冰蓄冷型式比较

冰蓄冷型式比较
冰蓄冷型式比较

冰蓄冷型式特点比较

冰蓄冷空调系统的分类有多种方式,根据制冰形态的不同,可分为静态型与动态型;根据蓄冰装置不同,可分为冰盘管型(内融冰、外融冰),封装式,冰片滑落式,冰晶式;按传热介质的不同,可分为直接蒸发式和间接冷媒式等。各种蓄冰技术的特点比较见下表:

目前国内空调用冰蓄冷系统主要采用盘管内融冰及封装冰型式,盘管内融冰与球形封装冰型式的比较见下表:

根据大型商业项目的冷负荷特性,盘管内融冰及球形封装冰系统均可满足使用要求。二者区别主要如下:

1、从融冰性能分析,盘管内融冰的出水温度更加温度,可始终

维持在3℃,球形封装冰在融冰后期的出水温度会升高至4℃,

需要控制系统更加准确的进行供冷策略调整;

2、从载冷剂用量(乙二醇溶液)分析,盘管内融冰系统用量较

低,球形封装冰系统用量是盘管式的4~6倍,乙二醇价格的

波动对初投资影响较大;

3、从空间要求分析,目前的建筑方案可以满足两种方案的要求;

4、从检修要求分析,盘管内融冰一旦发生破损,漏点定位难度

较大,球形封装冰系统则不存在此问题,个别冰球的破裂对

系统蓄冰量影响甚微;

5、从业绩数量比例分析,国内采用盘管内融冰的项目较多,采

用球形封装冰系统的项目略少于盘管内融冰系统。

综合考虑,两种系统各有所长,盘管内融冰系统略优于球形封装冰系统。

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

冰蓄冷技术(DOC)

1.技术原理 冰蓄冷空调技术是利用夜间电网谷电运转制冷主机制冷,并以冰的形式储存,在白天用电高峰时将冰融化提供空调用冷,从而避免中央空调争用高峰电力的一项调节负荷、节约能源的技术。 (1)削峰填谷、平衡电力负荷。 (2)改善发电机组效率、减少环境污染。 (3)减小机组装机容量、节省空调用户的电力花费。 (4)改善制冷机组运行效率。 (5)蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。 (6)应用蓄冷空调技术,可扩大空调区域使用面积。 (7)适合于应急设备所处的环境,

计算机房、军事设施、电话机房和易燃易爆物品仓库等。 2.冰蓄冷空调系统组成 冰蓄冷空调系统包括:空调主机、冷水泵、冷却水泵、冷却塔、蓄冷水泵、释冷水泵、换热器、储冰槽等。相对于常规空调系统,冰蓄冷系统增加了储冰槽、换热器等装置 3..工艺流程 冰球式(也称封装式)冰蓄冷工艺流程:在制冰时,通常要求制冷主机蒸发器出口温度为零下5摄氏度,因此冰球外循环的介质通常采用乙二醇溶液,乙二醇溶液在冰球外流动,在制冰循环中,从制冷主机出来的低温乙二醇溶液流过冰球表面,使冰球内的水结冰;在融冰供冷时,乙二醇溶液流过冰球表面,通过换热器与流往空调末端的冷冻水热交换,被

冷却后的冷冻水流向各个房间,通过风机盘管供冷,因此,空调末端的形式可以与常规中央空调相同。 冰盘管冰蓄冷工艺流程: 、 4.适用范围: 商场、饭店、写字楼、体育馆、展览馆、影剧院、宾馆、居民小区等场所;制药、食品加工、啤酒工业、奶制品工业等;需要对现有单班、两班空调系统扩大供冷量的场所,可以不增加主机,改造成冰蓄冷系统。5.冰蓄冷空调系统的适用条件 执行峰谷电价,且差价较大的地区。(峰谷电价比至少要达到4:1,否则无经济性可言)

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

冰蓄冷技术及其应用

研 究 生 课 程 论 文 (2008 -2009 学年第二学期) 课程论文题目:冰蓄冷技术及其应用 研究生:欧阳光 学 号 学 院 课程编号 课程名称 学位类别 硕士 任课教师 制冷空调过程的节能新技术 教师评语: 成绩评定: 分 任课教师签名: 年 月 日

冰蓄冷技术及其应用 摘要:本文在介绍了冰蓄冷技术的特点的基础上,论述了冰蓄冷技术对电力调峰、平衡电网及节能减排的意义;并结合工程实际,分析了与冰蓄冷空调相结合的低温送风系统的经济性;并简要介绍了冰蓄冷与热泵组合式空调系统的优势。展望了新型冰蓄冷系统的发展前景。 关键词:冰蓄冷削峰填谷节能低温送风系统 1 引言 改革开放以来,我国经济的高速发展和人民物质生活水平的不断提高,对电力供应不断提出新的挑战。尽管全国发电装机容量不断增大,然而,电力供应仍很紧张,尤其是夏季有些地方不得不采用拉闸限电的办法解燃眉之急。因而,改善电力供应的紧张状况和电力负荷环境已成为一些大中城市的首要任务。长期以来空调系统是能耗大户,而空调系统用电负荷一般集中在电力峰段,因此对城市电网具有很大的“削峰填谷”潜力。基于这种“削峰填谷”的想法,空调系统中出现了冰蓄冷机组,它利用午夜以后的低谷电制冰,储存到白天用电高峰时供冷。而冰蓄冷技术和低温送风空调系统相结合则更能增强它的竞争力,对于电力生产部门和用户都会产生良好的经济效益和社会效益,并可以实现整个能源系统的节能和环保。因而随着国内冰蓄冷技术的成熟,它在我国将有更广阔的发展前景。 2 冰蓄冷空调系统简介 冰蓄冷空调就是利用水或一些有机盐溶液作为蓄冷介质,在夜间电力供应的低谷期(同时也是空调负荷很低的时间)开机制冷,将它们制成冰或冰晶,到白天电力供应的高峰期(同时也是空调负荷高峰时间),利用冰或冰晶融解过程的潜热吸热作用,再将

蓄冷技术

蓄冷技术 随着生活水平的日益提高,空气调节作为控制建筑室内环境质量的重要技术手段得到广泛的应用。但因为耗电量大,且基本处于用电负荷峰值期,这就为蓄冷技术的应用提供了一个重要的应用领域。 一、蓄冷技术的定义 蓄冷技术是一门关于低于环境温度热量的储存和应用技术,是制冷技术的补充和调节。低于环境温度的热量通常称作冷量。人们的生活和生产活动在许多时候要用到冷量,但是,有些场合缺乏制冷设备,有些时段不能使用制冷设备就需要借助蓄冷技术解决用冷需要。简言之,即冷量的贮存。 二、蓄冷的方法 有显热蓄冷和相变潜热蓄冷两大类。如在蓄冷空调中的水蓄冷空调是显热蓄冷,冰蓄冷空调和优态盐水合物(PCM)是相变潜热蓄冷。 三、冰蓄冷系统技术 冰蓄冷是指用水作为蓄冷介质,利用其相变潜热来贮存冷量。 冰蓄冷系统技术类型主要有冰盘管式、完全冻结式、冰球式、滑落式、优态盐式、冰晶式。 1.冰盘管式蓄冷系统 冰盘管式蓄冷系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。 2.完全冻结式蓄冷系统 该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。生产这种蓄冰设备的厂家较多。 3.冰球式蓄冷系统 此种类型目前有多种形式,即冰球,冰板和蕊心褶囊冰球。冰球又分为园形冰球,表面有多处凹涡冰球和齿形冰球。 冰球式以法国CRISTOPIA为代表,蓄冰球外壳有高密度聚合烯烃材料制成,内注以具高凝固---融化潜热的蓄能溶液。其相变温度为0°C,分为直径77mm(S型)和95mm(C型)两种。以外径95mm冰球为例,其换热表面积为28.2ft2/RTH(0.75m2/KWH),每立方米空间可堆放1300个冰球;外径77mm冰球每立方米空间可堆放2550个冰球。冰球结构图见下左图。

冰蓄冷技术

冰蓄冷技术 目录 技术发展史 一,产品原理 二,适用范围 三,使用效益 四,突出特点 五,高灵桶式蓄冰系统优点突出 在没有实行集中供热前,冬天时家家户户烧火取暖,这种原始的用能方式既浪费能源,又污染环境。北方实行热力站集中供热方式后,在节约能源的同时也保护了环境。南方地区冬天烧火取暖的时间很短或基本不烧火取暖,但夏天却要用空调降温。目前,不管是南方和北方的住宅、宾馆、酒店、商店、办公楼等几乎所有的建筑物,都安装了分体式空调或中央空调,特别在南方地区尤其是在海南,一年四季使用空调降温的时间都很长,空调降温需要消耗大量的能源。 区域供冷站的供冷方式与北方冬季时的集中供热方式十分类似。这种供冷方式实际上就是以区域冷站作为冷源和能量中心,通过区域空调管网向周边建筑提供调温用的冷水,满足会议厅、展厅、酒店、大学、医院、商场、写字楼、住宅楼等不同用户的用冷需求,而且,还可以利用制冷时产生的热量,向建筑物供应热水。很明显,与集中供热一样,集中供冷方式将会大大提高能源的利用率。 实际应用证明,区域供冷的能源效远低于预期,输送能耗增加,不同于区域供热,输送泵的功耗转化为热添加到传输介质中,但对于供冷,对输冷介质的传热是一种副作用。广州一个集中个供冷失败的案例能很好的说明问题。 冰蓄冷在制冷过程中同样也需要能源,这种供冷方式实现能源的节约与电厂发电、电网供电和供冷的集中方式有密切的联系。 技术发展史 这项技术是上世纪初在美国研制并开始应用,但开始并不普及。直到八十年代世界性的能源危机,冰蓄冷的节能优势才被世人所瞩目,而得到广泛的推广使用。日本能源贫乏,冰蓄冷的市场颇好。目前该项技术已经成为很多发达国家解决电网供电压力不平衡的重要强制手段。 我国从九十年代开始引进国外冰蓄冷技术,全国现有几百家单位在使用,而目前拥有核心自主知识产权冰蓄冷技术的只有高灵能源科技有限公司,其自主研发的ICEBANK蓄冰技术系统打破了国外技术垄断,是唯一达到国际先进水平的冰蓄冷民族品牌。其最早实施的再运营项目浙江绍兴大通商城使用冰蓄冷技术后,每年能为用户节省空调运行费用117.7万元,节约费用比率为36.6%,为国家电 1

水蓄冷和冰蓄冷选型参考

水蓄冷和冰蓄冷选型参考 来源:本站原创时间:2010-6-12 点击数: 826 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2)Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水

水蓄冷与冰蓄冷的比较

水蓄冷与冰蓄冷比较

将水蓄冷与冰蓄冷进行比较,这二种蓄冷方式的最大不同就是水蓄冷是利用水的温度变化(显热变化)进行蓄冷,而冰蓄冷利用水的相态变化(相变所需的潜热)进行蓄冷。因此,冰、水蓄冷系统在下列方面发生了变化。 (1)蓄冷系统制冷机的容量 从冰蓄冷简介中知道:冰蓄冷制冷机组蓄冷工况下的制冷能力系数C为0.6 0.65 (制冰温度为-6C时),其制冷能力比制冷机组在空调工况低了0.4?0.35, 也就是说冰蓄冷在希望利用蓄冷系统减少制冷机组容量的愿望很难实现。而水蓄冷就不存在这一问题。 (2)蓄冷装置的蓄冷密度 从冰蓄冷与水蓄冷的简介中知道:冰蓄冷槽的蓄冷密度为(40?50kW/m3),蓄 冷水池的蓄冷密度为(7?11.6kW /m3)。冰蓄冷槽的蓄冷密度是蓄冷水池蓄冷 密度的5倍左右。 这里要说明一下,就是关于水蓄冷与冰蓄冷的占地问题。通常在人们的心目中,一说起水蓄冷,就有水池容积大,要占用大块地方。其实这是一种错觉。产生这一错觉的原因是:以为冰蓄冷利用的是水的潜热,而物态变化的热潜热是比较大的(往往人们对凝固热不太熟悉,又经常与汽化热来衡量),认为蓄冰槽内冰的容积比例可为1,因此,远远夸大了蓄冰槽蓄冷密度。而实际上蓄冰槽的蓄冷密度仅是蓄冷水池蓄冷密度的5倍左右,以目前使用最多的冰盘管为例,冰蓄 冷槽需要安装在室内,并要求有一定的安装距离。我们曾对某一冰蓄冷系统与水蓄冷系统进行比较,如果将蓄冰槽安装的场地全部空间改为蓄冷水池,再加上该建筑物的消防水池,二者的蓄冷能力近乎相当。 (3)蓄冷装置的兼容性 水蓄冷系统的蓄冷水池冬季可作为蓄热水池使用,这一点对于热泵运行的制冷系统是特别有用的。而冰蓄冷系统蓄冰槽则没有此功能。 (4)蓄冷系统的建设投资 冰蓄冷与水蓄冷相比,一般来说,水蓄冷系统基本建设投资不高于常规空调系统, 而冰蓄冷系统基本建设投资比常规空调系统高出20%以上。 冰蓄冷的缺点:冰蓄冷的用电量高于常规空调20%左右,水蓄冷则可节省 制冷用电10%左右。水蓄冷储槽可实施夏季蓄冷,冬季蓄热,做到蓄冷、蓄热

冰蓄冷

一.名词解释 相变蓄能(潜热蓄能):利用蓄热材料在发生相变时,吸收或放出热量来蓄能或释能。 显热蓄能:蓄能材料在蓄存和释放热能时,只是材料自身发生的温度的变化,而不发生其他的变化。 部分蓄冷:在夜间非用电高峰期时制冷设备运行,储存部分冷量,白天空调期间一部分空调负荷由蓄冷设备承担,另一部分则由制冷设备承担。 全部蓄冷:在夜间非用电高峰期,启动制冷机进行制冷,当所蓄冷量达到空调所需的全部冷量时,制冷机停机;在白天空调时,蓄冷系统将冷量转移到空调系统, 空调期间制冷机不运行。 主机在蓄冷槽上游:空调回水先经主机,使主机能在较高的蒸发温度下运行,提高了压缩机的容量和效率,使能耗降低。蓄冷槽在较低温度下运行,释冷速度放低。 主机下游:空调回水先经蓄冷槽,使蓄冷槽的放冷速度提高,但为了防止过快的消耗蓄冷量,需要控制蓄冷槽出口温度。而主机在较低的温度下工作,使能耗增加。 蓄冷密度:m3 /(kw·h) 动态蓄冰:冰的制备和存储不在同一位置,制冰机和蓄冷槽相对独立。 静态蓄冰:冰的制备和融化在同一位置进行,蓄冰设备和制冰部件为一体结构。 自然分层型蓄冰槽:利用密度的影响将热水和冷水分隔开。水的密度与温度有关,温度越低,密度越大。 间接供冷水系统:在供冷回路中采用换热器与用户间形成间接连接。换热器一次侧与水蓄冷槽组成开式回路,而供至用户的二次侧形成闭式回路。 蓄能:TES:Thermal Energy Storage IPF :Ice Packing Factor FOM:Figure of Merit GSHP:Ground Source heat pump 二.书本知识点 P9 1.蓄冷空调:在夜间电网低谷期,制冷主机开机制冷并由蓄冷设备将冷量储存起来,待白天电网用电高峰期,再将冷量释放出来,满足高峰负荷的需要。 水蓄冷——是利用蓄冷温度在4~7°C之间的显热进行蓄冷。使用常规的制冷机组,可实现蓄冷和蓄热的双重用途。蓄冷、释冷运行时冷水温度相近,制冷机组在这两种运行工况下均能维持额定容量和效率。但水蓄冷存在蓄能密度低、蓄冷槽体积大及槽内不同温度的冷水易混合的缺点。 冰蓄冷——利用冰的相变潜热进行冷量的储存,具有蓄能密度大的优点。但冰蓄冷相变温度低,且蓄冰时存在较大的过冷度,使得其制冷主机的蒸发温度降低,降低了制冷机组的效率。另外,在空调工况和蓄冰工况运行时,要配置双工况制冷主机,增加了系统的复杂性。 共晶盐——优点是其相变温度与制冷主机的蒸发温度相吻合,选用一台制冷主机即可进行制冷、蓄冷工况运行。缺点是其蓄冷密度较低,相变凝固时存在过冷现象,且材料易老化变质、蓄冷性能易发生衰减。 2.蓄冷空调与常规空调的异同:冷源不同,其余相同 3.意义:移峰填谷,平衡电力负荷,改善发电机组效率,减少环境污染。

冰蓄冷与常规方案比较说明

冰蓄冷中央空调系统 设 计 方 案 与 比 较 说 明

2010年1月 目录 一、工程概况 (3) 1.建筑概况 (3) 2.空调负荷分布 (3) 3.冷源机房系统 (4) 二、中央空调系统方案的确定 (5) 1.冰蓄冷中央空调系统特点 (5) 2.常规电制冷中央空调系统特点 (7) 3.冰蓄冷中央空调系统的优惠电力政策 (7) 4.本工程中央空调系统方案的确定 (7) 三、冰蓄冷中央空调系统设计 (9) 1.系统设计原则 (9) 2.蓄冰模式选择 (9) 3.蓄冰装置性能介绍 (10) 4.系统集成 (11) 5.本工程冰蓄冷系统综述 (12) 四、冰蓄冷中央空调系统配置说明及控制策略 (14) 1.冰蓄冷中央空调机房主要设备汇总表 (14) 2.本工程冰蓄冷中央空调系统流程说明 (16) 3.本工程冰蓄冷中央空调系统的主要特点 (18) 4.本工程冰蓄冷中央空调系统运行策略 (19) 五、方案经济性能分析与比较 (22) 1.机房初投资比较 (26) 2.年运行费用分析与比较 (26) 3.综合投资经济分析与比较 (28) 4.结论 (28) 六、附件 (30) 1.冰蓄冷中央空调系统运行费用计算表 (30) 2.常规中央空调系统运行费用计算表 (30)

一、工程概况 1.建筑概况 用友南昌产业园位于南昌市红谷滩新区红角洲教学科研片区,产业园东北临望城大道,东南面是昌樟高速路,其他方向均规划有市政道路。用地南向规划有南昌新高速火车站,与南昌大学新校区隔昌樟高速而望,在望城大道对面与江西工贸学院相邻,西侧紧邻320国道。 园区建设用地40公顷,容积率1.0,总建筑面积40万平方米,建筑密度25%,绿地率不低于35%,停车位不低于65辆/万平方米。整个园区规划分两期建设,其中语音服务中心7万万平方米、员工宿舍1.25万平方米、餐饮中心1.25万平方米、能源中心0.5万平方米,共计10万平方米为一期建设面积。一期空调面积为8.25万平方米,包括语音服务中心和餐饮中心。 2.空调负荷分布 结合本工程的特点及当地地区的气象条件,根据我司所从事的类似工程的相关经验,该工程的逐时负荷分布情况如下。 夏季设计日空调冷负荷逐时分布图:

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

水蓄冷、冰蓄冷、共晶盐蓄冷的优缺点简单说明2001.12.25

水蓄冷、冰蓄冷、共晶盐蓄冷的优缺点简单说明: 一、水蓄冷 1.1、水蓄冷的优点 1.1.1、能使用常规冷水机组,制冷效率高 1.1.2、初投资低,可结合地下消防水池等作蓄冷器 1.1.3、可用作蓄冷和蓄热双用途 1.1.4、技术要求低,操作维修方便,适用于常规空调系统的扩容和改造 1.1.5、自控简单 1.1.6、压缩机型式可任选 1.2、水蓄冷的缺点 1.2.1、蓄冷密度低,蓄水池占地面积大,容积大、冷损大(10%-15%) 1.2.2、开启式水池,易受污染,管道易腐蚀 1.2.3、不易用于闭式水系统,输水能耗大 二、冰蓄冷 2.1、冰蓄冷的优点 2.1.1、蓄冷槽容积小、,冷损小(2%-3%) 2.1.2、水温低,可采用低温送风,节约水管、风管材料,水泵、风机能耗,降低噪声2.1.3、水温低,除湿能力强,提高空调的舒适性 2.1.4、易实现闭式系统,水泵耗能小,不易污染 2.1.5、易实现产品定型化工厂生产 2.2、冰蓄冷的缺点 2.2.1、制冷机COP下降20%-40%,冷量下降20%-38%左右 2.2.2、运行控制要求高,投资较大 2.2.3、保温要求高 2.2.4、压缩机使用有限制,常用螺杆式、往复式 三、共晶盐蓄冷 3.1、共晶盐蓄冷的优点 3.1.1、主机效率高,接近常规冷水机组的效率 3.1.2、易用于现有的空调系统,尤适用于常规空调改造和扩容 3.1.3、管线无冻结问题 3.1.4、蓄冷能力在水与冰之间 3.1.5、压缩机型式可任选 3.1.6、运行和储冷可同时进行 3.2、共晶盐蓄冷的缺点 3.2.1、蓄冷材料价格高,寿命短 3.2.2、系统复杂,控制要求高 3.2.3、相变温度为8.3℃,冷冻水须进一步降温后才能使用

冰蓄冷研究的现状与展望

冰蓄冷研究的现状与展望 清华大学张寅平* 中国科学技术大学邱国佺** Present state and perspectives of ice cool storage research By Zhang Yinping and Qiu Guoquan 提要对冰蓄冷技术的研究和开发现状作了综述,讨论了其中尚未解决的一些问题及技术难点,展望了近期冰蓄冷研究和开发的走向。 关键词冰蓄冷空调换热 Abstract Reviews the current status of research and development of ice cool storage technology. Describes and discusses some technical problems and new key technologies, presents possible development of ice cool storage in the near future. Keywords ice cool storage,air-conditioning,heat exchange 1 引言 世界上很多国家都在想方设法降低电网负荷的峰谷差,而空调电耗对电网负荷有很大的影响,因此,低能耗、可用电网低谷电的空调设备及相应的蓄冷技术和系统的研究开发就成了近年来空调、储能领域的国际性热门课题,其中,尤以冰蓄冷空调的研究和应用受到研究者重视。这方面,美国、日本等发达国家的研究和应用水平较高。本文基于对日本在该领域研究状况的分析,对冰蓄冷研究的现状和今后的研究方向作一简单的介绍,希望对我国正在崛起的蓄冷空调的研究和开发有所帮助。 2 蓄冷空调的研究和开发现状 2.1 制冰方法的分类和评述 与水蓄冷相比,冰蓄冷系统的优点是:蓄冷密度高,使蓄冷槽体积较小;温度稳定,便于控制;热设计的灵活性强。 冰蓄冷中的制冰方式主要有两种:①静态制冰方式,即在冷却管外或盛冰容器内结冰,冰本身始终处于相对静止状态;②动态制冰方式,该方式中有冰晶、冰浆(ice slurry)生成,且冰晶、冰浆处于运动状态。 静态制冰由于系统简单,现已成为应用中冰蓄冷系统的主流。然而,静态制冰法也有自身的缺点:冰层的增厚使热阻增大,导致冷冻机的性能系数(COP)降低;一些静态系统中冰块的相互粘连导致水路堵塞。 目前,冰蓄冷研究的主要目标为动态制冰技术。动态制冰方式约有40多种,其中冰水混合浆(即含有很多悬浮冰晶的不,英文名为ice slurry)技术最受研究者关注。冰水混合浆可采用管道输运,其换热需采用换热器。虽然这种动态制冰方式很有前途,但迄今尚未商业化。该系统的性能测试和优化、管理技术和经济性还需进一步完善。

各种蓄冷技术比较

在中国运用的蓄冰系统情况 法国西亚特公司的STL蓄冰系统 美国BAC公司的钢盘管蓄冰系统 美国的高灵桶蓄冰系统 杭州华源公司的蕊心冰球系统 清华同方的钢盘管蓄冰系统 一.BAC冰盘管:盘管为钢制连续卷焊而成,外径为26.27mm,外表为热镀锌,可制成非标,或用于混凝土结构其缺点为: 1、由于管壁较薄,不耐腐蚀,需采用经特殊处理的乙二醇冷媒(价 格很高) 2、盘管一旦发生泄漏,很难检测,难以维修 3、水阻大、放冷慢。设计寿命为20年。 二.高灵冰桶:盘管为聚乙烯材料,外径为16mm,盘管在冰桶内螺旋盘绕。为标准产品,其缺点是: 1、盘管的单路长度很长,流通阻力很大。 2、一旦发生泄漏,无法检修,整只冰桶报废。 3、放冷慢,设计寿命低于20年。 三.FAFCO盘管:盘管为耐高低温的聚烯烃石蜡脂,外管径为6.35mm,产品有标准和非标准系统,其缺点为: 1、管内径很细,容易堵塞。

2、一旦发生泄漏,较难检修。 3、应急放冷慢,设计寿命低于20年。 四.蕊心冰球:外壳由聚乙烯材制成,直径130mm长240mm,表面有摺皱,冰球内部有直径2mm的铝合金翅片管,由于内芯不易结冰时金属管起到冷桥作用。其缺点是: 1、金属蕊心与PE塑料外壳的结合处难以密封。 2、摺皱用于结冰时伸缩时间长易产生应力集中、疲劳、老化、破 裂。 3、单只冰球体积大,蓄冰效率低。 4、不承压不适合闭式系统。 五.STL的技术来源 STL为法语潜热储能系统的缩写,是法国西亚公司的专利产品。自1982年第一套STL系统在法国投入运行以来,20多年间全球已有5000个工程实例,总蓄冰量超过5000000KW/h。1993年5月深圳中电大厦在国内第一个使用该技术并获得成功。其后STL在中国得到迅速推广。STL应用在:空气调节、工艺流程、区域供冷、电厂发电机冷却、冷藏链等领域。 法国CIAT公司STL冰球,外壳为高密度的聚烯烃,内为PCM (相变物质—储冷液)单位蓄冷量为5万大卡/m3。 特点为: 1、生产和应用已有20年的经验,质量稳定。 2、使用寿命长,经法国权威机构模拟测试使用寿命为100年。

冰蓄冷自动控制系统设备及功能说明

技术标 主要设备的选用及技术描述与响应说明 第二章机房自动控制系统 一、冰蓄冷自动控制系统综述 件、系统配电柜、系统软件等部分组成。系统结构图如下所示: 小央空调蓄能系统原理图 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器 肝2網通讯

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/ (GEMINI )公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的显示; e电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表 或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分 析,而且所有的监测数据可进行打印。

其他冰蓄冷案例

我国冰蓄冷和水蓄冷工程案例集锦 1、上海科技馆 上海市2000年重点工程建筑面积10万m2,储冰量9200 RTH,2001年10月APEC会议主会场,中、美、日等21个国家元首在此聚会,工程具有深远的政治影响。此外,作为上海市科普教育基地,冰蓄冷空调技术是重要内容之一。 2、咸阳机场新航站楼 咸阳机场扩建工程系国家投资重点项目之一,被评为2002年全国建筑业新技术应用国家示范工程。新航站楼建筑面积约逾70000m2,夏季空调冷源全部采用蓄冰空调方式。系统蓄冷量达47690kWh(13560RT)。 3、西北电力集团公司 西北电力调度中心总建筑面积约38000 m2,主楼建筑面积24500 m2,主楼夏季设计日空调尖峰冷负荷3378kW,蓄冰量为3564 RTH,中央空调系统选用与国际先进空调技术接轨的、目前国内最先进的冰蓄冷与低温送风中央空调系统。 4、杭州市拱墅区人民政府办公大楼 该大楼总面积逾50000 m2,是市政府2002年重点工程,受到各级领导的高度重视,对大楼的可靠性和先进性提出较高要求。 大楼空调系统采用国内较先进的冰蓄冷系统,其中的关键设备采用华源公司专利产品-导热塑料盘管不完全冻结式储冰装置,储冰量高达近5000 RTh,该产品使用的“导热塑料”材料集耐腐蚀、高强度、高导热系数等特性为一体,在制冷、空调、供热、电力、水利、化工等众多领域具有广泛的应用前景。 5、国家电力局调度中心 冰储冷低温送风空调系统建筑面积70000 m2,储冰量6800 RTh;自动化管理系统以最低能耗创造最舒适环境;具有时间预设及负荷预测功能;制冰量、融冰量及直供冷量按最优化控制策略;运行水泵按台数、变频控制,使系统能耗降到最低,自动调节送风量,适应房间空调负荷变化;自动设定最经济的送风温度,新/排风量按节能方式控制,空气品质异常优秀。 6、常德烟机厂 该公司为国内四大烟草机械厂之一,拥有国内同行中最先进的设备,厂房内大多为全进口的数控机床,厂房高度超过12m,属于大空间中央空调项目,对室内的温度、湿度和气流组织的控制精度等要求较高。 厂房面积17000 m2,办公、宾馆面积10000 m2。为了充分满足大楼的功能,设计采用国际先进水平的冰蓄冷中央空调系统,设计尖峰负荷365万大卡,采用125万大卡双工况制冷主机2台,蓄冰量达到4200 RTh,并配备了上位机和下位机全自动控制系统,可以根据天气走势的负荷预测并高速空调系统运行模式,完全达到设计要求。该项目是2000年湖南省重点工程,也是湖南省第一个冰蓄冷项目,具有极大的示范意义。

冰蓄冷系统技术总结

冰蓄冷系统技术总结

第一讲应用概念 一、冰蓄冷空调 “冰蓄冷空调”一词大家都一目了解,英文为‘ICE STORAGE’,日文为[冰蓄热],狭义的定义为[制冰蓄冷]的冷气系统。早期称谓[COOL STORAGE(蓄冷)],此包含了[制冷水蓄冷]的冷气系统。但在寒带国家降了[蓄冷]外,还要[蓄热],因此,广义的用语为[THERMAL (ENERGY)STORAGE AIR CONDITIONING SYSTEM (缩写为TES)],可译为[蓄能式空调系统]。对于南方地区仅有夏季(冷气)电力过载的困扰,仅需[蓄冰空调]。 二、关于蓄冷系统的计量 在常规的空调系统设计时,冷负荷是按照计算出建筑物所需要的多少“冷吨”、“千瓦”、“大卡/时”来计量,但是蓄冰系统是用“冷吨·小时”、“千瓦·小时”、“大卡”来计量。 图1-1代表100冷吨维持10小时冷却的一个理论上的冷负荷,也就是一个1000“冷吨·小时”的冷负荷。图上100个方格中的每一格是代表10“冷吨·小时”。 事实上,建筑物的空调系统在全日的制冷周期中是不可能都以100%的容量运行的。空调负荷的高峰出现多数是在下午2:00--4:00之间,此时室外环境温度最高。图1-2代表了一幢典型大楼空调系统一个设计工作日中的负荷曲线。 如图可知,100冷吨冷水机组的全部制冷能力在10个小时的“制冷周期”中只有2个小时,在其它8个小时中,冷水机组只在“部分负荷”里操作,如果你数一数小方格的话,你会得到总数为75个方格,每一格代表10“冷吨·小时”,所以此建筑物的实际冷负荷为750“冷吨·小时”,但是常规的空调系统必须选用100冷吨的冷水机组来应付100冷吨的“峰值冷负荷”。 三、冷水机组的“参差率” 定义的“参差率”为实际“冷负荷”与“冷水机组的总制冷潜力”之比,即: 参差率(%)=(实际冷吨·小时数/总的冷吨·小时潜力) *100%=750/1000*100

蓄冷罐施工技术研究

蓄冷罐施工技术研究 介质的不同,分为水蓄冷和冰蓄冷。蓄冷罐是水蓄冷技术中的关键设备,它将直接影响到蓄冷的效果。本文结合施工经验,简要阐述蓄冷罐的制作安装技术。 一、蓄冷罐技术参数 蓄冷罐的大小及容量,一般按照整个工程的需求量进行规划设计。现按照如下规格蓄冷罐的技术参数,对蓄冷罐的施工技术进行研究。 蓄冷罐为直径26米的钢制直立圆桶罐,高约24米。当蓄冷温度差为8℃时,蓄冷量29800RT/h,放冷速率为5000~6000RT/h。与普通储罐相比有以下特点:罐体的绝热要求高,在罐底板上敷40毫米厚非交联聚乙烯泡塑保温板,罐外敷100毫米厚聚乙烯泡塑保温板。结构相对复杂,蓄冷罐顶部和底部各有一套均流布水装置,罐内有一根垂直的主分水管和6根均布的环向立柱及两层环梁支架等。 二、施工工艺流程 其流程如下: 施工准备板材制作加工基础复测划线底板组焊顶圈壁板组焊罐顶组焊布水装置组焊提升桅杆安装顶圈板、罐顶整体提升余下各圈壁板逐圈组焊提升底圈壁板与底板边缘板组焊底板中幅板与边缘板焊接附件安装罐底板密封性检查布水装置剩余部分安装充水沉降试验罐防腐处理罐体绝热。 三、施工技术要点及措施

1、施工准备。包括施工技术、设施、材料、机具、量具、检验仪器及人员的准备。其中最重要的是,要针对蓄冷罐的施工图、技术条件和现场条件编制好施工方案。 2、蓄冷罐的预制加工。重要的和批量的预制件均由加工厂预制。蓄冷罐的预制内容包括:罐底板、罐壁板、上下导流板、平板均流器、拱顶板和抗风圈等弧形构件的预制。预制时,必须严格按照规范预先绘制排板图,并严格按规范要求进行验收。 3、罐底板组焊。施工时,应严格遵守组装与焊接顺序和方法。按照排板图,应首先铺设罐底中心板,中心板的中心线应与储罐基础中心线重合。从中间一带中幅板向两侧展开,依次铺完中幅板,边铺设边找正,边定位,最后铺设边缘板。中幅板为搭接焊,边缘板之间为对接焊。为保证焊接质量,罐底弓形边缘板的对节直焊缝采用埋弧自动焊接,焊接材料为H08A焊丝和HJ431焊剂,焊剂使用前,必须按规范要求进行烘干。为减少罐底凸起变形,罐底板的焊接应采取正确的焊接顺序。 4、罐壁板组焊。组装前,先按预制质量标准进行复验,必要时重新找圆,但应防止锤痕。罐壁板环焊缝的焊接,应在上下节壁板的纵焊缝焊完后进行,罐壁板的纵向对接焊缝是保证罐壁板焊接质量的关键。 5、罐内群桅杆提升倒装法及桅杆设置。当顶圈及罐顶组装焊接完成后,在罐内沿圆周均布安装24根桅杆,上挂神仙葫芦,分别与顶圈下部的胀圈设置吊点连接,同时同步提升约1.8米至2米。然后组装焊接下一圈,完成后再如上提升,依次逐圈提升罐体,直至全部圈板安装完成为止。

相关文档
最新文档