实验一 排序算法性能分析

实验一 排序算法性能分析
实验一 排序算法性能分析

深圳大学实验报告课程名称:算法设计与分析

实验项目名称:实验一排序算法性能分析

学院:******

专业:*******************

指导教师:******

报告人:学号:班级:

实验时间:2017年10月11日星期三

实验报告提交时间:2017年10月13日星期五

教务处制

目录

一、实验目的 (1)

二、实验概述 (1)

三、实验内容 (1)

四、实验过程 (2)

1. 排序算法的思想与实现(Java版) (2)

(1) 选择排序 (2)

(2) 冒泡排序 (2)

(3) 合并排序 (3)

(4) 快速排序 (4)

(5) 插入排序 (5)

2. 测试不同算法的运行时间 (6)

(1) 不同算法效率分析 (6)

(2) 性能分析 (6)

3. 各种排序理论效率与实测效率分析 (6)

(1) 选择排序 (7)

(2) 冒泡排序 (7)

(3) 合并排序 (8)

(4) 快速排序 (9)

(5) 插入排序 (9)

五、实验总结与体会 (10)

一、实验目的

1.掌握选择排序、冒泡排序、合并排序、快速排序、插入排序算法原理

2.掌握不同排序算法时间效率的经验分析方法,验证理论分析与经验分析的一致性。

二、实验概述

排序问题要求我们按照升序排列给定列表中的数据项,目前为止,已有多种排序算法提出。本实验要求掌握选择排序、冒泡排序、合并排序、快速排序、插入排序算法原理,并进行代码实现。通过对大量样本的测试结果,统计不同排序算法的时间效率与输入规模的关系,通过经验分析方法,展示不同排序算法的时间复杂度,并与理论分析的基本运算次数做比较,验证理论分析结论的正确性。

三、实验内容

1.实现选择排序、冒泡排序、合并排序、快速排序、插入排序算法;

2.以待排序数组的大小n为输入规模,固定n,随机产生20组测试样本,统计不同排序

算法在20个样本上的平均运行时间;

3.分别以n=10, n=100, n=1000, n=10000, n=100000,重复2的实验;

4.画出不同排序算法在20个随机样本的平均运行时间与输入规模n的关系,如下图1所

示。分析不同算法的实际运行效率的差别。

图1. 时间效率与输入规模n的关系图

5.画出理论效率分析的曲线和实测的效率曲线,注意:由于实测效率是运行时间,而理论

效率是基本操作的执行次数,两者需要进行对应关系调整。调整思路:以输入规模为10000的数据运行时间为基准点,计算输入规模为其他值的理论运行时间,画出不同规模数据的理论运行时间曲线,并与实测的效率曲线进行比较。经验分析与理论分析是否一致?如果不一致,请解释存在的原因。

四、实验过程

1. 排序算法的思想与实现(Java版)

(1)选择排序

基本思想:

设所排序序列的记录个数为n。i取1,2,…,n-1,从所有n-i+1个记录(Ri,Ri+1,…,Rn)中找出排序码最小的记录,与第i个记录交换。执行n-1趟后就完成了记录序列的排序。

(2)冒泡排序

基本思想:

对相邻的元素进行两两比较,顺序相反则进行交换,这样,每一趟会将最小或最大的元素“浮”到顶端,最终达到完全有序。

代码实现:

(3)合并排序

基本思想:

将若干个有序序列进行两两归并,直至所有待排序记录都在一个有序序列为止。

(4)快速排序

基本思想:

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序。

(5)插入排序

基本思想:

每次将一个待排序的记录按其关键码的大小插入到一个已经排好序的有序序列中,直到全部记录排好序。

2. 测试不同算法的运行时间

分别以n = 10,100,1000,10000,100000测试5种排序算法的运行时间

(1)不同算法效率分析

将实际运行时间的所有数据录入到Excel表中,得出如下表格:

表1不同排序算法与规模n实际运行时间(毫秒)取对数(10为底)表规模n n=10 n=100 n=1000 n=10000 n=100000

选择排序-3.7167 -1.702896 0.22440356 2.2063671 4.203022 快速排序-3.9272 -2.609949 -1.0835461 0.1020905 1.18469143 归并排序-3.40561 -2.10513 -0.9290391 0.1958997 1.29280967

以曲线图展示不同排序算法的运行效率。

图2排序算法实际运行效率(对数)对比图

(2)性能分析

从曲线图中可以看出,快速排序与合并排序运行效率最快差不多,两条曲线几乎重叠在一起,而插入排序次之。选择排序较插入排序慢,冒泡排序的运行效率最慢,当规模增大到10w级别的时候,冒泡排序显得特别低效,而快速排序跟合并排序的时间优越性则体现出来了。

3. 各种排序理论效率与实测效率分析

由于实测效率是运行时间,而理论效率是基本操作的执行次数,两者需要进行对应关系调整。以规模n=10000的实际值为基准,推算出其他规模的值(理论值,时间为:毫秒ms),然后

与各排序算法实际值进行比较。下面就每一种排序算法进行分析。

注:以n = 10, 100, 1000, 10000, 100000分别进行测试与推算。

(1)选择排序

选择排序O(n2) n=10 n=100 n=1000 n=10000 n=100000

理论(/ms) 0.000161 0.016083 1.6083 160.83 16083

图3选择排序理论实际运行时间(对数)对比图

分析:

由于时间复杂度是o(n2 )并且该排序的主要操作是比较操作,当数据规模扩大n倍时,相应的在时间的消耗上会扩大n2倍,同时我们发现,理论上乘以n2后的数据普遍会略小于实际数据,这主要原因可能是除了比较操作之外,赋值操作也随着n的增加逐渐增大,并且会在时间上体现出来,此外轻微的误差可能是数据的差异造成或者电脑等其他因素造成。

(2)冒泡排序

冒泡排序O(n2) 10 100 1000 10000 100000

理论(/ms) 0.000326275 0.0326275 3.26275 326.275 32627.5

分析:

我们发现,虽然时间复杂度是o (n 2),但当数据规模扩大n 倍时,并没有相应的在时间的消耗上扩大n 2倍,而是多于n 2,同时我们发现,

这个误差会随着数据规模的扩大而扩大,这主要原因是除了比较操作之外,赋值操作也随着n 的增加逐渐增大,而且事实证明在数据比较极端的情况下,赋值操作已经不能忽略不计,与此相比,电脑等其他因素造成轻微的误差可以忽略不计。

(3) 合并排序

归并排序 n=10 n=100 n=1000 n=10000 n=100000

理论(/ms)

0.000393

0.00785

0.11775

1.57

19.625

图8合并排序理论实际对比图

分析:

该合并排序实际运行效率与理论值可以说完全吻合。

(4)快速排序

快速排序n=10 n=100 n=1000 n=10000 n=100000

理论(/ms) 0.0003163 0.006325 0.094875 1.265 15.8125

图9快速排序理论实际对比图

分析:

快速排序所用的时间极短,即便是100000的数据规模也只需要短短10几毫秒的时间,实际值与理论值的轻微偏差可能是数据的差异造成的或者电脑等其他因素造成。

(5)插入排序

插入排序n=10 n=100 n=1000 n=10000 n=100000

理论(/ms) 0.000089865 0.0089865 0.89865 89.865 8986.5

图10插入排序理论实际对比图

分析:

插入排序时间复杂度是O(n2),与上面几种排序类似,该算法的实际值与理论值基本吻合。轻微的误差可能是由于数据的差异造成的。

五、实验总结与体会

本次实验虽然花费很大的心思,但确实让我对这几种排序的认识更加深刻,同样的数据,排序的时间可以相差如此之大,这可能会改变我每次都使用冒泡排序的这一习惯,同时,对算法的优良性不同而导致的结果差异之大,感觉到好的算法是多么的重要,当然合理利用算法也是不可忽视的。

注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

各种查找算法性能分析

项目名称:各种查找算法的性能测试 项目成员: 组编号: 完成时间: 目录 前言 (2) 正文 (2) 第一章简介 (2) 1.1顺序查找问题描述 (2) 1.2二分查找问题描述 (2) 第二章算法定义 (2) 2.1顺序查找算法定义 (2) 2.2二分查找算法定义 (3) 第三章测试结果(Testing Results) (5) 3.1 实验结果表 (5) 3.2 散点图记录 (5) 第四章分析和讨论 (6) 4.1顺序查找分析 (6) 4.2二分查找分析 (6) 附录:源代码(基于C语言的) (7) 声明 (13)

前言 查找问题就是在给定的集合(或者是多重集,它允许多个元素具有相同的值)中找寻一个给定的值,我们称之为查找键。 对于查找问题来说,没有一种算法在任何情况下是都是最优的。有些算法速度比其他算法快,但是需要较多的存储空间;有些算法速度非常快,但仅适用于有序数组。查找问题没有稳定性的问题,但会发生其他的问题(动态查找表)。 在数据结构课程中,我们已经学过了几种查找算法,比较有代表性的有顺序查找(蛮力查找),二分查找(采用分治技术),哈希查找(理论上来讲是最好的查找方法)。 第一章:简介(Introduction) 1.1顺序查找问题描述: 顺序查找从表中最后一个记录开始,逐个进行记录的关键字和给定值的比较,若某个记录的关键字和给定值比较相等,则查找成功,找到所查记录;反之,若直至第一个记录,其关键字和给定值比较都不等,则表明表中没有所查记录,查找不成功。 1.2二分查找问题描述: (1)分析掌握折半查找算法思想,在此基础上,设计出递归算法和循环结构两种实现方法的折半查找函数。 (2)编写程序实现:在保存于数组a[i]有序数据元素中查找数据元素k是否存在。数元素k要包含两种情况:一种是数据元素k包含在数组中;另一种是数据元素k不包含在数组中 (3)数组中数据元素的有序化既可以初始赋值时实现,也可以设计一个排序函数实现。(4)根据两种方法的实际运行时间,进行两种方法时间效率的分析对比。 第二章:算法定义(Algorithm Specification) 2.1顺序查找 从表的一端向另一端逐个进行记录的关键字和给定值(要查找的元素)的比较,若某个记录的关键字和给定值比较相等,则查找成功,找到所查找记录;反之,若直至第一个记录,其关键

数据结构中的内部排序算法及性能分析

数据结构中的排序算法及性能分析 一、引言 排序(sorting )是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个按关键字有序的序列。为了查找方便通常希望计算机中的表是按关键字有序的。因为有序的顺序表可以使用查找效率较高的折半查找法。 在此首先明确排序算法的定义: 假设n 个记录的序列为 { 1R ,2R ,…n R } (1) 关键字的序列为: { 1k ,2k ,…,n k } 需要确定1,2,…,n 的一种排列:12,n p p p ,…,使(1)式的序列成为一个按关键字有序的序列: 12p p pn k k k ≤≤≤… 上述定义中的关键字Ki 可以是记录Ri (i=1,2,…,n )的主关键字,也可以是记录i R 的次关键字,甚至是若干数据项的组合。若在序列中有关键字相等的情况下,即存在i k =j k (1,1,i n j n i j ≤≤≤≤≠),且在排序前的序列中i R 领先于j R 。若在排序后的序列中Ri 仍领先于j R ,则称所用的排 序方法是稳定的;反之若可能使排序后的序列中j R 领先于i R ,则称所用的排序方法是不稳定的。 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法的时间与算法中语句执行次数成正比,那个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度,记为T(n)。 在刚才提到的时间频度中,n 称为问题的规模,当n 不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n 的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n 趋近于无穷大时,T (n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

排序算法实验报告材料

实验课程:算法分析与设计 实验名称:几种排序算法的平均性能比较(验证型实验) 实验目标: (1)几种排序算法在平均情况下哪一个更快。 (2)加深对时间复杂度概念的理解。 实验任务: (1)实现几种排序算法(selectionsort, insertionsort,bottomupsort,quicksort, 堆排序)。对于快速分类,SPLIT中的划分元素采用三者A(low),A(high),A((low+high)/2)中其值居中者。 (2)随机产生20组数据(比如n=5000i,1≤i≤20)。数据均属于范围(0,105)内的整数。对于同一组数据,运行以上几种排序算法,并记录各自的运行时间(以毫秒为单位)。(3)根据实验数据及其结果来比较这几种分类算法的平均时间和比较次数,并得出结论。实验设备及环境: PC;C/C++等编程语言。 实验主要步骤: (1)明确实验目标和具体任务; (2)理解实验所涉及的几个分类算法; (3)编写程序实现上述分类算法; (4)设计实验数据并运行程序、记录运行的结果; (5)根据实验数据及其结果得出结论; (6)实验后的心得体会。

一:问题分析(包括问题描述、建模、算法的基本思想及程序实现的技巧等):1:随机生成n个0到100000的随机数用来排序的算法如下. for(int n=1000;n<20000;n+=1000) { int a[]=new int[n]; for(int i=0;i=0&&b[i]

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

实验8查找与排序算法的实现和应用

陕西科技大学实验报告 班级学号姓名实验组别 实验日期室温报告日期成绩 报告内容:(目的和要求、原理、步骤、数据、计算、小结等) 实验名称:查找与排序算法的实现和应用 实验目的: 1. 掌握顺序表中查找的实现及监视哨的作用。 2. 掌握折半查找所需的条件、折半查找的过程和实现方法。 3. 掌握二叉排序树的创建过程,掌握二叉排序树查找过程的实现。 4. 掌握哈希表的基本概念,熟悉哈希函数的选择方法,掌握使用线性探测法和链地址法进行冲突解决的方 法。 5. 掌握直接插入排序、希尔排序、快速排序算法的实现。 实验环境(硬/软件要求):Windows 2000,Visual C++ 6.0 实验内容: 通过具体算法程序,进一步加深对各种查找算法的掌握,以及对实际应用中问题解决方 法的掌握。各查找算法的输入序列为:26 5 37 1 61 11 59 15 48 19输出 要求:查找关键字37,给出查找结果。对于给定的某无序序列,分别用直接插入排序、希尔排序、快速排序等方法进行排序,并输出每种排序下的各趟排序结果。 各排序算法输入的无序序列为:26 5 37 1 61 11 59 15 48 19。 实验要求: 一、查找法 1. 顺序查找 首先从键盘输入一个数据序列生成一个顺序表,然后从键盘上任意输入一个值,在顺序 表中进行查找。 2. 折半查找

任意输入一组数据作为个数据元素的键值,首先将此序列进行排序,然后再改有序表上 使用折半查找算法进对给定值key 的查找。 3. 二叉树查找 任意输入一组数据作为二叉排序树中节点的键值,首先创建一颗二叉排序树,然后再次二叉排序树上实现对一 定k的查找过程。 4. 哈希表查找 任意输入一组数值作为个元素的键值,哈希函数为Hash (key )=key%11, 用线性探测再散列法解决冲突问题。 二、排序算法 编程实现直接插入排序、希尔排序、快速排序各算法函数;并编写主函数对各排序函数进行测试。 实验原理: 1. 顺序查找: 在一个已知无(或有序)序队列中找出与给定关键字相同的数的具体位置。原理是让关键字与队列中的数从最后一个开始逐个比较,直到找出与给定关键字相同的数为止,它的缺点是效率低下。 二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以

排序算法与性能分析

王吉玉《算法与数据结构》课程设计—排序算法性能分析 目录 摘要 (1) 前言 (2) 正文 (3) 1.采用类C语言定义相关的数据类型 (3) 2.各模块的伪码算法 (3) 3.函数的调用关系图 (7) 4.调试分析 (7) 5.测试结果 (8) 6.源程序(带注释) (11) 总结 (20) 参考文献 (21) 致谢 (22) 附件Ⅰ部分源程序代码 (23)

摘要 计算机的日益发展,其应用早已不局限于简单的数值运算,而涉及到问题的分析、数据结构框架的设计以及插入、删除、排序、查找等复杂的非数值处理和操作。算法与数据结构的学习就是为以后利用计算机资源高效地开发非数值处理的计算机程序打下坚实的理论、方法和技术基础。 算法与数据结构旨在分析研究计算机加工的数据对象的特性,以便选择适当的数据结构和存储结构,从而使建立在其上的解决问题的算法达到最优。 数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由哪些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。 《算法与数据结构》主要介绍一些最常用的数据结构及基本算法设计,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。数据结构是介于数学、计算机软件和计算机硬件之间的一门计算机专业的核心课程。它是计算机程序设计、数据库、操作系统、编译原理及人工智能等的重要基础,广泛的应用于信息学、系统工程等各种领域。 学习数据结构是为了将实际问题中所涉及的对象在计算机中表示出来并对它们进行处理。通过课程设计可以提高学生的思维能力,促进学生的综合应用能力和计算机编程技能,找出自己的不足,在以后的学习中更加努力! 本次的课程设计主要是对《算法与数据结构》的所有内部排序算法进行了一个汇总、集合,并通过算法设计实现对其性能的分析和评价。在设计过程中重温了C语言中的基本语法以及个别函数的用法,巩固了设计思维方向。 关键词:排序算法;性能分析;排序算法性能分析;C语言

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

内部排序算法实现与性能分析课程设计.

目录 1、问题描述: (2) 1.1题目内容: (2) 1.2基本要求: (2) 1.3测试数据: (2) 2、需求分析: (2) 2.1程序的基本功能: (2) 2.2输入值、输出值以及输入输出形式: (2) 2.3各个模块的功能要求: (2) 3、概要设计: (3) 3.1所需的ADT,每个程序中使用的存储结构设计说明 (3) 3.2主程序流程以及模块调用关系 (3) 3.3每个模块的算法设计说明(流程图) (4) 3.3.1气泡排序: (4) 3.3.2直插排序 (5) 3.3.3选择排序 (6) 3.3.4希尔排序 (7) 3.3.5快速排序 (8) 4、详细设计: (9) 4.1函数调用关系图 (9) 5、各个算法实现的源程序: (9) 5.1、冒泡排序及其主要算法 (9) 5.2、直接插入排序及其主要算法 (10) 5.3、选择排序及其主要算法 (10) 5.4、希尔排序及其主要算法 (11) 6、调试分析: (12) 7、使用说明: (13) 8、测试结果: (14) 9、主要参考文献 (14)

1、问题描述: 1.1题目内容: 内部排序算法实现与性能分析 1.2基本要求: (1)数据结构定义 (2)利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、希尔等排序方法进行排序,并统计每一种排序上机所花费的时间,对各种排序算法做分析比较. 1.3测试数据: 由函数随机产生的数据,由于是随机产生的,所以在此不一一写出。 2、需求分析: 2.1程序的基本功能: 输入30000个随机整数,对这些数进行多种方法进行排序,并对这些排序做比较,在屏幕上输出每种排序方法所比较的次数,交换的次数,和时间复杂度。 2.2输入值、输出值以及输入输出形式: 由于程序中所需的数据都是有函数随机生成的整形数,不需要用户自己输入,用户只需要对演示程序中的一些提示做一些必要的选择以便于程序的执行。 程序输出的是对六种排序做的一些比较,即输出六种排序各排序过程中所比较的数据的个数,交换的数据的次数,和排序完成所用的时间。六种排序依次在计算机终端上显示,便于用户观察。 2.3各个模块的功能要求: 一、随机函数:产生随机数 二、选择排序函数:对随机数进行选择排序 三、起泡排序函数:对随机数进行气泡排序 四、直接插入函数:对随机数进行直接插入排序 五、希尔排序函数:对随机数进行希尔排序 六、快速排序函数:对随机数进行快速排序 七、主函数

数据结构各种排序算法的时

数据结构各种排序算法的时间性能.

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能 学生姓名 学生学号 专业班级

指导老师李晓鸿完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略

内部排序算法的实现与比较

内部排序算法的实现与 比较 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

实验四:内部排序算法的实现与比较 一、问题描述 1.实验题目:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大致执行时间。试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。 2.基本要求:(1)对常用的内部排序算法进行比较:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序。 (2利用随机函数产生N(N=30000)个随机整数,作为输入数据作比较;比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。 (3)对结果作出简要分析。 3.测试数据:随机函数产生。 二、需求分析 1.程序所能达到的基本可能:通过随机数据产生N个随机数,作为输入数据作比较;对常用的内部排序算法:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序进行比较:比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。最后结果输出各种排序算法的关键字参加的比较次数和关键字的移动次数,并按从小到大排列。 2.输入的形式及输入值范围:随机函数产生的N(N=30000)个随机整数。 3.输出的形式:输出各种排序算法的关键字参加的比较次数和关键字的移动次数。并按从小到大排列。 4.测试数据要求:随机函数产生的N(N=30000)个随机整数。 三、概要设计 1. 所用到得数据结构及其ADT 为了实现上述功能,应以一维数组表示集合数据类型。 int s[N]; int compare[6]={0},move[6]={0},D[N]={0},RS[N]={0}; 基本操作: 数组赋值: for(i=1;i

实验6:至少三种排序算法的程序实现

《数据结构与算法》课程实验报告(6) 实验题目:实验6:至少三种排序算法的程序实现 一、实验目的 1.掌握简单插入排序、希尔排序、冒泡排序、快速排序、堆排序以及归并排序的算法并加以应用。 2.对各种查找、排序技术的时间、空间复杂性有进一步认识。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 编写程序实现下述六种算法至少三种,并用以下无序序列加以验证:49,38,65,97,76,13,27,49 1.简单插入排序 2.希尔排序 3. 冒泡排序 4.快速排序 5.归并排序 6.堆排序 四、源代码与结果: 1、简单插入排序: 源代码:

#include void InsertSort(int r[],int n); int main() { int r[]={49,38,65,97,76,13,27,49}; cout<<"直接插入排序:"<=0;j--) { r[j+1]=r[j]; } r[j+1]=s; } } 运行结果: 2.希尔排序: #include void ShellSort(int r[],int n); int main() { int r[]={49,38,65,97,76,13,27,49}; cout<<"希尔排序:"<

南邮数据结构上机实验四内排序算法的实现以及性能比较

实验报告 (2015 / 2016学年第二学期) 课程名称数据结构A 实验名称内排序算法的实现以及性能比较 实验时间2016 年 5 月26 日 指导单位计算机科学与技术系 指导教师骆健 学生姓名耿宙班级学号B14111615 学院(系) 管理学院专业信息管理与信息系统

—— 实习题名:内排序算法的实现及性能比较 班级 B141116 姓名耿宙学号 B14111615 日期2016.05.26 一、问题描述 验证教材的各种内排序算法,分析各种排序算法的时间复杂度;改进教材中的快速排序算法,使得当子集合小于10个元素师改用直接插入排序;使用随即数发生器产生大数据集合,运行上述各排序算法,使用系统时钟测量各算法所需的实际时间,并进行比较。系统时钟包含在头文件“time.h”中。 二、概要设计 文件Sort.cpp中包括了简单选择排序SelectSort(),直接插入排序InsertSort(),冒泡排序BubbleSort(),两路合并排序Merge(),快速排序QuickSort()以及改进的快速排序GQuickSort()六个内排序算法函数。主主函数main的代码如下图所示: 三、详细设计 1.类和类的层次设计 在此次程序的设计中没有进行类的定义。程序的主要设计是使用各种内排序算法对随机 生成的数列进行排列,并进行性能的比较,除此之外还对快速排序进行了改进。下图为主函 数main的流程图:

——

main() 2.核心算法 1)简单选择排序: 简单选择排序的基本思想是:第1趟,在待排序记录r[1]~r[n]中选出最小的记录,将它与r[1]交换;第2趟,在待排序记录r[2]~r[n]中选出最小的记录,将它与r[2]交换;以此类推,第i趟在待排序记录r[i]~r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到

常用排序算法比较与分析报告

常用排序算法比较与分析 一、常用排序算法简述 下面主要从排序算法的基本概念、原理出发,分别从算法的时间复杂度、空间复杂度、算法的稳定性和速度等方面进行分析比较。依据待排序的问题大小(记录数量 n)的不同,排序过程中需要的存储器空间也不同,由此将排序算法分为两大类:【排序】、【外排序】。 排序:指排序时数据元素全部存放在计算机的随机存储器RAM中。 外排序:待排序记录的数量很大,以致存一次不能容纳全部记录,在排序过程中还需要对外存进行访问的排序过程。 先了解一下常见排序算法的分类关系(见图1-1) 图1-1 常见排序算法 二、排序相关算法 2.1 插入排序 核心思想:将一个待排序的数据元素插入到前面已经排好序的数列中的适当位置,使数据元素依然有序,直到待排序数据元素全部插入完为止。 2.1.1 直接插入排序 核心思想:将欲插入的第i个数据元素的关键码与前面已经排序好的i-1、i-2 、i-3、… 数据元素的值进行顺序比较,通过这种线性搜索的方法找到第i个数据元素的插入位置,并且原来位置的数据元素顺序后移,直到全部排好顺序。 直接插入排序中,关键词相同的数据元素将保持原有位置不变,所以该算法是稳定的,时间复杂度的最坏值为平方阶O(n2),空间复杂度为常数阶O(l)。

Python源代码: 1.#-------------------------直接插入排序-------------------------------- 2.def insert_sort(data_list): 3.#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始 4.for x in range(1, len(data_list)): 5.#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换 6.#range(x-1,-1,-1):从x-1倒序循环到0 7.for i in range(x-1, -1, -1): 8.#判断:如果符合条件则交换 9.if data_list[i] > data_list[i+1]: 10.temp= data_list[i+1] 11.data_list[i+1] = data_list[i] 12.data_list[i] = temp 2.1.2 希尔排序 核心思想:是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。 希尔排序时间复杂度会比O(n2)好一些,然而,多次插入排序中,第一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,所以希尔排序是不稳定的。 Python源代码: 1.#-------------------------希尔排序------------------------------- 2.def insert_shell(data_list): 3.#初始化step值,此处利用序列长度的一半为其赋值 4.group= int(len(data_list)/2) 5.#第一层循环:依次改变group值对列表进行分组 6.while group> 0: 7.#下面:利用直接插入排序的思想对分组数据进行排序 8.#range(group,len(data_list)):从group开始 9.for i in range(group, len(data_list)): 10.#range(x-group,-1,-group):从x-group开始与选定元素开始倒序比较,每个比较元素之间间隔group 11.for j in range(i-group, -1, -group): 12.#如果该组当中两个元素满足交换条件,则进行交换 13.if data_list[j] > data_list[j+group]: 14.temp= data_list[j+group] 15.data_list[j+group] = data_list[j] 16.data_list[j] = temp 17.#while循环条件折半 18.group= int(group/ 2) 2.2 选择排序

内部排序算法的实现与比较

实验四:内部排序算法的实现与比较 一、问题描述 1.实验题目:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大致执行时间。试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。2.基本要求:(1)对常用的内部排序算法进行比较:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序。 (2利用随机函数产生N(N=30000)个随机整数,作为输入数据作比较;比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。 (3)对结果作出简要分析。 3.测试数据:随机函数产生。 二、需求分析 1.程序所能达到的基本可能:通过随机数据产生N个随机数,作为输入数据作比较;对常用的内部排序算法:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序进行比较:比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。最后结果输出各种排序算法的关键字参加的比较次数和关键字的移动次数,并按从小到大排列。 2.输入的形式及输入值范围:随机函数产生的N(N=30000)个随机整数。 3.输出的形式:输出各种排序算法的关键字参加的比较次数和关键字的移动次数。并按从小到大排列。 4.测试数据要求:随机函数产生的N(N=30000)个随机整数。 三、概要设计 1. 所用到得数据结构及其ADT 为了实现上述功能,应以一维数组表示集合数据类型。 int s[N]; int compare[6]={0},move[6]={0},D[N]={0},RS[N]={0}; 基本操作: 数组赋值: for(i=1;i

算法排序问题实验报告

《排序问题求解》实验报告 一、算法的基本思想 1、直接插入排序算法思想 直接插入排序的基本思想是将一个记录插入到已排好序的序列中,从而得到一个新的, 记录数增1 的有序序列。 直接插入排序算法的伪代码称为InsertionSort,它的参数是一个数组A[1..n],包含了n 个待排序的数。用伪代码表示直接插入排序算法如下: InsertionSort (A) for i←2 to n do key←A[i] //key 表示待插入数 //Insert A[i] into the sorted sequence A[1..i-1] j←i-1 while j>0 and A[j]>key do A[j+1]←A[j] j←j-1 A[j+1]←key 2、快速排序算法思想 快速排序算法的基本思想是,通过一趟排序将待排序序列分割成独立的两部分,其中一 部分记录的关键字均比另一部分记录的关键字小,则可对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序序列为数组A[1..n],首先选取第一个数A[0],作为枢轴(pivot),然后按照下述原则重新排列其余数:将所有比A[0]大的数都排在它的位置之前,将所有比A[0]小的数都排在它的位置之后,由此以A[0]最后所在的位置i 作为分界线,将数组A[1..n]分成两个子数组A[1..i-1]和A[i+1..n]。这个过程称作一趟快速排序。通过递归调用快速排序,对子数组A[1..i-1]和A[i+1..n]排序。 一趟快速排序算法的伪代码称为Partition,它的参数是一个数组A[1..n]和两个指针low、high,设枢轴为pivotkey,则首先从high 所指位置起向前搜索,找到第一个小于pivotkey 的数,并将其移到低端,然后从low 所指位置起向后搜索,找到第一个大于pivotkey 的数,并将其移到高端,重复这两步直至low=high。最后,将枢轴移到正确的位置上。用伪代码表示一趟快速排序算法如下: Partition ( A, low, high) A[0]←A[low] //用数组的第一个记录做枢轴记录 privotkey←A[low] //枢轴记录关键字 while low=privotkey do high←high-1 A[low]←A[high] //将比枢轴记录小的记录移到低端 while low

数据结构各种排序算法的时间性能

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能学生姓名 学生学号 专业班级 指导老师李晓鸿 完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略 二、概要设计

相关文档
最新文档