ISE快速入门详细教程verilog_青山紫木原创

ISE快速入门详细教程verilog_青山紫木原创
ISE快速入门详细教程verilog_青山紫木原创

Xilinx ISE 快速入门详细教程1

——青山紫木

自己学习FPGA有些日子了,现在回过头来看看自己走过的路,有太多的曲折。读过网络上一些文档,得到了很大的帮助。现在自己入门了,就希望帮助别人。为了帮助广大的FPGA爱好者们更快入门,于是自己写了这篇《Xilinx ISE 快速入门详细教程》。既是一个总结,也是一个激励,在帮助他人的同时,更加提升自己的实力。

本文采用实例的方法介绍入门方法,相信只要跟着本文走,是一定可以快速掌握ISE的基本功能的。当然,这篇文章只是基础。当掌握了本文的内容后,还要多加练习,之后,还要读更多的文档以了解ISE 的更加高级的功能。

注意:本文是通过一个简单的工程实例——counter_bit8也就是一个8bit计数器,这个例子的编译、综合、实现整个过程来说明入门过程的。编程,配置(下载)用的是另外一个工程实例——trychip。我采用的是ISE的14.2版本,用的是verilog hdl 硬件描述语言。假设你已经安装好了ISE 14.2.

好了,废话少说,LET’ S GO!

一、运行ISE。

双击图标(你懂的)打开界面如下图图一所示:

图一 打开后界面

观察图一,可以看见有一个小的对话框“tip of

the day.”这是程序自带的,用于给用户提供一些有关verilog 或ISE的一些信息,关闭即可。

二、新建工程。

如图二红色区域所示,点击工具栏中file,选择

New projiect.

图二 新建工程1

之后,会弹出图三所示对话框:

图三 新建工程2

在图三所示的Name一栏中填入工程名,用英文或阿拉伯数字。在Location一栏中,选择工程的路径,路径中不要有中文。其他都不用管。我们这里工程名取为counter_bit8,路径自己定义。

完后,点击Next.会弹出如图四所示对话框:

图四 新建工程3

刚入门时,只需注意图四红色区域即可。选择仿真工具与语言。这里选的是modelsim-SE 版,语言为verilog hdl。至于其他选项,等入门后,再回过头来仔细研究。感兴趣读者可以参考网上其他资料。推荐“XST用户手册”(可以到百度文库,新浪分享里下载。) 之后,点击Next。出现图五所示:

图五 新建工程5

图五是新建工程的一个信息总结。直接点击“Finish”即可。之后弹出图六所示:

图六 新建工程6

三、给工程添加V文件。

单击图六左侧红色区域图标。这是新建文件的快捷图标。单击后,弹出图七所示:

图七 新建V文件1

在图七的左侧选择红色区域内容,表示新建一个.v文件,在右侧红色区域内输入该文件名。然后点

击Next。

之后,弹出图八所示:

图九 新建.v文件2

直接点击图九的Next。

之后,弹出如图十所示:

图十 新建.v文件 3

这是对刚刚建立.v文件的总结,直接点击图十“Finish”. 之后弹出如下界面(图十一所示):

图十一 添加.v文件后界面

图十一中左侧红色区域即我们刚才新建并添加的.V文件。

四、输入代码。

在图十一所示右侧,红色标记“2”区域内的编辑器内输入verilog 代码。输入完后,进入如下第五步。

五、综合。(Synthsize)

所谓综合,就是ISE综合工具XST把你刚才输入的代码转换成最底层的逻辑网表。

双击下图中红色区域即可完成综合。

图十二 综合1

双击图十二红色区域后,出现如下所示界面:

图十三 综合2

我们可以看见红色区域中,左侧出现一个小球。这表示正在进行综合。等待几分钟后,会弹出如下界面:

图十三 综合3

观察图十三红色区域,我们发现刚才的小球变成

绿色的钩钩,这表明综合通过。当然,如果你的程序

有错误,则会显示为红色叉叉。读者自行尝试,这里

不再截图说明。

六、实现。(Implement )

实现过程包括翻译(Translate),映射(Map),布

局布线(place & route)。翻译是把综合过程产生

的底层逻辑网表转换成原语,映射是把翻译结果

映射到具体器件的内部逻辑资源,布局布线是将

这些映射后的逻辑资源布线连接,形成最终设计。

这些名词的含义很重要,一定要理解清楚,可以

查阅网上相关资料。

“实现”可以通过双击下图红色区域实现:

图十四 实现1

双击图十四红色区域后,出现如下界面:

图十五 实现2

我们发现,红色区域左侧出现一个小球。这表明

正在进行“实现”过程。等待几分钟后,出现如下界

面:

图十六 实现3

可能,你已经猜出来了。对,小球变成绿色的钩

钩就表明实现已经顺利完成。若出现一个红色的叉叉,则表明实现失败。这里也不演示,读者自行尝试。

七、生成bit流。

这步的功能是把设计变成二进制bit流,供下一

步把设计适配到板子上。

该步骤可以通过双击下图红色区域完成:

图十七 生成bit流

同理,双击后,红色区域左侧会变成小球,表明

正在生成。等待几分钟后,若变成绿色钩钩,表

示生成bit流成功,否则失败。

八、适配。

这一步就是把上步生成的bit文件下载到FPGA芯

片里面,以实现最终的设计。可以通过双击图十

七红色区域下“Configure Target Device”来实现。

之后会弹出如下图所示对话框:

图十八 适配1

然后单击图十八红色区域后,出现下图所示对话框:

图十九 适配2

点击图十九中“ok”,之后出现如下图所示对话框:

图二十 适配3

单击图二十“ok”出现下图所示对话框:

图二十一 适配4

等几分钟后出现如图二十二所示界面:

图二十二 适配5

然后右击图二十二红色区域,在右击后弹出的条

目中选择“program”(无图显示)之后弹出如下

图二十三所示界面:

图二十三 适配6

之后单击图二十三的“yes”,之后弹出下图二十

四界面:

图二十四 适配7

在图二十四中选择bit文件(这里不是counter_bit8的bit文件,是另外一个叫“trychip.bit”,

这里只是说明过程,用哪个例子都不影响。)然后点击“open”之后后会弹出如下图所示界面:

图二十五 适配8

然后点击“NO”,会弹出如下图二十六所示对话框:

图二十六 适配9

选择“ok”,会弹出如下图二十七所示进度框:

图二十七 program 进度框

在等一会则会 弹出如下图二十八所示界面:

图二十八适配成功

相信聪明的你已经猜出来了,图二十八表明适配成功,也就是说你的设计已经用FPGA实现了。至于功能是

华为verilog培训教程

共41页 资源类别: HDL 语言 内部公开 1.0 密级 版本文档编号 文档中心 Verilog HDL 入门教程 (仅供内部使用) yyyy/mm/dd 日期: 批准: 日期:中研基础 批准:2004.8.3 日期:中研基础拟制:版权所有 不得复制

修订记录 初稿完成 1.00 2004.8.3作者 描述 修订版本 日期 绝密请输入文档编号 Verilog HDL 入门教程 2004-08-16第2页,共41页 版权所有,侵权必究

目 录 28 5 结构建模..............................................................274.8 case 语句..........................................................254.7 条件语句..........................................................254.6.6 连接运算符....................................................254.6.5 条件运算符....................................................244.6.4 按位逻辑运算符................................................234.6.3 逻辑运算符....................................................224.6.2 关系运算符....................................................214.6.1 算术运算符. (21) 4.6 运算符和表达式.....................................................204.5.2 寄存器类型 ...................................................204.5.1 线网类型 (20) 4.5 数据类型..........................................................184.4.2 常量.........................................................184.4.1 值集合. (18) 4.4 数字值集合........................................................184.3 格式.............................................................174.2 注释.............................................................174.1.3 书写规范建议..................................................174.1.2 关键词.......................................................174.1.1 定义 (17) 4.1 标识符 (17) 4 Verilog HDL 基本语法 (16) 3.3.4 混合设计描述..................................................153.3.3 行为描述方式..................................................143.3.2 数据流描述方式................................................123.3.1 结构化描述方式 (12) 3.3 三种建模方式......................................................113.2 时延.............................................................113.1.3 模块语法......................................................103.1.2 模块的结构....................................................93.1.1 简单事例. (9) 3.1 模块 (9) 3 Verilog HDL 建模概述 (7) 2.4.2 能力..........................................................72.4.1 历史. (7) 2.4 Verilog HDL 简介.....................................................62.3 设计方法学.........................................................62.2 硬件描述语言.......................................................52.1 数字电路设计方法. (5) 2 HDL 设计方法学简介......................................................51 前言...................................................................绝密 请输入文档编号 Verilog HDL 入门教程 2004-08-16 第3页,共41页 版权所有,侵权必究

verilog综合心得

综合:不可综合的运算符:= = = ,!= =,/(除法),%(取余数)。 1、不使用初始化语句。 2、不使用带有延时的描述。 3、不使用循环次数不确定的循环语句,如:forever、while等。 4、尽量采用同步方式设计电路。 5、除非是关键路径的设计,一般不调用门级元件来描述设计的方法,建议采用行为语句来完成设计。 6、用always过程块描述组合逻辑,应在信号敏感列表中列出所有的输入信号。 7、所有的内部寄存器都应该能够被复位,在使用FPGA实现设计时,应尽量使用器件的全局复位端作为系统总的复位。 8、在verilog模块中,任务(task)通常被综合成组合逻辑的形式,每个函数(function)在调用时通常也被综合为一个独立的组合电路模块。 9、用户自定义原语(UDP)是不可综合的,它只能用来建立门级元件的仿真模型。 一般综合工具支持的V erilog HDL结构

移位运算符:V erilog HDL提供向右(>>)及向左(<<)两种运算符,运算符高位或地位一旦移出即予丢弃,其空缺的位则予以补零。 连续赋值语句(assign)、case语句、if…else语句都是可以综合的 initial 语句内若包含有多个语句时,必须以begin end 作聚合;单一的初值赋值,因此并不需以begin end做聚合。 循环(Loops)并不能单独地在程序中存在,而必须在initial和always块中才能使用。initial过程块中的语句仅执行一次,而always块中的语句是不断重复执行的。 编写顶层模块的注意事项 每个端口除了要声明是输入、输出还是双向外,还要声明其数据类型,是连线型(wire)还是寄存器型(reg),如果没有声明则综合器默认为wire型。 1、输入和双向端口不能声明为寄存器型。 2、在测试模块中不需要定义端口。 编写testbentch所归纳的心得

非常好的Verilog设计经验谈

时序是设计出来的 我的boss有在华为及峻龙工作的背景,自然就给我们讲了一些华为及altera 做逻辑的一些东西,而我们的项目规范,也基本上是按华为的那一套去做。在工作这几个月中,给我感触最深的是华为的那句话:时序是设计出来的,不是仿出来的,更不是湊出来的。 在我们公司,每一个项目都有很严格的评审,只有评审通过了,才能做下一步的工作。以做逻辑为例,并不是一上来就开始写代码,而是要先写总体设计方案和逻辑详细设计方案,要等这些方案评审通过,认为可行了,才能进行编码,一般来说这部分工作所占的时间要远大于编码的时间。 总体方案主要是涉及模块划分,一级模块和二级模块的接口信号和时序(我们要求把接口信号的时序波形描述出来)以及将来如何测试设计。在这一级方案中,要保证在今后的设计中时序要收敛到一级模块(最后是在二级模块中)。什么意思呢?我们在做详细设计的时候,对于一些信号的时序肯定会做一些调整的,但是这种时序的调整最多只能波及到本一级模块,而不能影响到整个设计。记得以前在学校做设计的时候,由于不懂得设计时序,经常因为有一处信号的时序不满足,结果不得不将其它模块信号的时序也改一下,搞得人很郁闷。 在逻辑详细设计方案这一级的时候,我们已经将各级模块的接口时序都设计出来了,各级模块内部是怎么实现的也基本上确定下来了。 由于做到这一点,在编码的时候自然就很快了,最重要的是这样做后可以让设计会一直处于可控的状态,不会因为某一处的错误引起整个设计从头进行。 ==================================================================== 如何提高电路工作频率 对于设计者来说,我们当然希望我们设计的电路的工作频率(在这里如无特别说明,工作频率指FPGA片内的工作频率)尽量高。我们也经常听说用资源换速度,用流水的方式可以提高工作频率,这确实是一个很重要的方法,今天我想进一步去分析该如何提高电路的工作频率。 我们先来分析下是什么影响了电路的工作频率。 我们电路的工作频率主要与寄存器到寄存器之间的信号传播时延及 clock skew有关。在FPGA内部如果时钟走长线的话,clock skew很小,基本上可以忽略, 在这里为了简单起见,我们只考虑信号的传播时延的因素。 信号的传播时延包括寄存器的开关时延、走线时延、经过组合逻辑的时延(这样划分或许不是很准确,不过对分析问题来说应该是没有可以的),要提高电路的工作频率,我们就要在这三个时延中做文章,使其尽可能的小。 我们先来看开关时延,这个时延是由器件物理特性决定的,我们没有办法去改变,所以我们只能通过改变走线方式和减少组合逻辑的方法来提高工作频率。

Verilog HDL 综合实用教程

《Verilog HDL 综合实用教程》读书笔记——锁存器、触发器
加入收藏
2007-08-29 00:23
?
转发分享 人人网 开心网 新浪微博 搜狐博客 百度收藏 谷歌收藏 qq 书签 豆瓣 淘江湖 Facebook Twitter Digg Yahoo!Bookmarks
锁存器:
推导出锁存器的一般规则是,如果变量未在 always 语句所有可能的执行过程中被赋值, 就推导出锁存器。如果变量在 if 的所有分支中都被赋值则综合成组合逻辑。 case、casez、casex 可转成 if、else 形式。当 case 中不是所有情况都列举出或使用 default 语句时、在 case 语句前对 case 中赋值对象赋初值也可避免综合出锁存器。若不 是以上各种情况且须综合成组合逻辑可以使用综合命令,如下: 例: always @ (Toggle) case (Toggle) //synthesis full_case 2'b01: NextToggle = 2'b10; 2'b10: NextToggle = 2'b01; end case end module 上例中的//synthesis full_case 是综合命令,告知综合工具 case 中已是全部列举可能的 情况,这样综合后无锁存器。(正常的 case 语句是有优先级的,先出现的优先级最高,若 case 中各分支是互斥时,综合成译码逻辑。当使用 casex 时用综合命令//synthesis parallel-case 告知综合工具该 casex 是互斥的)。 触发器: 沿控制的用触发器,且沿控制的赋值用非阻塞的方式“Zee<=A;”。 当 always 中是沿敏感时,此 always 中有 if……else if……且在这些 if……else if 中有多 于 1 个对同一变量赋值时,这个变量很可能被综合成有异步置位或清零的触发器。 例: always @ (negedge Reset or negedge Set or negedge CLKA) if (!Reset) NextState<=12; else if (!Set) NextState<=5;

CPLD入门教程

目录 前言 (2) 第一章 MAX+plusII 软件和license的获得 (6) 第二章 MAX+plusII 软件的安装和license及驱动的设置 2.1 MAX+plusII 软件的安装 (7) 2.2 MAX+plusII 软件的license设置 (8) 2.3 MAX+plusII 软件的驱动设置 (12) 第三章用VHDL语言设计三人表决器 3.1打开MAX+plusII (22) 3.2新建VHDL文档 (23) 3.3输入设计文件 (24) 3.4保存文件 (25) 3.5检查编译 (27) 3.6创建symbol (32) 3.7波形防真 (33) 3.8下载验证 (40) 第四章用原理图输入的方式设计三人表决器 (47) 第五章用verilog-HDL语言设计三人表决器 (51)

前言 编写本入门教程(V1.2)的目点是为了让FPGA/CPLD初学者快速地入门。该教程的特点是通过基本概念讲解和实际的例子来让初学者迅速了解FPGA/CPLD。该教程是共享文件,可以复制、下载、转载,如果转载该文章请注明出处:https://www.360docs.net/doc/c317336176.html,;该教程未经许可,不得用于商业用途。 FPGA/CPLD是电子设计领域中最具活力和发展前途的一项技术,它的影响丝毫不亚于70年代单片机的发明和使用。 FPGA/CPLD的基本知识: 1.什么是FPGA/CPLD FPGA (Field Programmable Gate Array)是现场可编程门阵列,CPLD是复杂的可编程逻辑器件(Complex Programmable Logic Device)的简称,不同厂家有不同的称呼,Xilinx把SRAM工艺,要外挂配置用的EEPROM的PLD叫FPGA,把Flash工艺(类似EEPROM工艺),乘积项结构的PLD叫CPLD; Altera把自己的PLD产品MAX系列(EEPROM工艺),FLEX/ACEX/APEX系列(SRAM工艺)都叫作CPLD,即复杂PLD(Complex PLD),由于FLEX/ACEX/APEX系列也是SRAM工艺,要外挂配置用的EPROM,用法和Xilinx的FPGA一样,所以很多人把Altera的FELX/ACEX/APEX系列产品也叫做FPGA. 但由于FPGA和CPLD功能基本相同,只是工艺和实现形式不同,所以初学者可以不要详细区分,我们可以统称为FPGA/CPLD。 2.FPGA/CPLD的用途:

个人总结FPGA设计中Verilog编程的27条经验

个人总结Verilog编程27条经验 1.强烈建议用同步设计; 2.在设计时总是记住时序问题; 3.在一个设计开始就要考虑到地电平或高电平复位、同步或异步复位、上升沿 或下降沿触发等问题,在所有模块中都要遵守它; 4.在不同的情况下用if和case,最好少用if的多层嵌套(1层或2层比较合 适,当在3层以上时,最好修改写法,因为这样不仅可以reduce area,而且可以获得好的timing); 5.在锁存一个信号或总线时要小心,对于整个design,尽量避免使用latch, 因为在DFT时很难test; 6.确信所有的信号被复位,在DFT时,所有的FlipFlop都是controllable; 7.永远不要再写入之前读取任何内部存储器(如SRAM); 8.从一个时钟到另一个不同的时钟传输数据时用数据缓冲,他工作像一个双时 钟FIFO(是异步的),可以用Async SRAM搭建Async FIFO; 9.在VHDL中二维数组可以使用,它是非常有用的。在VERILOG中他仅仅可以使 用在测试模块中,不能被综合; 10.遵守register-in register-out规则; 11.像synopsys的DC的综合工具是非常稳定的,任何bugs都不会从综合工具中 产生 12.确保FPGA版本与ASIC的版本尽可能的相似,特别是SRAM类型,若版本一致 是最理想的,但是在工作中FPGA版本一般用FPGA自带的SRAM,ASIC版本一般用厂商提供的SRAM; 13.在嵌入式存储器中使用BIST; 14.虚单元和一些修正电路是必需的; 15.一些简单的测试电路也是需要的,经常在一个芯片中有许多测试模块; 16.除非低功耗不要用门控时钟,强烈建议不要在design中使用gate clock; 17.不要依靠脚本来保证设计。但是在脚本中的一些好的约束能够起到更好的性 能(例如前向加法器); 18.如果时间充裕,通过时钟做一个多锁存器来取代用MUX; 19.不要用内部tri-state, ASIC需要总线保持器来处理内部tri-state,如IO cell; 20.在top level中作pad insertion; 21.选择pad时要小心(如上拉能力,施密特触发器,5伏耐压等),选择合适的 IO cell; 22.小心由时钟偏差引起的问题; 23.不要试着产生半周期信号; 24.如果有很多函数要修正,请一个一个地作,修正一个函数检查一个函数; 25.在一个计算等式中排列每个信号的位数是一个好习惯,即使综合工具能做; 26.不要使用HDL提供的除法器; 27.削减不必要的时钟。它会在设计和布局中引起很多麻烦,大多数FPGA有1- 4个专门的时钟通道;

Verilog的135个经典设计实例

【例3.1】4位全加器 module adder4(cout,sum,ina,inb,cin); output[3:0] sum; output cout; input[3:0] ina,inb; input cin; assign {cout,sum}=ina+inb+cin; endmodule 【例3.2】4位计数器 module count4(out,reset,clk); output[3:0] out; input reset,clk; reg[3:0] out; always @(posedge clk) begin if (reset) out<=0; //同步复位 else out<=out+1; //计数 end endmodule 【例3.3】4位全加器的仿真程序 `timescale 1ns/1ns `include "adder4.v" module adder_tp; //测试模块的名字 reg[3:0] a,b; //测试输入信号定义为reg型 reg cin; wire[3:0] sum; //测试输出信号定义为wire型 wire cout; integer i,j; adder4 adder(sum,cout,a,b,cin); //调用测试对象 always #5 cin=~cin; //设定cin的取值 initial begin a=0;b=0;cin=0; for(i=1;i<16;i=i+1) #10 a=i; //设定a的取值 end - 1 -

initial begin for(j=1;j<16;j=j+1) #10 b=j; //设定b的取值 end initial//定义结果显示格式 begin $monitor($time,,,"%d + %d + %b={%b,%d}",a,b,cin,cout,sum); #160 $finish; end endmodule 【例3.4】4位计数器的仿真程序 `timescale 1ns/1ns `include "count4.v" module coun4_tp; reg clk,reset; //测试输入信号定义为reg型 wire[3:0] out; //测试输出信号定义为wire型 parameter DELY=100; count4 mycount(out,reset,clk); //调用测试对象 always #(DELY/2) clk = ~clk; //产生时钟波形 initial begin//激励信号定义 clk =0; reset=0; #DELY reset=1; #DELY reset=0; #(DELY*20) $finish; end //定义结果显示格式 initial $monitor($time,,,"clk=%d reset=%d out=%d", clk, reset,out); endmodule 【例3.5】“与-或-非”门电路 module AOI(A,B,C,D,F); //模块名为AOI(端口列表A,B,C,D,F) input A,B,C,D; //模块的输入端口为A,B,C,D output F; //模块的输出端口为F - 2 -

Verilog语言基础教程

Verilog HDL Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象 设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。 Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。所有这些都使用同一种建模语言。此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。 Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。语言从C编程语言中继承了多种操作符和结构。Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。 =============================== 中文版Verilog HDL简明教程:第1章简介 Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。 Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。所有这些都使用同一种建模语言。此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。 Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。语言从C编程语言中继承了多种操作符和结构。Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。 历史 Verilog HDL语言最初是于1983年由Gateway Design Automation公司为其模

verilog学习心得

verilog学习心得 1.数字电路基础知识:布尔代数、门级电路的内部晶体管结构、组合逻辑电路分析与设计、触发器、时序逻辑电路分析与设计 2.数字系统的构成:传感器AD 数字处理器DA 执行部件 3.程序通在硬件上的执行过程: C语言(经过编译)-->该处理器的机器语言(放入存储器)-->按时钟的节拍,逐条取出指令、分析指令、执行指令 4.DSP处理是个广泛概念,统指在数字系统中做的变换(DFT)、滤波、编码解码、加密解密、压缩解压等处理 5.数字处理器包括两部分:高速数据通道接口逻辑、高速算法电路逻辑 6.当前,IC产业包括IC制造和IC设计两部分,IC设计技术发展速度高于IC设计 7.FPGA设计的前续课程:数值分析、DSP、C语言、算法与数据结构、数字电路、HDL语言计算机微体系结构 8.数字处理器处理性能的提高:软件算法的优化、微体系结构的优化 9.数字系统的实现方式: 编写C程序,然后用编译工具得到通用微处理器的机器指令代码,在通用微处理器上运行(如8051/ARM/PENTUIM) 专用DSP硬件处理器 用FPGA硬件逻辑实现算法,但性能不如ASIC 用ASIC实现,经费充足、大批量的情况下使用,因为投片成本高、周期长 10.FPGA设计方法:IP核重用、并行设计、层次化模块化设计、top-down思想 FPGA设计分工:前端逻辑设计、后端电路实现、仿真验证 11.matlab的应用: matlab中有许多现成的数学函数可以利用,节省了复杂函数的编写时间 matlab可以与C程序接口 做算法仿真和验证时能很快生成有用的数据文件和表格 DSP builder可以直接将simulink模型转换成HDL代码,跳过了中间的C语言改写步骤 12.常规从算法到硬件电路的开发过程: 算法的开发 C语言的功能描述 并行结构的C语言改写 verilog的改写 仿真、验证、修正 综合、布局布线、投入实用 13.C语言改写成verilog代码的困难点: 并行C语言的改写,因为C本身是顺序执行,而不是并行执行 不使用C语言中的复杂数据结构,如指针 目前有将C语言转换成verilog的工具? 14.HDL HDL描述方法是从电路图描述方法演化来的,相比来说更容易修改 符合IEEE标准的有verilog HDL和VHDL VHDL由美国国防部开发,有1987和1993两个版本 verilog由cadence持有,有1995、2001、2005三个版本 verilog较VHDL更有前景:具有模拟电路描述能力、不仅可以开发电路还可以验证电路、门级以下描述比VHDL强

(完整word版)Verilog-A30分钟快速入门教程

?Verilog-A 30分钟快速入门教程 进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“Verilog-AMS Language Reference Manual”和ADS的帮助文档。 现在的状态算是入门了,写了个简单的PLL。总结这几天的学习,觉得效率太低,我以前有一定Verilog基础,研一时学过一点VHDL-AMS,学到现在这个状态应该半天就够了;入门的话,30分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A。(前提是有一定的Verilog基础和电路基础) 1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的简化版),作为模拟电路描述语言Verilog-A,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow)和位(Potential),在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。 在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(out)/R,这样就产生了一个电阻,最后Verilog-A仿真器会用某种算法(迭代是最常见的)将I(out)和V(out)求解出来,然后根据这个解去算下一个时刻的I、V等,当然这仅仅是指时域仿真。 2、下面讲Verilog-A的语法: begin end //相当于C语言的一对大括号,与Verilog同 if ( expression ) true_statement ; [ else false_statement ; ] //与Verilog同 case ( expression ) case_item { case_item } endcase for ( procedural_assignment ; expression; procedural_assignment ) statement //case与for语句都跟Verilog、C语言类似 cross( expr [, dir [, time_tol [, expr_tol ]]] ); //cross用来产生一个event,如: @(cross(V(sample) -2.0, +1.0)) //指sample的电压超过2.0时触发该事件,将会执行后面的语句,+1.0表示正向越过,-1.0则相反 ddt( expr ) //求导,如: I(n1,n2) <+ C * ddt(V(n1, n2)); //表示了一个电容 idt( expr ,[ ic [, assert [, abstol ]]] ) //积分,如: V(out) <+ gain * idt(V(in) ,0) + gain * V(in); //比例积分,式中的0表示积分的初值 transition( expr [, time_delay [, rise_time [, fall_time [, time_tol ]]]] ) //将expr的值delay一下并指定上升下降沿时间,相当于一个传输门

Verilog-A 30分钟快速入门教程

?进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“Verilog-AMS L anguage Reference Manual”和ADS的帮助文档。 现在的状态算是入门了,写了个简单的PLL。总结这几天的学习,觉得效率太低,我以前有一定Verilog基础,研一时学过一点VHDL-AMS,学到现在这个状态应该半天就够了;入门的话,30分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A。(前提是有一定的Verilog 基础和电路基础) 1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的 简化版),作为模拟电路描述语言Verilog-A,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow)和位(Potential),在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。 在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(o ut)/R,这样就产生了一个电阻,最后Verilog-A仿真器会用某种算法(迭代是最常见的)将I(o ut)和V(out)求解出来,然后根据这个解去算下一个时刻的I、V等,当然这仅仅是指时域仿真。 2、下面讲Verilog-A的语法: begin end //相当于C语言的一对大括号,与Verilog同 if ( expression ) true_statement ; [ else false_statement ; ] //与Verilog同 case ( expression ) case_item { case_item } endcase for ( procedural_assignment ; expression; procedural_assignment ) statement //case与for语句都跟Verilog、C语言类似 cross( expr [, dir [, time_tol [, expr_tol ]]] ); //cross用来产生一个event,如:

verilog设计经验

、不使用初始化语句; 2、不使用延时语句; 3、不使用循环次数不确定的语句,如:forever,while等; 4、尽量采用同步方式设计电路; 5、尽量采用行为语句完成设计; 6、always过程块描述组合逻辑,应在敏感信号表中列出所有的输入信号; 7、所有的内部寄存器都应该可以被复位; 8、用户自定义原件(UDP元件)是不能被综合的。 一:基本 Verilog中的变量有线网类型和寄存器类型。线网型变量综合成wire,而寄存器可能综合成WIRE,锁存器和触发器,还有可能被优化掉。 二:verilog语句结构到门级的映射 1、连续性赋值:assign 连续性赋值语句逻辑结构上就是将等式右边的驱动左边的结点。因此连续性赋值的目标结点总是综合成由组合逻辑驱动的结点。Assign语句中的延时综合时都将忽视。 2、过程性赋值: 过程性赋值只出现在always语句中。 阻塞赋值和非阻塞赋值就该赋值本身是没有区别的,只是对后面的语句有不同的影响。 建议设计组合逻辑电路时用阻塞赋值,设计时序电路时用非阻塞赋值。 过程性赋值的赋值对象有可能综合成wire, latch,和flip-flop,取决于具体状况。如,时钟控制下的非阻塞赋值综合成flip-flop。 过程性赋值语句中的任何延时在综合时都将忽略。 建议同一个变量单一地使用阻塞或者非阻塞赋值。 3、逻辑操作符: 逻辑操作符对应于硬件中已有的逻辑门,一些操作符不能被综合:===、!==。 4、算术操作符:

Verilog中将reg视为无符号数,而integer视为有符号数。因此,进行有符号操作时使用integer,使用无符号操作时使用reg。 5、进位: 通常会将进行运算操作的结果比原操作数扩展一位,用来存放进位或者借位。如: Wire [3:0] A,B; Wire [4:0] C; Assign C=A+B; C的最高位用来存放进位。 6、关系运算符: 关系运算符:<,>,<=,>= 和算术操作符一样,可以进行有符号和无符号运算,取决于数据类型是reg,net还是integer。 7、相等运算符:==,!= 注意:===和!==是不可综合的。 可以进行有符号或无符号操作,取决于数据类型 8、移位运算符: 左移,右移,右边操作数可以是常数或者是变量,二者综合出来的结果不同。 9、部分选择: 部分选择索引必须是常量。 10、BIT选择: BIT选择中的索引可以用变量,这样将综合成多路(复用)器。 11、敏感表: Always过程中,所有被读取的数据,即等号右边的变量都要应放在敏感表中,不然,综合时不能正确地映射到所用的门。 12、IF: 如果变量没有在IF语句的每个分支中进行赋值,将会产生latch。如果IF语句中产生了latch,则IF的条件中最好不要用到算术操作。Case语句类似。Case的条款可以是变量。 如果一个变量在同一个IF条件分支中先赎值然后读取,则不会产生latch。如果先读取,后赎值,则会产生latch。

QuartusⅡ8.1入门教程(一个Verilog程序的编译和功能仿真)

Quartus Ⅱ8.1入门教程 (一个Verilog 程序的编译和功能仿真) Quartus Ⅱ 是Altera 公司推出的专业EDA 工具,支持原理图输入、硬件描述语言的输入等多种输入方式。硬件描述语言的输入方式是利用类似高级程序的设计方法来设计出数字系统。接下来我们对这种智能的EDA 工具进行初步的学习。使大家以后的数字系统设计更加容易上手。 第一步:打开软件 ● 快捷工具栏:提供设置(setting ),编译(compile )等快捷方式,方便用户使用,用户也可以在菜单栏的下拉菜单找到相应的选项。 ● 菜单栏:软件所有功能的控制选项都可以在其下拉菜单中找到。 ● 信息栏:编译或者综合整个过程的详细信息显示窗口,包括编译通过信息和报错信息。 快捷工具栏 菜单栏 工作区 资源管理窗口 任务管理窗口

注意以下命名要一致。 第二步:新建工程(file>new Project Wizard)1 工程名称: 2添加已有文件(没有已有文件的直接跳过next)所建工程的保存路径 工程名称顶层模块名(芯片级设计为实体名),要求与工程名称相同 如果有已经存在的文 件就在该过程中添加, 软件将直接将用户所 添加的文件添加到工 程中。

3 选择芯片型号(我们选择MAX3000A 系列下的EPM3256AQC208-10芯片) (注:如果不下载到开发板上进行测试,这一步可以不用设置) 4 选择仿真,综合工具(第一次实验全部利用quartus 做,三项都选None ,然后next ) 所选的芯片的系列型号 快速搜索所需的芯片 选择芯片

5 工程建立完成(点finish) 选择第三方综合工具,如果 使用Quartus内部综合工具 则选择none 选择第三方仿真工具,如果 使用Quartus内部仿真工具 则选择none 选择时序分析仪 工程建立完成,该窗口显示所建立工程所有的芯片,其他第三方EDA工具选择情况,以及模块名等等信息。

Verilog-A 30分钟快速入门教程

Verilog-A 30分钟快速入门教程 进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“Verilog-AMS Language Reference Manual”和ADS的帮助文档。 现在的状态算是入门了,写了个简单的PLL。总结这几天的学习,觉得效率太低,我以前有一定Verilog基础,研一时学过一点VHDL-AMS,学到现在这个状态应该半天就够了;入门的话,30分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A。(前提是有一定的Verilog基础和电路基础) 1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的简化版),作为模拟电路描述语言Verilog-A,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow)和位(Potential),在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。 在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(out)/R,这样就产生了一个电阻,最后Verilog-A仿真器会用某种算法(迭代是最常见的)将I(out)和V(out)求解出来,然后根据这个解去算下一个时刻的I、V等,当然这仅仅是指时域仿真。 2、下面讲Verilog-A的语法: begin end //相当于C语言的一对大括号,与Verilog同 if ( expression ) true_statement ; [ else false_statement ; ] //与Verilog同 case ( expression ) case_item { case_item } endcase for ( procedural_assignment ; expression; procedural_assignment ) statement //case与for语句都跟Verilog、C语言类似 cross( expr [, dir [, time_tol [, expr_tol ]]] ); //cross用来产生一个event,如: @(cross(V(sample) -2.0, +1.0)) //指sample的电压超过2.0时触发该事件,将会执行后面的语句,+1.0表示正向越过,-1.0则相反 ddt( expr ) //求导,如: I(n1,n2) <+ C * ddt(V(n1, n2)); //表示了一个电容 idt( expr ,[ ic [, assert [, abstol ]]] ) //积分,如: V(out) <+ gain * idt(V(in) ,0) + gain * V(in); //比例积分,式中的0表示积分的初值 transition( expr [, time_delay [, rise_time [, fall_time [, time_tol ]]]] ) //将expr的值delay一下并指定上升下降沿时间,相当于一个传输门

个人总结Verilog代码编写的25条经验

个人总结Verilog代码编写的25条经验 1、对所有的信号名、变量名和端口名都用小写,这样做是为了和业界的习惯保持一致;对常量名和用户定义的类型用大写; 2、使用有意义的信号名、端口名、函数名和参数名; 3、信号名长度不要太长; 4、对于时钟信号使用clk 作为信号名,如果设计中存在多个时钟,使用clk 作为时钟信号的前缀; 5、对来自同一驱动源的信号在不同的子模块中采用相同的名字,这要求在芯片总体设计时就定义好顶层子模块间连线的名字,端口和连接端口的信号尽可能采用相同的名字; 6、对于低电平有效的信号,应该以一个下划线跟一个小写字母b 或n 表示。注意在同一个设计中要使用同一个小写字母表示低电平有效; 7、对于复位信号使用rst 作为信号名,如果复位信号是低电平有效,建议使用rst_n; 8、当描述多比特总线时,使用一致的定义顺序,对于verilog 建议采用bus_signal[x:0]的表示; 9、尽量遵循业界已经习惯的一些约定。如*_r 表示寄存器输出,*_a 表示异步信号,*_pn 表示多周期路径第n 个周期使用的信号,*_nxt 表示锁存前的信号,*_z 表示三态信号等; 10、在源文件、批处理文件的开始应该包含一个文件头、文件头一般包含的内容如下例所示:文件名,作者,模块的实现功能概述和关键特性描述,文件创建和修改的记录,包括修改时间,修改的内容等; 11、使用适当的注释来解释所有的always 进程、函数、端口定义、信号含义、变量含义或信号组、变量组的意义等。注释应该放在它所注释的代码附近,要求简明扼要,只要足够说明设计意图即可,避免过于复杂; 12、每一行语句独立成行。尽管VHDL 和Verilog 都允许一行可以写多个语句,当时每个语句独立成行可以增加可读性和可维护性。同时保持每行小于或等于72 个字符,这样做都是为了提高代码得可读性; 13、建议采用缩进提高续行和嵌套语句得可读性。缩进一般采用两个空格,如西安交通大学SOC 设计中心2 如果空格太多则在深层嵌套时限制行长。同时缩进避免使用TAB 键,这样可以避免不同机器TAB 键得设置不同限制代码得可移植能力; 14、在RTL 源码的设计中任何元素包括端口、信号、变量、函数、任务、模块等的命名都不能取Verilog 和VHDL 语言的关键字; 15、在进行模块的端口申明时,每行只申明一个端口,并建议采用以下顺序: 输入信号的clk、rst、enables other control signals、data and address signals。然后再申明输出信号的clk、rst、enalbes other control signals、data signals; 16、在例化模块时,使用名字相关的显式映射而不要采用位置相关的映射,这样可以提高代码的可读性和方便debug 连线错误; 17、如果同一段代码需要重复多次,尽可能使用函数,如果有可能,可以将函数通用化,以使得它可以复用。注意,内部函数的定义一般要添加注释,这样可以提高代码的可读性;

相关文档
最新文档