土壤。 污水厂污泥具有很强的流动性,这是因为其含水率很高,一般在95%以上,这是污泥本身的性质决定的。根据分析,污泥与水分子的结合非常紧密,并具有不同的相态: 1)自由态水:可经重力沉淀和机械作用去除; 2)物理性结合水:须更多能量去除(如加热),包括毛细管/间隙水、胶态/表面吸附水。 3)化学性结合水:只有打破化学键才能去除,被称为“平衡水”,包括细胞内的水、分子水。 3. 污泥处理、处置存在的问题 1)污泥处置:污泥的处置指的是给污泥一个最终的归宿:要么作为肥料施用到农田、绿化等土壤中,成为土壤的一部分;要么加以资源化利用,形成有用的材料,如铺路的渣土、水泥、制砖等;要么填埋,未加任何利用,且耗费土地资源而弃置。 2)污泥处理:任何不能达到最终安置的过程,都可以算作处理。比如污泥堆肥,杀灭细菌和熟化后才能产生安全的肥效;焚烧最终还会产生灰烬,这部分的数量要占到原干物质质量的40%以上,因此还要考虑填埋或利用;干化是为了去掉泥饼中的大部分水份,节约运输成本,减少占地,少付填埋费,并为其它的最终处置方案提供减量、卫生化和经济性条件。 污泥处理的主要目的是减少水分,为后续处理、利用和运输创造条件;消除污染环境的有毒有害物质;回收能源和资源。污泥的处理工艺包括污泥的浓缩、消化、脱水、干化及焚烧等方法以及最终处理。

三氯化钛-重铬酸钾容量法测定全铁量知识点解说.

三氯化钛-重铬酸钾容量法测定全铁知识点 一、样品分解 1. 分解铁矿石样品必须使用盐酸,不能用硝酸,否则在测定过程中会产生误差。 2. 试样分解完全时,剩余残渣应为白色或接近白色的SiO2,如仍有黑色残渣,则说明试样分解不够完全。 3. 含铁的硅酸盐难溶于盐酸,可加入少许NaF、NH4F使试样分解完全。磁铁矿溶解的速度缓慢,可加几滴SnCl2助溶。 4. 对于含硫化物或有机物的铁矿石,应将试样预先在550~600℃灼烧以除去硫和有机物,再以HCl分解。对于酸不能分解的试样,可以采用碱熔融法。 二、三价铁还原 1. 用SnCl2还原Fe3+时,溶液体积不能过大,HCl浓度不能太小,温度不能低于60℃,否则还原速度很慢。容易使滴加的SnCl2过量太多,故冲洗表面皿及烧杯内壁时,用水不能太多。 2. SnCl2不能过量,否则在滴定的时候会消耗重铬酸钾标准溶液而使测定结果偏高。还原时滴定到溶液呈现浅黄色时即可,没有被还原的Fe3+再用三氯化钛还原。 三、样品滴定 1. 正式滴定前应用重铬酸钾溶液把钨蓝消褪,这部份体积不能计入滴定体积之中,否则会使测定结果偏高。

2. 滴定前要加入一定量的硫-磷混酸。这是由于一方面滴定反应需在一定 酸度下进行(1~3mol/L),另一方面磷酸与三价铁形成无色配合离子,利于终点判别。在硫-磷混酸溶液中,Fe2+极易氧化,故还原后应马上滴定。二苯胺磺酸钠指示剂加入后,溶液呈无色。随着K2Cr2O7的滴入,Cr3+生成,溶液由无色逐渐变为绿色。终点时,由绿色变为紫色。 3. 指示剂要用新配制的,时间过长则反应不灵敏。 四、测定结果误差 产生误差的原因有下面这些: 1. 溶解样品时如果使用了硝酸,则必须用硫酸冒烟使硝酸挥发,防止在滴定到终点时指示剂颜色消褪,造成终点不稳定的现象。 2. 正式滴定前没有用重铬酸钾溶液把钨蓝消褪,直接滴定到终点;或者没有把使钨蓝消褪这部份体积扣除,这两种操作都会使使测定结果偏高。

重铬酸钾法测COD

一、重铬酸钾法测定(CODCr)的原理 在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算水样化学需氧量。 二、仪器 1、500ml 全玻璃回流装置。 2、加热装置(电炉)。 3、25ml 或50ml 酸式滴定管、锥形瓶、移液管、容量瓶等。 三、试剂 1、重铬酸钾标准溶液(C1/6K2Cr2O7);称取预先在120℃烘干2h 的基准或优质纯重铬酸钾12.258g 溶于水中,移入1000ml 容量瓶,稀释至标准线,摇匀。 2、试亚铁灵指示液:称取 1.485g 邻菲啰啉(C12H8N2?H2O)、0.695g 硫酸亚铁(FeSO4?7H2O)溶于水中,稀释至100ml,储于棕色瓶内。 3、硫酸亚铁铵标准溶液(C(NH4)2 Fe(SO4)2?6H2O):称取39.5g 硫酸亚铁铵溶于水中,边搅拌边缓慢加入20ml 浓硫酸,冷却后移入1000ml 容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 标定方法:准确吸取10.00ml 重铬酸钾标准溶液于500ml 锥形瓶中,加水稀释至110ml 左右,缓慢加入30ml 浓硫酸,混匀。冷却后,加入3 滴试亚铁灵指示液(约0.15ml),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。 C=0.2500×10.00/V 式中:C-----硫酸亚铁铵标准溶液的浓度(mol/L); V-----硫酸亚铁铵标准溶液的用量(ml)。 4、硫酸-硫酸银溶液:于500ml 浓硫酸中加入5g 硫酸银。放置1-2d,不时摇动使其溶解。 5、硫酸汞:结晶或粉末。 四、测定步骤 1、移液管移水样5.00mL于消解罐中,加入5.00mL消解液(重铬酸钾),即时摇匀,再加入5.00mL催化剂(硫酸-硫酸银溶液),摇匀。 2、另做一空白样,加5.00mL蒸馏水,其他照加。 3、放入微波炉消解 3罐——5min 4罐——6min 5罐——7min 4、消解液倒入锥形瓶中,冲洗消解罐3次,加2滴指示剂,用硫酸亚铁铵回滴,颜色由黄经蓝绿至红褐色,即为终点 5,标定硫酸亚铁铵溶液

叠螺式污泥脱水机的工作流程和特点

叠螺式污泥脱水机的工作流程和特点水资源是人类生产和生活不可缺少的自然资源,也是生物敕以生存的环境资源,随着水资源危机的加剧和水环境质量不断恶化,水资源短缺已成为世界倍受关注的资源环境问题之一,为缓解水环境污染与水资源匮乏带来的压力,叠螺式污泥脱水机作为环境工程领域迅速发展的一门技术科学,近几十年来得到了快带发展。叠螺式污泥脱水机可广泛用于市政污水处理工程以及石化、轻工、化纤、造纸、制药、皮革等工业行业的水处理系统。 无锡市凌德环保设备有限公司地处江苏宜兴市,是国内较早实现叠螺污泥脱水机国产化的厂家之一。公司有着丰富的工程技术管理经验和产品质量管理能力、完善的检测设备,产品深受欢迎。下面该企业为我们介绍一下叠螺式污泥脱水机的工作流程及特点。 工作流程: 1、污泥池内的污泥通过污泥输送泵,被输送至计量槽,通过调节计量槽内液位调整管调节进泥量,多余的污泥通过回流管回流到污泥池。 2、污泥和和絮凝剂在絮凝混合槽内,通过搅拌机进行充分混合形成矾花,理想的矾花的直径在5mm左右。 3、矾花在浓缩部经过重力浓缩,大量的滤液从浓缩部的滤缝中排出。 4、浓缩后的污泥沿着螺旋轴旋转的方向继续向前推进,在背压板形成的内压作用下充分脱水。 5、脱水后的泥饼从背压板与螺旋主体形成的空隙排出。可以通过调节螺旋轴的转动速度和背压板的空隙来调节污泥处理量和泥饼的含水率。絮凝混合槽排污管只在清洗混合槽的时候才使用。 特点: 1、污泥脱水机工作周期短,效率高:高压挤压,可以大大减少在蛋糕中的水含量在一个短的时间内, 2、污泥脱水机运行成本低:全自动化控制程序。这隔膜压滤机可无人值守,节约运营成本。 3、污泥脱水机操作简单:采用清洗装置上,有几个动作和与汽车板移机同步。可以根据需要设置的洗涤循环(现场可调节) 4、污泥脱水机低功耗:隔膜压榨功能,在很短的时间来完成这个过程,节省功耗。 5、污泥脱水机广泛的应用:耐腐蚀性强,基本适用于所有固液分离项目

土壤有机质论文:土壤有机质的测定(油浴加热重铬酸钾容量法)

土壤有机质论文:土壤有机质的测定(油浴加热重铬酸钾容 量法) 土壤有机质是土壤的重要组成部分,土壤的许多属性都直接或间接地与有机质的存在相关。在现代农业生产中,增施有机肥料仍是作物高产高效必不可少的重要措施。土壤有机质主要来源于各种植物茎、秆、根茬和落叶,土壤中的动物和微生物以及施入的各种有机肥料。土壤有机质的组成是很复杂的,包括以下三类物质:第一,分解很少,仍保持原来形态的动植物残体。第二,动植物残体的半分解产物及微生物的代谢产物。第三,有机质的分解和合成而形成的特殊有机物质—腐殖质。有机质中含有n、p、c、h、o、s等植物所必需的营养元素,所以是土壤养分的重要来源。另外还含有少量的灰分元素如mg、k、fe、si及b、mn、cn等一些微量元素,因此,一般来说土壤有机质含量的多少,是土壤肥力高低的一个重要组成指标。 1方法原理 在加热的条件下,用过量的重铬酸钾—硫酸溶液氧化土壤有机碳,多余的重铬酸钾用硫酸亚铁溶液滴定,由消耗的重铬酸钾量按氧化校正系数计算出有机碳的量,再乘以 1.724,即为土壤有机质的含量。化学反应如下: 2k2cr2o7+8h2so4+3c→2k2so4+2cr y2(so4)

3+3co2↑+8h2o,多余的k2cr2o7的还原: k2cr2o7+6feso4+7h2so4→k2so4+cr2(so4)3+3fe2(so4)3 +7h2o 2主要仪器设备 电炉:1000w;硬质试管:25mm×200mm;油浴锅:用紫铜皮做成或用高度约为15~20cm的铝锅代替,内装甘油(工业用)或固体石腊(工业用);铁丝笼:大小、形状与油浴锅相配套,内装有若干个小格,每格内可插入1支小试管;自动调零滴定管;温度计:300℃;三角瓶:250ml三角瓶;小玻璃漏斗。 3试剂 3.10.40mol/l重铬酸钾-硫酸溶液称取40g(化学纯)重铬酸钾,溶于600~800ml蒸溜水使其溶解,加水至1 000ml,将此溶液转移到3 000ml大烧杯中;另取浓硫酸(密度为1.84,化学纯) 1 000ml慢慢倒入重铬酸钾水熔液中不断搅动,为避免溶液急剧升温,每加100ml浓硫酸后可稍停片刻,并把大烧杯放在盛有冷水的大塑料盆内冷却,当溶液的温度下降到不烫手时再加浓硫酸,直到全部加完为止。此溶液极为稳定,可长期保存。 3.20.20mol/l硫酸亚铁标准溶液称取56g硫酸亚铁(化学纯)或80g硫酸亚铁铵(化学纯)溶解于约800ml蒸溜水中,

重铬酸钾法练习题

重铬酸钾法练习题 一、填空 1.欲配制KMnO4、K2Cr2O7 等标准溶液, 必须用间接法配制的是_____________,标定时选用的基准物质是___________________。 2.重铬酸钾法是以为标准溶液的氧化还原滴定法,本方法总是在________性溶液中与还原剂作用。 3.氯化亚锡-氯化汞-重铬酸钾法测铁含量的主要缺点为__________________ 4.以氯化亚锡-氯化汞-重铬酸钾法测定铁矿石中铁含量时,SnCl2的用量应_____________,如其用量适当,加入HgCl2后,溶液中出现__________________ 沉淀。 5.以三氯化钛-重铬酸钾法测铁含量时,用TiCl3还原Fe3+的指示剂是__________________ ,Fe3+全部被还原后,稍过量的TiCl3使溶液呈__________________色。 二、选择题 1. K2Cr2O7法常用的指示剂为() A、Cr 3+ B、二苯胺磺酸钠 C、淀粉 D、Cr2O72- 2、国家标准规定K2Cr2O7基准试剂使用前地干燥条件为() A、105~110℃干燥至恒重 B、(120±2)℃干燥至恒重 C、(180±2)℃干燥至恒重 D、140~150℃干燥至恒重 3. 重铬酸钾法测定铁矿石中铁含量时,常使用的混酸为() A、H2SO4-HCl B、H3PO4-HNO3 C、HNO3-HCl D、H2SO4-H3PO4 4. 与KMnO4法相比,K2Cr2O7法的主要优点不包括() A、可用直接法配制标准溶液 B、K2Cr2O7溶液非常稳定,便于长期保存 C、室温下Cl-不干扰测定 D、需采用二苯胺磺酸钠指示剂 5. 重铬酸钾法测定铁矿石中铁含量时,加入硫磷混酸的主要作用是() A、增加溶液酸度 B、避免Cr2O72-被还原为其他产物 C、消除Fe3+黄色对终点观察的影响 D、降低Fe3+ /Fe2+电对的电位,增大滴定突跃范围 6.高锰酸钾的氧化能力与重铬酸钾的氧化能力相比,下列说法正确的是() A、大于 B、小于 C、等于 D、无法确定 7、在SnCl2-HgCl2- K2Cr2O7法测定铁矿石中铁含量的叙述中不正确的是() A、为促进试样溶解,应将溶液煮沸 B、SnCl2应缓慢滴加,并稍微过量 C、HgCl2应趁热迅速加入 D、加入HgCl2后有灰黑色沉淀出现,应弃去重做 8、在SnCl2-TiCl3- K2Cr2O7法测定铁矿石中铁含量的叙述中正确的是() A、SnCl2应趁热滴加,直至溶液黄色褪尽 B、滴加TiCl3至溶液刚好出现钨蓝 C、K2Cr2O7滴至钨蓝褪色,应准确记录消耗体积 D、H2SO4-H3PO4混酸可用稀H2SO4代替 三、简答题 “K2Cr2O7标准溶液滴定Fe2+既能在硫酸介质中进行,又能在盐酸介质中进行”,对吗?为什么?

重铬酸钾法测cod实验报告范文.doc

重铬酸钾法测cod实验报告范文 篇一:重铬酸钾法COD测定及颜色变化原理 一、重铬酸钾法测定COD原理 在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算化学需氧量。 Cr2O7+14H+6e 2Cr+7H2O (水样的氧化) Cr2O7+14H+6Fe 2Cr+6Fe+7H2O (滴定) Fe+ 试亚铁灵(指示剂)→ 红褐色(终点) 二、器材 1.250mL全玻璃回流装置; 2.四联可调电炉; 3.25或50ml酸式滴定管、锥形瓶、移液管、容量瓶等。 三、试剂 1.重铬酸钾标准溶液(C=0.2500mo1/L):称取预先在0℃烘干2h的基准或优质纯重铅酸钾.258g溶于水中,移入1000mL 容量瓶,稀释至标线,摇匀。 2.试亚铁灵指示剂:称取1.485g邻菲啰啉(CH8N2.H2O)、0.695g硫酸亚铁FeSO4.7H2O)溶于水中,稀释至100ml,贮于棕色瓶内。

3.硫酸亚铁铵标准溶液(c≈0.1mol/L):称取39.5g硫酸亚铁铵溶于水中,边搅拌边缓慢加入20mL浓硫酸,冷却后移入1000ml容量瓶中,加入稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 标定方法:准确吸取10.00ml重铬酸钾标准溶液于500mL 锥形瓶中,加入稀释至110ml左右,缓慢加入30mL浓硫酸,混匀。冷却后,加入3 滴试亚铁灵指试液(约0.15mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。 式中;C--硫酸亚铁铵标准溶液的浓度(mol/L); V一一硫酸亚铁铵标准溶液的用量(ml)。 4.硫酸一硫酸银溶液:于500mL浓硫酸中加入5g硫酸银。放置l-2d,不时摇动使其溶解。 5.硫酸汞:结晶或粉末。 6.待测样品 四、测定步骤 1.取20.00 mL混合均匀的水样(或适量水样稀释至20.00mL)置于250mL磨口的回流锥形瓶中,准确加入10.00mL 重铬酸钾标准溶液及数颗小玻璃珠或沸石,连接磨口回流冷凝管,从冷凝管上口慢慢地加入30mL硫酸一硫酸银溶液,轻轻摇动锥形瓶,使溶液摇匀,加热回流2h(自开始沸腾时计时)。对于化学需氧量高的废水样,可先取上述操作所需体积1/10的废水样和试剂于15×150mm硬质玻璃试管中,摇匀,加热后观察是

医疗污泥处理的技术要点以及流程

医疗污泥处理的技术要 点以及流程 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

医院的污水,除一般生活污水外,还含有化学物质、放射性废水和病原体。因此,必须经过处理后才能排放,特别是肝炎等传染病病房排出来的污水,须经消毒后才可排放。过程中,沉淀的污泥含有大量的细菌、病毒和寄生虫卵,需经消毒(常用熟石灰消毒)或高温堆肥后方可用作肥料。这也就是所谓的医疗污泥处理。 一、医疗污泥处理污泥的分类和泥量 a、污泥根据工艺分为化粪池污泥、初沉污泥、剩余污泥、化学(混凝)沉淀污泥、消化污泥等。 b、医院污水处理过程产生的泥量与原水的悬浮固体及处理工艺有关。 c、化粪池污泥来自医院医务人员及患者的粪便,污泥量取决于化粪池的清掏周期和每人每日的粪便量。每人每日的粪便量约为150g。 d、处理放射性污水的化粪池或处理池每半年清掏一次,清掏前应监测其放射性达标方可处置。 医疗污泥处理设备 二、医疗污泥处理工艺流程 污泥处理工艺以污泥消毒和污泥脱水为主。水处理工艺产生的剩余污泥在污泥消毒池内,投加石灰或漂白粉作为消毒剂进行消毒。若污泥量很小,则消毒污泥可排入化粪池进行贮存,污泥量大,则消毒污泥需经脱水后封装外运,作为危险废物进行焚烧处理。 三、医疗污泥处理污泥消毒 a、污泥首先在消毒池或储泥池中进行消毒,消毒池或储泥池池容不小于处理系统24h 产泥量,但不宜小于1m3。储泥池内需采取搅拌措施,以利于污泥加药消毒。 b、每天湿污泥产量小于2m3的医院污水处理系统,污泥可在消毒后排入化粪池,此时化粪池的容积应考虑到此部分的污泥量。每天湿污泥产量大于2m3的医院污水处理系统,污泥可在消毒后进行脱水。 c、污泥消毒的最主要目的是杀灭致病菌,避免二次污染,可以通过化学消毒的方式实现。化学消毒法常使用石灰和漂白粉。 (1)石灰投量每升污泥约为15g,使污泥pH达11-12,充分搅拌均匀后保持接触30-60 min,并存放7天以上。 (2)漂白粉投加量约为泥量的10-15%。 (3)有条件的地区可采用紫外线辐照消毒。 医疗污泥处理设备 四、医疗污泥处理污泥脱水 a、污泥脱水的目的是降低污泥含水率,脱水过程必须考虑密封和气体处理。 b、污泥脱水宜采用离心脱水机。离心分离前的污泥调质一般采用有机或无机药剂进行化学调质。 c、脱水后的污泥应密闭封装、运输。 5)、医疗污泥处理污泥的最终处置 污泥根据国家环境保护总局危险废物分类,属于危险废物的范畴,必须按医疗污泥处理要求进行集中(焚烧)处置。

消落带土壤样品实验方案及测试方法

消落带土壤样品实验方案及测试方法 一、土壤基本理化性质测定 1、土壤粒径:土壤样品风干,过10目(2mm)筛子,激光粒度分析仪,初步定在成 都山地所分析测试中心测定; 2、粘土矿物组成:土壤样品风干,过60或18目(0.25mm或1mm)筛子,X射线衍 射法,初步定在成都山地所分析测试中心测定; 3、土壤化学组成:土壤样品风干,过60或18目(0.25mm或1mm)筛子,电感耦合 等离子发射光谱仪(ICP法),初步成都山地所分析测试中心测定;(SiO2,TiO2, Al2O3,Fe2O3,MnO,CaO,MgO,K2O,Na2O,P2O5) 4、阳离子交换量(CEC):土壤样品风干,过10目(2mm)筛子,EDTA-铵盐快速法; EDTA-铵盐快速法,既适用于中性、酸性土壤,又适用于石灰性土壤,在1-2分钟内 一次交换即成。(引自:中国科学院南京土壤所,土壤理化分析,上海科技出版社,上海,1978,p171-174;鲁如坤,土壤农业化学分析方法,中国农业科技出版社, p24-25) 土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质 的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。它们在土壤中互相 结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐 基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。其交换过 程是土壤固相阳离子与溶液中阳离子起等量交换作用。阳离子交换量的大小,可以 作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。测量 土壤阳离子交换量的方法有若干种,这里只介绍一种不仅适用于中性、酸性土壤, 并且适用于石灰性土壤阳离子交换量测定的EDTA—铵盐快速法。 方法原理:采用0.005mol/LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的 pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较 大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。同时由于 醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再 用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。对于酸性土壤的交换液,同时 可以用作为交换性盐基组成的待测液用。

相关文档
最新文档