水泥细度对混凝土塑性收缩影响

水泥细度对混凝土塑性收缩影响
水泥细度对混凝土塑性收缩影响

水泥细度对混凝土塑性收缩影响的探讨摘要:塑性收缩是引起混凝土收缩开裂的主要原因之一,通过试验,在配合比、水灰比一定的条件下,初步研究水泥细度对混凝土塑性收缩的影响。

关键词:混凝土;水泥细度;塑性收缩

cement fineness on the impact of plastic shrinkage of concrete

zhu wei wei

abstract: plastic shrinkage is caused by one of the main shrinkage cracking of concrete through testing ,the mixing ratio, water-cement ratio under certain conditions, a preliminary study of cement fineness on plastic shrinkage of concrete.

keywords:concrete;cement fineness;plastic shrinkage

一、前言

混凝土是重要的土木工程材料之一,而水泥是混凝土最重要的

组成部分,并与其有着密切的关系,起胶凝和填充作用。随着我国桥梁的发展,近年来,混凝土桥梁普遍存在早期开裂现象,结构耐久性严重受到威胁。结构物产生明显裂缝将对人们的生命和财产构成威胁,因此,混凝土结构裂缝问题是工程建设的技术问题,受到工程界的广泛关注。最新水泥国家标准“普通硅酸盐水泥

(gb175-2007)”中要求水泥的细度(以比表面积表示)不小于300

干缩性试验

水泥混凝土干缩性试验方法 1目的、适用范围和引用标准 本方法规定了在恒温恒湿条件下,测定水泥混凝土试件由于失去水而引起的轴向长度变形的方法。 本方法适用于不同混凝土干缩性能的比较,规定了集料公称最大粒径不大于26.5mm。 2仪器设备 1)试模:规格为100mm×100mm×400mm或100mm×100mm×515mm的金属试模,两个端板的中心有放置测钉的孔,用于安装测钉。 2)测钉:不锈的金属制成 3)测长仪器: a.测量标距为540mm-600mm,允许偏差为0.01mm的测微计(附有标准棒) b.其他测长仪,至少达到0.002%的相对测量精度 c.测量混凝土变形的装置应具有殷钢或石英玻璃制作的标准杆,以便在测量前及测量中校核仪器的读数 d.干缩箱:箱内控温度为20±2℃,相对湿度为60%±5%,箱内配有温度、湿度自动记录仪,记录温度、湿度变化。置于恒温室中的的干缩箱需放干燥剂去除湿。 3试验步骤 3.1干缩率试验以三个试件为一组,混凝土拌合、成型按T0551规定进行。

3.2如果采用预埋测钉,将干净的测钉安置在试模两头端板的中心孔中。成型试件的过程中,应防止测钉脱落。试件成型后送养护室养护,约2h-4h后抹平表面,并防止水珠滴在试件表面。试件应带模养护1d-2d(视混凝土实际强度而定)。 3.3如果采用后埋测钉,成型试件后,试件应带模养护1d-2d(视混凝土实际强度而定)。拆模后,立即用环氧树脂或其它化学粘结剂加固轴心测钉。 3.4试件应在3d龄期(从混凝土搅拌加水时计算)从标准养护室取出,并立即移入干缩箱内测定初始长度(含测头)。初始长度应重复测定三次,取算术平均值作为基准长度的测定值。 3.5从移入干缩箱日起计算,在1、3、7、14、28、60、90、120、150、180d测定试件的长度。 3.6测量前应先用标准杆校正仪器的零点,并在半天的测定过程中至少校核1-2次(其中一次在全部试件测完后)。如符合时发现零点与原值的偏差超过±0.01mm,应调零后重新测定。 3.7试件每次在收缩仪上放置的位置、方向应保持一致,为此,应在试件上标明相应的记号。试件在放置和取出时应仔细,不能碰撞表架及表杆,否则应重新校核零点。 每次读数应重复3次。 3.8试件经测长和称量后,将底面架空置于不吸水的硬质网格垫上,连同垫板放在试件架上,试件之间的间距应不小于30mm。(湿试件和干试件应分开储存)

混凝土的变形性能

6.5 混凝土的变形性能 混凝土的变形包括非荷载作用下的变形和荷载作用下的变形。非荷载下的变形,分为混凝土的化学收缩、干湿变形及温度变形;荷载作用下的变形,分为短期荷载作用下的变形及长期荷载作用下的变形——徐变。 一、非荷载作用下的变形 (一)化学收缩(自生体积变形) 在混凝土硬化过程中,由于水泥水化物的固体体积,比反应前物质的总体积小,从而引起混凝土的收缩,称为化学收缩。 特点:不能恢复,收缩值较小,对混凝土结构没有破坏作用,但在混凝土内部可能产生微细裂缝而影响承载状态和耐久性。 (二)干湿变形(物理收缩) 干湿变形是指由于混凝土周围环境湿度的变化,会引起混凝土的干湿变形,表现为干缩湿胀。 1.产生原因 混凝土在干燥过程中,由于毛细孔水的蒸发,使毛细孔中形成负压,随着空气湿度的降低,负压逐渐增大,产生收缩力,导致混凝土收缩。同时,水泥凝胶体颗粒的吸附水也发生部分蒸发,凝胶体因失水而产生紧缩。当混凝土在水中硬化时,体积产生轻微膨胀,这是由于凝胶体中胶体粒子的吸附水膜增厚,胶体粒子间的距离增大所致。 2.危害性 混凝土的干湿变形量很小,一般无破坏作用。但干缩变形对混凝土危害较大,干缩能使砼表面产生较大的拉应力而导致开裂,降低混凝土的抗渗、抗冻、抗侵蚀等耐久性能。 3.影响因素 (1)水泥的用量、细度及品种 水灰比不变:水泥用量愈多,砼干缩率越大;水泥颗粒愈细,砼干缩率越大。 (2)水灰比的影响 水泥用量不变:水灰比越大,干缩率越大。 (3)施工质量的影响 延长养护时间能推迟干缩变形的发生和发展,但影响甚微;采用湿热法处理养护砼,可有效减小砼的干缩率。

(4)骨料的影响 骨料含量多的混凝土,干缩率较小。 (三)温度变形 温度变形是指混凝土随着温度的变化而产生热胀冷缩变形。混凝土的温度变形系数α为(1~1.5)×10-5/ ℃ ,即温度每升高1℃,每1m胀缩0.01~0.015mm。温度变形对大体积混凝土、纵长的砼结构、大面积砼工程极为不利,易使这些混凝土造成温度裂缝。可采取的措施为:采用低热水泥,减少水泥用量,掺加缓凝剂,采用人工降温,设温度伸缩缝,以及在结构内配置温度钢筋等,以减少因温度变形而引起的混凝土质量问题。 二、荷载作用下的变形 (一)混凝土在短期作用下的变形 混凝土是一种由水泥石、砂、石、游离水、气泡等组成的不匀质的多组分三相复合材料,为弹塑性体。受力时既产生弹性变形,又产生塑性变形,其应力应变关系呈曲线,如图。卸荷后能恢复的应变ε弹是由混凝土的弹性应变引起的,称为弹性应变;剩余的不能恢复的应变ε塑,则是由混凝土的塑性应变引起的,称为塑性应变。 混凝土的弹性模量:在应力-应变曲线上任一点的应力σ与其应变ε的比值,称为混凝土在该应力下的变形模量。影响混凝土弹性模量的主要因素有混凝土的强度、骨料的含量及其弹性模量以及养护条件等。 图6.5.1 混凝土在压力作用下的应力-应变曲线 (二)砼在长期荷载作用下的变形——徐变(Creep) 混凝土在持续荷载作用下,除产生瞬间的弹性变形和塑性变形外,还会产生随时间增长的变形,称为徐变。如图6.5.2。

实验六、水泥干缩性试验 - 副本

实验六、水泥干缩性试验 水泥加水会发生水化,其水化水泥与水系统绝对体积一般是减缩的,减缩程度与水泥矿物组成、水灰比、养护制度、环境条件有关。混凝土除上述影响因素外,还与水泥用量有关。因水泥干缩性能直接影响水泥混凝土的使用质量,因此用本试验测定水泥胶砂收缩率,以此评定水泥干缩性能。 一、试验目的 (1)测定水泥胶砂干缩率,评定水泥干缩性能 (2)掌握测定干缩性的原理和方法。 二、基本原理 水泥砂浆和混凝土在水化与硬化过程中,由于水泥浆体中水分蒸发会引起干燥收缩,或者由于空气中含有一定比例的CO2,在一定相对湿度下使水泥硬化浆体的水化产物(例如Ca(OH)2,水化硅(铝)酸钙,水化硫铝酸钙)分解,并放出水分而引起碳化收缩,以及由于温度变化会引起冷收缩等。 采用两端有球形钉头的25mm×25mm×280mm的1:2胶砂试体,在一定温度、一定湿度的空气中养护后,用比长仪测量不同龄期试体的长度变化,以确定水泥胶砂的干缩性能。 三、实验器材 (1)JJ-195-B水泥胶砂搅拌机。 (2)NLD-2水泥胶砂流动度测定仪、截锥圆模、模套、圆柱捣棒、游标卡尺等。 (3)试模:试模为三联模,由互相垂直的隔板、端板、底座以及定位用螺丝组成,结构如图所示。各组件可以拆卸,组装后每联内壁尺寸为25mm×25mm×280mm。端板有3个安置测量钉头的小孔,其位置应保证成型后试体的测量钉头在试体的袖线上。 ①测量钉头用不短钢或铜制成,规格如图所示。成型试体时测量钉头伸入试模板的深度为(10±1)mm。 ②隔板和端板用45号钢制成.表面粗糙度不大于6.3μm。 ③底座用灰口铸铁加工,底座上表面粗糙度不大于6.3μm,底座非加工面经涂漆无流痕。

公路水泥混凝土路面设计规范

1总则 1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。 1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践 经验以及环境保护要求等,通过技术经济分析确定。水泥混 凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋 配制等。水泥混凝土路面结构应按规定的安全等级和目标可 靠度,承受预期的荷载作用,并同所处的自然环境相适应, 满足预定的使用性能要求。 1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 水泥混凝土路面cement concrete pavement 以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。 2.1.2 普通混凝土路面plain concrete pavement 除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。

2.1.3 钢筋混凝土路面jointed reinforced concrete pavement 面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。 2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。 2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。 2.1.6 复合式路面composite pavement 面层由两层不同类型和力学性质的结构层复合而成的路面。 2.1.7 水泥混凝土预制块路面concrete block pavement 面层由水泥混凝土预制块铺砌成的路面。 2.1.8 碾压混凝土roller compected concrete 采用振动碾压成型的水泥混凝土。 2.1.9 贫混凝土lean concrete 水泥用量较低的水泥混凝土。 2.1.10 设计基准期限design reference period 计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。 2.1.11 安全等级safety classes

混凝土的技术性能

混凝土的技术性能 1)混凝土拌合物的和易性 2)混凝土的强度 3)混凝土的变形性能 4)混凝土的耐久性 影响混凝土强度的因素主要有原材料及生产工艺方面的因素。 原材料方面的因素包括: 1)水泥强度与水灰比 2)骨料的种类、质量和数量 3)外加剂 4)掺合料 生产工艺方面的因素包括: 1)搅拌与振捣 2)养护的温度和湿度 3)龄期 混凝土的耐久性 1)抗渗性 2)抗冻性 3)抗侵蚀性 4)混凝土的碳化(中性化) 5)碱骨料反应 混凝土外加剂的主要功能包括: 1)改善混凝土或砂浆拌合物施工时的和易性; 2)提高混凝土或砂浆的强度及其他物理力学性能; 3)节约水泥或代替特种水泥; 4)加速混凝土或砂浆的早期强度发展; 5)调节混凝土或砂浆的凝结硬化速度; 6)调节混凝土或砂浆的含气量; 7)降低水泥初期水化热或延缓水化放热; 8)改善拌合物的泌水性; 9)提高混凝土或砂浆耐各种侵蚀性盐类的腐蚀性; 10)减弱碱骨料反应; 11)改善混凝土或砂浆的毛细孔结构; 12)改善混凝土的泵送性; 13)提高钢筋的抗锈蚀能力; 14)提高骨料与砂浆界面的粘结力,提高钢筋与混凝土的 握裹力; 15)提高新老混凝土界面的粘结力等。 按外加剂的主要使用功能分为以下四类: 1)改善混凝土拌合物流变性能的外加剂。包括各种减 水剂、引气剂和泵送剂等。 2)调节混凝土凝结时间、硬化性能的外加剂。包括混凝 剂、早强剂和速凝剂等 3)改善混凝土耐久性的外加剂。包括引气剂、防水剂和 阻锈剂等。 4)改善混凝土其他性能的外加剂。包括膨胀剂、防冻剂、 着色剂等。 外加剂的适用范围 1)混凝土中掺入减水剂,若不减少拌合用水量,能显 著提高拌合物的流动性;当减少水而不减少水泥时,可提高混凝土强度;若减水的同时适当减少水泥用 量,则可节约水泥。同时,混凝土的耐久性也能得到显著改善。 2)早强剂可加速混凝土硬化和早期强度发展,缩短养 护周期,加快施工进度,提高模板周转率。多用于冬 期施工或紧急抢修工程。 3)缓凝剂主要用于高温季节混凝土、大体积混凝土、 泵送与滑模方法施工以及远距离运输的商品混凝土 等,不宜用于日最低气温5℃以下施工的混凝土,也 不宜用于有早强要求的混凝土和蒸汽养护的混凝 土。缓凝剂的水泥品种适应性十分明显,不同品种水 泥的缓凝效果不相同,甚至会出现相反的效果。因此,使用前必须进行试验,检测其混凝效果。 4)引气剂是在搅拌混凝土过程中能引入大量均匀分 布、稳定而封闭的微小气泡的外加剂。引气剂可改善 混凝土拌合物的和易性,减少泌水离析,并能提高混 凝土的抗渗性和抗冻性。同时,含气量的增加,混凝 土弹性模量降低,对提高混凝土的抗裂性有利。由于 大量微气泡的存在,混凝土的抗压强度会有所降低。 引气剂适用于抗冻、防渗、抗硫酸盐、泌水严重的混 凝土等。 5)膨胀剂能使混凝土在硬化过程中产生微量体积膨 胀。膨胀剂主要有硫铝酸钙类、氧化钙类、金属类等。 膨胀剂适用于补偿收缩混凝土、填充用膨胀混凝土、灌浆用膨胀砂浆、自应力混凝土等。含硫铝酸钙类、硫铝酸钙──氧化钙类膨胀剂的混凝土(砂浆)不得用于长期环境温度为80℃以上的工程;含氧化钙类 膨胀剂配制的混凝土(砂浆)不得用于海水或有侵蚀 性水的工程。 6)防冻剂在规定的温度下,能显著降低混凝土的冰点, 使混凝土液相不冻结或仅部分冻结,从而保证水泥的水化作用,并在一定时间内获得预期强度。含亚硝酸 盐、碳酸盐的防冻剂严禁用于预应力混凝土结构;含 有六价铬盐、亚硝酸盐等有害成分的防冻剂,严禁用 于饮水工程及与食品相接触的工程,严禁食用;含有硝铵、尿素等产生刺激性气味的防冻剂,严禁用于办 公、居住等建筑工程。 7)泵送剂是用于改善混凝土泵送性能的外加剂。它由 减水剂、调凝剂、引气剂、润滑剂等多种组分复合而成。泵送剂适用于工业与民用建筑及其他构筑物的泵送施工的混凝土;特别适用于大体积混凝土、高层建 筑和超高层建筑;适用于滑模施工等;也适用于水下 灌注桩混凝土。

实验六水泥干缩性试验

实验六、水泥胀缩性试验 水泥加水会发生水化,其水化水泥与水系统绝对体积一般是减缩的,减缩程度与水泥矿物组成、水灰比、养护制度、环境条件有关。温凝土除上述影响因素外,还与水泥用量有关。因水泥干缩性能直接影响水泥混凝土的使用质量,因此用本试验测定水泥胶砂收缩率,以此评定水泥干缩性能。 一、试验目的 (1)测定水泥胶砂干缩率,评定水泥干缩性能 (2)掌程测定干缩性的原理和方法。 二、基本原理 水泥砂浆和混凝土在水化与硬化过程中,由于水泥浆体中水分蒸发会引起于燥收缩,或者由于空气中含有一定比例的CO2,在一定相对湿度下使水泥硬化浆体的水化产物(例如Ca(OH)2,水化硅(铝)酸钙,水化硫铝酸钙)分解,并放出水分而引起碳化收缩,以及由于温度变化会引起冷收缩等。 采用两端有球形钉头的25mm×25mm×280mm的1:2胶砂试体,在一定温度、一定湿度的空气中养护后,用比长仪测量不同龄期试体的长度变化,以确定水泥胶砂的干缩性能。 三、实验器材 (1)JJ-195-B水泥胶砂搅拌机。 (2)NLD-2水泥胶砂流动度测定仪、截锥圆模、模套、圆柱捣棒、游标卡尺等。 (3)试模:试模为三联模,由互相垂直的隔板、端板、底座以及定位用螺丝组成,结构如图所示。各组件可以拆卸,组装后每联内壁尺寸为25mm×25mm×280mm。端板有3个安置测量钉头的小孔,其位置应保证成型后试体的测量钉头在试体的袖线上。 ①测量钉头用不短钢或铜制成,规格如图所示。成型试体时测量钉头伸人试模板的深度为(10±1)mm。 ②隔板和端板用45号钢制成.表面粗糙度不大于6.3μm。 ③底座用灰口铸铁加工,底座上表面粗糙度不大于6.3μm,底座非加工面经涂漆无流痕。 附图1三联试模附图2钉头

水泥混凝土路面再生利用技术

水泥混凝土路面再生利用技术 碎石化 徐州联众道路工程技术有限公司 2004年05月

目录 一、前言——————————————————————————1 二、旧路面常用的处理方法———————————————————2 三、碎石化再生利用技术的应用目的及范围、意义—————————4 四、路面破碎及再生利用技术方案————————————————4 ㈠锤式破碎法——————————————————————4 ㈡板式破碎法——————————————————————7 五、碎石化再生利用技术的效益对比———————————————9 六、碎石化再生利用技术的应用实例———————————————10 附:324国道南宁至百色段改造工程检测报告———————————12

一、前言 水泥混凝土路面具有强度高、刚度大、荷载扩散能力强、稳定性好等特点,与沥青路面相比,其施工简单、取材方便、性价比高。因此,在我国高等级公路、干线公路,尤其是地方道路得到广泛应用,但其致命弱点是损坏后修复困难。由于路基、路面受力体系的特殊性,传统的修补方法或加铺技术已不能很好的解决旧路面面临的复杂结构问题。在路面维修处理中,往往是投入大、成效小,存在环境影响、交通干扰、工效低、经济性差和社会影响大等严重问题。 本资料提供的旧水泥混凝土路面破碎和再生利用技术汇集了交通部重点科研项目《水泥混凝土路面再生利用关键技术研究》的最新研究成果,成为解决水泥混凝土路面复杂的结构和受力问题的最有效的技术手段。 路面破损后的影响 ①路面平整度降低,影响行车舒适性; ②削弱公路整体强度,诱发其他病害; ③面板渗水,导致路基毁损,缩短公路使用寿命; ④路面坑洼不平,影响车辆操纵性和行车安全; 二、旧路面常用的处理方法 与沥青路面相比,水泥混凝土路面的修复比较困难,常用的方法包括“路面快

造成混凝土干缩裂缝的原因有

造成混凝土干缩裂缝的原因有,施工单位对混凝土的养护不良,使表面水分蒸发过快,体积收缩,而楼板内部湿度变化较小。避免在混凝土施工过程中出现肝裂缝,施工单位应采取防护措施。1。混凝土水泥用量、水灰比和砂率不能过大,严格控制砂石含泥量,避免食用过量粉沙,振捣要密实,并对板面进行二次压抹,提高混凝土抗拉强度,减少干缩。2。加强混凝土早期养护,并适当延长养护时间;3。浇筑混凝土前将基层模板浇水湿透。4。混凝土浇筑后应及早进行洒水养护,楼板干缩裂缝对结构强度影响不大,但会使钢筋锈蚀,影响美观,处理意见,一般可在表面抹一层薄砂浆进行处理。 工程混凝土楼板出现裂缝的现象比较常见,现根据有关资料,对现浇混凝土楼板和砌块填充墙裂缝的原因和对策分析如下,供参考。 一、现浇混凝土楼板裂缝的类型 1.纵向裂缝:即沿建筑物纵向方向的裂缝,出现在板下皮居多,个别上下贯通。 2.横向裂缝:即在跨中1/3范围内,沿建筑物横向方向的裂缝,出现在板下皮居多,个别上下贯通。 3.角部裂缝:在房间的四角出现的斜裂缝,板上皮居多。 4.不规则裂缝:分布及走向均无规则的裂缝。 5.楼板根部的横向裂缝:距支座在30cm内产生的裂缝,位于板上皮。 6.顺着预埋电线管方向产生的裂缝。 二、楼板产生裂缝的原因 1.设计方面 1.1 设计结构时安全储备偏小,配筋不足或截面较小,使梁板成型后刚度差,整体挠度偏大,引起板四角裂缝。 1.2 设计板厚不够,又不做挠度验算,整体挠度偏大,引起板四角裂缝。 1.3 房屋较长时未设置伸缩缝,在薄弱环节产生收缩裂缝。(美国混凝土学会的资料认为混凝土有干缩和温度变形两种,干缩变形每30.48m约收缩19mm。温度变化引起的变形为,37℃的温度变化每30.48m 收缩或延长19mm 左右。国内有人认为40m 长的楼板因硬化凝固产生的纵向收缩量为8—20mm。) 1.4 基础设计处理不当,引起不均匀沉降,使上部结构产生附加应力,导致楼板裂缝。 1.5 楼板双向受力,按单向板配筋,引起裂缝。 2.商品混凝土原因 2.1 水灰比大,水泥用量大。 2.2 高效缓凝剂用量过大,在未凝固前石子下沉,产生沉缩裂缝,常发生在梁板交接处。 2.3 砂石质量不好,级配不好,含泥量大,含粉量大。 3 施工原因 3.1 养护不到位,强制性规范要求混凝土养护要苫盖并浇水,现在大多数不苫盖,浇水也不能保证经常性湿润。 3.2 施工速度过快,上荷早,特别是砖混住宅楼板,前一天浇筑完楼板,第二天即上砖、走车,造成早期混凝土受损。 3.3 冬时期间受冻。 3.4 拆模过早或模板支撑系统刚度不够。 3.5 混凝土表面浮浆过厚,表面强度不够。 3.6 施工时楼板混凝土盖筋被踩弯、踩倒,保护层过厚,承载力下降。

混凝土早期变形的基本特征及影响因素

混凝土早期变形(自收缩、塑性收缩)的基本特征及影响因素 (1)塑性收缩机理及影响因素。 在混凝土浇筑数小时后,其表面开始沉降,常出现水平的小裂缝,这种在塑性阶段出现的体积收缩常称为塑性收缩。塑性收缩开裂在路面和平板的水平面最普遍,水在这些面上有可能快速蒸发,裂缝出现将破坏表面完整性,降低耐久性。 机理:塑性收缩只要是由于两个方面的作用:一方面,混凝土浇筑密实后,由于混凝土原材料存在的密度、质量、形状等差异,在重力作用下必然要出现粗大的骨料下沉和密度较小的水上浮,即沉降和泌水同哦你是进行,对于大水灰比或明显泌水的混凝土,上表面的水分蒸发后,混凝土的体积比发生沉降和泌水前的体积有所减少;另一方面,但混凝土表面失水速率大于从混凝土内部泌出速率时,在混凝土的表面及一定深度内就会出现毛细孔,就会出现凹月面,根据Young 方程,混凝土就会受到很大的附加压力,又由于此时混凝土尚未硬化,弹性模量很低,因此开始出现塑性收缩。同时若混凝土表面的抗拉强度低于限制收缩导致的拉应力时,开始出现塑性收缩。 影响因素:导致塑性收缩的原因很多,包括泌水或沉降、基础或模板或骨料吸水、水分的快速蒸发、水泥浆体积的减小、模板的肿胀或沉陷等。 (2)自收缩及影响因素。 如果在养护期间除了拌合时所加的水之外没有补充水分,即使没有水分向四周散失,混凝土也将开始内部干燥,因为水分被水化所消耗。然而,体积收缩只有在低w/c(﹤0.3)的混凝土中出现,而且由于掺入活性火山灰(如硅灰)而增大。该现象称为自干燥并以自收缩(也称为化学收缩)的形式出现。 自干燥产生的所有结果常被形成的钙矾石或游离MgO水化引起的膨胀所掩盖。 影响因素: (1)水泥:水泥水化是混凝土产生自收缩的最根本原因,水泥水化产生化学减缩,而水化反应消耗水分产生白干燥收缩。水泥熟料中各矿物水化反应时引 起的减缩各不相同,一般从大到小排序为:C 3A,C 3 S,C 2 S。水泥细度越细,化学 活性越高,水化速率越快,水化程度越高,水泥的自收缩越大. (2)矿物掺和料:一般硅灰掺量越大,自收缩越大;由于掺入硅灰后,提高了水泥水化程度,使水化产物数量增加,混凝土中孔隙细化,因此掺入硅灰后不但增加了混凝土的干燥收缩,也大大增加了混凝土的自收缩。当矿渣粉细度小于400m2/kg时,对减小混凝土自收缩有利,随矿渣掺量的增大,自收缩减小;但当细度大于400m2/kg时,矿渣活性明显提高,引起自收缩增大,混凝土自收缩随其掺量的增大而增大;当掺量大于75%时,自收缩因胶凝材料活性减低而使得混凝土自收缩减小;粉煤灰、石灰石粉、憎水石英粉,随其掺量的增大,混凝土自收缩减小。 (3)胶凝材料含量:单位体积水泥用量加大,既增加了混凝土中产生自收缩的水泥石部分,又相应的减少了混凝土中限制收缩作用的骨料部分,因此单位体积水泥用量越多,混凝土各龄期的自收缩就越大,且自收缩的增加大于水泥用量的增加幅度。 (4)水胶比:混凝土自收缩随水胶比的减小和水泥石微结构的致密而增加。 (5)养护条件:养护温度对自收缩的影响规律如下:①不掺矿物掺和料的

【已改】水泥混凝土路面破碎再生利用施工中的分析

水泥混凝土路面破碎再生利用施工 水泥混凝土改为沥青混凝土施工过程中,把原有路面进行碎石化处理的工艺,混凝土路面改造施工水平具有举足轻重的意义.它不但节约了大量的工程费用,还降低了排废量,减少对环境的损坏,而且还能够大大加快工程进度。 在交通便捷化越来越受到人们重视的今天,道路工程的重要性不厌而喻,水泥混凝土路面的优点也逐渐被路桥施工界所认可,较其他路面而言其承载力强、抗弯性能好、使用时间及耐久性好、材料易保存且取材便利、养护难度低且经济,在低等级公路和农村道路建设中得到广泛使用,然而由于高等级道路的普及,对路面质量和要求的提高,水泥混凝土路面的优势不复存在,缺点逐渐暴露,水泥混凝土路面由于抗拉能力较弱,对重载超载的高度敏感,使得投入使用后几年便毛病不断,养护费用激增,给使用和管理带来很大负担。 而水泥混凝土路面病害严重时,普通常规的养护方法已经不能满足要求,必须将原有路面破碎处理后重新浇筑才能不影响路面的正常使用。破碎处理有两种后期处理方法,原位移除和原位利用。移除比较麻烦,利用率低,费用高代价大,比较费事,同时可能对周边环境有不利影响,而且移除后水泥混凝土路面板尺寸各异,后期修补处理均比较麻烦,原位利用则可很好的避免这一问题,使得成本大大降低,而且避免了移除处理的很多麻烦,是理想的方法之一。同时,后期的加铺可以有效避免路面沉降差异、新老接头裂缝等等. 1 工程概况 为了跟上发展和人们出行需求,便利交通,确保路面的畅通,需要对原有影响使用的混凝土路面进行处理.现有工程路面24cm水泥

混凝土;20cm水泥稳定碎石.路基完好,可以继续使用,路面损坏严重,需要立即进行相关改造修复,路面板断裂、错台、坑陷等等,影响了路面的继续使用和交通安全。 因此,在对旧水泥混凝土路面综合改造中,对原旧水泥混凝土路面进行破碎做路面基层,需要用水泥稳定碎石作补强层;下面层为6cm厚中粒式改性沥青混凝土;上面层为4cm细粒式改性沥青混凝土。如此改造,对提高道路改建工程施工质量,增强道路使用性能,降低工程建设投资及后期维修养护费用,带动当地经济的发展都具有重要的现实意义。 2 施工工艺 2。1 水泥混凝土路面破碎再生利用施工工艺 本路段改造采用交通运输部公路科学研究所推广的水泥混凝土路面破碎及再生利用新工艺:即采用锤式破碎法将水泥混凝土面板打碎或打裂,采用压路机压稳,使之形成平整稳固的基层结构.应该注意的是,必须避免将碎石化后的颗粒压入土基。这样,碎石化层便形成了坚硬的粒料基层.进行碎石化的根本目的在于消除反射裂缝产生的可能性。然后洒铺透层油,铺筑沥青混凝土. 美国的国家规范既允许使用多头破碎机,也允许使用共振破碎机,可根据具体情况选用。本路段采用多锤头碎石化技术。在大面积施工前选择具有代表性的试验段,其长度为200m。在试验段破碎过程中,安排不同落锤高度、频率和行车速度的不同区间完成设备调试,确定适合该路段的施工参数(如落锤高度、刀具等),以指导后续工程正常施工。多锤头破碎机将旧水泥混凝土路面破碎后,经过Z型压路机碾压1—3遍,再采用钢轮振动压路机碾压1-3遍后, 喷洒乳化

膨胀剂对混凝土变形性能的影响

第!"卷第#期#$$%年&月 南京航空航天大学学报 ’()*+,-(./,+01+23+145*6178(.95*(+,)71:6;967*(+,)71:6 <(-=!"/(=# > >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>9?*=#$$% 膨胀剂对混凝土变形性能的影响 高培伟@卢小琳@唐明述# A @=南京航空航天大学航空宇航学院 B 南京B #@$$@%C #=南京工业大学材料学院B 南京B #@$$$D E 摘要F 膨胀剂在我国被广泛地应用于补偿大体积混凝土收缩G 不同品种的膨胀剂对混凝土的补偿收缩效果有所不同G 氧化钙类和硫铝酸钙类A 9H 7E 可补偿混凝土的早期收缩B 但分别在#"和%$I 后仍会出现后期收缩现象G 水泥品种J 养护条件对膨胀剂的膨胀效果有不同的影响G 掺氧化镁类膨胀剂的混凝土没有出现后期收缩现象B 比较适合水工大体积混凝土G 在做好基础混凝土温度控制的同时B 选择适宜品种的膨胀剂B 可有效地控制混凝土的变形B 减少收缩开裂B 提高混凝土的结构耐久性能和建筑物的质量G 关键词F 大体积混凝土C 膨胀剂C 变形C 耐久性中图分类号F K 3! L L 文献标识码F 9 文章编号F @$$M N #%@M A #$$%E $#N $#M @N $M 基金项目F 国家自然科学基金A M $#L "$!@E 资助项目C O D L !P 国家重点基础研究基金A #$$@Q R %@$L $M $!E 资助项目G 收稿日期F #$$M N $L N $&C 修订日期F #$$M N $D N $M 作者简介F 高培伟B 男B 博士B 副教授B @D %!年L 月生B S N T ,1-F 2?U @D %!V@%!=:(T G W X X Y Z [\]X ^_X X Y ‘Y a [W b c d a \_e Y f g Y a [\ ]ahd \\i ]a Z ‘Y [Y ^Y X ]‘j d [_]ak ‘]c Y ‘[l m n o p q r s q r @ B t uv r n o w r x @ B y n x z{r x z |}u # A @=Q (--525(.95*(6?,:5S +21+55*1+2 B /,+01+23+145*6178(.95*(+,)71:6;967*(+,)71:6B /,+01+2B#@$$@%B Q ~1+, C #=Q (--525(.!,75*1,-":15+:5,+IS +21+55*1+2B /,+01+23+145*6178(.K 5:~+(-(28B /,+01+2B#@$$$ D B Q ~1+, E f #\[‘d Z [ F <,*1()65$?,+6145,25+76,*5I 545-(?5I*5:5+7-81+Q ~1+,7(:(T ?5+6,757~5:(+:*5756~*1+%,251+I 1..5*5+7T 5:~,+16T 6=K ~55,*-8:(+:*5756~*1+%,25U 17~Q ,&N 78?5,+I9H 7N 78?55$?,+6145,25+76 T ,8’5:(T ?5+6,75I B ’)77~5-,75*6~*1+%,25,.75*#",+I %$I:,++(7’5:(T ?5+6,75I =K ~55$?,+6145 5..5:76(.7~565,25+76,*5I 1..5*5+7)+I 5*I 1..5*5+7:5T 5+7:)*1+2:(+I 171(+6=K ~5-,75*6~*1+%,25I (56+(75$1671+7~5~8I *,)-1::(+:*575U 17~7~5!2&N 78?55$?,+6145,25+7=(17~,2((I:(+7*(-(.75T ?5*,N 7)*5I 1..5*5+:561+7~5:(+:*575+5,*7~5.()+I ,71(+B 5$?,+6145,25+76:,+*5I ):56~*1+%,25,+I:*,:%1+21+T ,66145:(+:*575:(+67*):71(+6B 7~)61T ?*(41+27~51*I )*,’1-178,+I )),-178=*Y l +]‘,\F T ,66:(+:*575C 5$?,+6145,25+7C 6~*1+%,25C I )*,’1-178 引言 现代建筑物多属于大体积混凝土结构B 浇筑 后B 水泥产生的水化热常使混凝土内部温度比周围环境高#$-!$.以上B 由于热量不能快速散发B 使混凝土在冷缩时产生温度收缩应力B 再伴随着干燥收缩J 化学减缩等收缩B 在混凝土内部产生较大的 收缩拉应力/@0 B 如果拉应力超过了混凝土的抗拉强度B 就会使混凝土产生裂纹B 严重的将出现基础贯穿裂缝B 混凝土结构的开裂问题再次成为人们关注 的热点/#0 G @D D M 年B 美国调查发现有@$万座混凝土桥面 板在浇筑后一个月内就出现了间隔@-!T 的贯穿 性裂缝B 修补这些裂缝的费用高达约@$亿美元/!0G 我国某市地铁建成不久混凝土结构就出现严重开裂B 许多车站的混凝土顶板因严重开裂而产生渗   万方数据

浅谈混凝土梁底填充墙顶收缩变形的控制(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 浅谈混凝土梁底填充墙顶收缩变 形的控制(标准版)

浅谈混凝土梁底填充墙顶收缩变形的控制 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 邢台市港龙商贸工程为框架结构,本工程的砌体采用加气混凝土砌块,外墙砌块强度不小于MU5,室内地坪以上用M5砂浆,以下用M7.5水泥砂浆砌筑。内外墙的厚度为200mm。施工顺序为结合主体拆模时间,由下至上空插进行。本文介绍混凝土结构梁底填充墙顶收缩变形的控制技术。 一、砌筑标准。 1、自砌块生产日期起算,通风养护预干缩不低于40d,按试验标准进行钻芯取样。取样完毕后,采用接触式含水率测试仪进行现场检测,待平均含水率低于18%时,砌块上墙。 2、加气混凝土砌块砌筑前,根据建筑物的平面、立面图绘制砌块排列图。画出皮数控制线和砌块高度。 二、砌筑工艺 施工顺序:放线→排砖撂底→选砖→盘角→挂线→砌砖→构造柱

及过梁施工→砌砖→顶砖→收口。 1、砌筑砂浆。 为克服砌筑砂浆因砌块吸水而降低强度的缺陷,选择与砌块相容性好、粘附力强的石膏为砌筑砂浆胶凝材料。采用M5石膏混合砂浆砌筑。 2、砌筑方法。 (1)砌筑前将砌块砌筑面的粉尘用喷雾器吹干净并湿润,表层30mm 深处含水率控制在10∽15%。 (2)砂浆稠度按80∽100mm控制,水平缝采用平铺砂浆揉动挤压法砌筑,并严格控制。 (3)加气混凝土砌块墙的上下皮砌块的竖向灰缝应相互错开,错开长度宜为300mm且不少于150mm。若不能满足时,在水平灰缝设置2Φ6拉接钢筋或Φ4钢筋网片。 在加气混凝土砌块墙的转角处采用纵横墙的砌块相互搭砌,隔皮砌块露端面的方法。 (4)砌筑过程中,砌体与框架柱及剪力墙的节点缝逐皮填补砂浆后,再每侧划入30mm深,每砌完5皮砌块,用嵌缝抹子将内外灰缝原浆压实,以封闭毛细孔。砌至接近框架梁、板底时,应留一定空隙,

水泥混凝土再生集料在路面基层中的应用研究

水泥混凝土再生集料在路面基层中的应用研究 摘要:通过对S340丹阳皇塘段路面改造工程实例中老路水泥混凝土板块破碎,生产再生集料应用于水泥稳定碎石基层的研究,达到工程经济、环保的效果。 关键词:水泥混凝土,再生集料,路面基层,应用研究 一、课题研究的背景和意义 水泥混凝土路面具有强度高、刚度大、扩散荷载能力强和稳定性好的特点,与沥青混凝土路面相比,施工简单、取材方便,性能价格比好。因此水泥混凝土路面在我国的干线公路、部分高等级公路,特别是地方道路得到了广泛的应用。随着水泥混凝土路面修筑技术的推广与应用,水泥混凝土路面里程的不断延长,路面的养护管理工作也日益繁重。一方面早期修建的水泥混凝土路面大多已接近使用年限,随着累计交通量增加、环境因素的影响,水泥路面将会出现破碎、下沉、错台、板角断裂等病害,并且随着使用年限的递增,破损面积将逐年成上升趋势。另一方面部分近期修建的水泥混凝土路面,由于超限运输、设计、施工及保养等诸多原因,出现了不同程度的早期破损坏。为保证道路的安全畅通,破损的路面需要翻修。 对水泥混凝土路面的翻修,现有的一般做法是挖除并废弃旧的水泥混凝土面层,修补基层后,铺筑新的路面结构。破除的旧混凝土作为废料被丢弃,这就引发了许多问题:一是废料丢弃的污染问题。旧水泥板作为废料丢弃,产生大量的建筑垃圾,由于混凝土材料属于无机材料、

耐久性较好,这种垃圾不会像有机物一样自然分解,因此这种污染将是永久性的。二是能源的浪费。新建道路所需集料的开采,一般是挖除山体表层风化的岩石,通过爆破和机械破碎把原状岩石加工成集料。这样导致大面积的山体被挖,大面积植被被破坏,造成资源的浪费和环境破坏。三是废弃物堆放。废弃物堆放必然涉及占地的问题,在我国土地资源紧缺的今天,将产生永久资源的浪费。四是废料处理和新料的采集带来巨大的经济浪费。随着环境保护要求标准的提高,特别是城市处理这些废料成了十分棘手、而又耗费资金的问题。有限的资源的开采成本以及资源的浪费,导致总体经济效益和社会效益下降。 总之,传统的水泥混凝土道路改建、修复方式导致社会效益和经济效益下降以及社会资源的浪费,需要新的技术进行整体改进。在采用修复技术来延长现有路面的使用寿命并不经济时,回收水泥混凝土路面就将成为一种可供选择的方案。由于我国各方面资源相对比较紧缺,环境保护的任务很重,因此,旧水泥混凝土的再生利用在我国更具有紧迫性和必要性。使现有已损坏的水泥混凝土路面得到快速有效的改造,并在进行技术处理后能保持其合理的结构形式,满足使用功能要求并达到设计使用寿命,使现有公路网保持良好的营运质量和服务水平,取得良好的社会经济综合效益,这是公路管理部门亟待解决的重要课题,也是影响公路事业健康发展的关键问题之一。本课题旨在通过对S340丹阳皇塘段路面改造工程旧水泥混凝土路面再生集料在半刚性基层中的应用研究,总结出各阶段切实可行的工艺方法,从而解决旧水泥板再生以及再生集料的应用,减少旧水泥板废弃产生的污染问题,节省工程造价。

混凝土干缩裂缝成因及预防措施

混凝土干缩裂缝成因及预防措施 钢筋混凝土结构出现裂缝的现象较为普遍,裂缝的出现将影响混凝土的耐久性和防水性能。而大多数裂缝的出现均与混凝土体积变形有关。我们知道由于混凝土中所含水分的改变、化学反应、温度变化所引起变形均称之为体积变形,在约束状态下,混凝土体积变形会由于约束状自生体积变形态下,混凝土体积变形会由于约束而产生应力,当拉应力超过混凝土抗拉强度时,则会产生裂缝。混凝土的变形主要有三种:即干缩变形、自生体积变形及温度变形,这里主要讨论干缩变形所造成的裂缝,即可称之为干缩裂缝。 1、混凝土的干缩裂缝 引起混凝土干缩裂缝的重要原因是水分的蒸发,这种蒸发干燥过程总是由表及里逐步发展的,因而湿度总是不均匀的,干缩变形也是不均匀的。 混凝土干缩机理比较复杂,最主要的原因是混凝土内部空隙水蒸发变化时引起的毛细管引力,水泥水化生成的大量微细孔隙,在干燥条件下,胶体中自由水逐渐蒸发产生毛细管引力,胶体孔隙受到压缩,胶体的体积随着水分的蒸发减少而不断收缩,从而引起混凝土体积收缩。胶体的数量及其特性随着水泥的化学成分、细度、水灰比、龄期而不同。一般来说,单位用水量和水泥用量比较多的混凝土胶体数量多,而混凝土的干缩变形也比较大。

混凝土的干缩裂缝取决于干缩、徐变、弹性性质和抗拉强度等方面的综合作用,当存在以下有三个基本条件:①混凝土发生干缩变形,②处于约束状态,③干缩应力达到混凝土抗拉强度。此时混凝土会出现干缩裂缝的主要原因。 2、影响干缩的主要因素 由于此可以看出影响混凝土干缩变形的主要因素为水泥品种、混凝土的配合比和养护条件。已有资料表明铝酸三钙含量低,细度不宜过细,矿渣含量少的水泥品种干缩较小,就混凝土的配合比来看,混凝土的干缩率主要取决于单位用水量和水泥用量以及砂率。相比之下用水量的影响较为突出。随着用水量、水泥量、砂率的增加,相应会加大混凝土的干缩率。由此可见,采用水量低的贫水泥混凝土,砂率低的干硬混凝土一般干缩率都比较小。同时还应加强湿水养护,加强混凝土的保水性,也可延缓干缩的发生。 3、预防干缩裂缝产生的措施 a、选用干缩较小的水泥品种:普通水泥的干缩要低于矿渣水泥; b、合理调整混凝土的配合比:采用低水灰比,低单方水泥和低用水量,同时还宜降低砂率,尽量采用粗砂; c、适当提高混凝土的抗拉强度。在水泥用量一定的条件下,缩小水灰比可使混凝土抗拉强度增高大于混凝土干缩应力的增加,有减少裂缝的趋势。使用早强剂可提高混凝土的早期强度,

x水泥混凝土干缩性作业指导书解析

文件编号: 作业指导书 (水泥混凝土干缩性试验) 编写:日期: 审核:日期: 批准:日期: 受控状态: 江苏省交通科学院研究有限公司中心试验室 (江苏省交通工程质量检测中心)

目录 1检测设备及开展项目 2.仪器设备操作规程 3检测工作主要程序及样品处理 4.检测操作规程 5.测量结果,数据处理规定 6.测量不确定报告 7.原始记录表

1.检测设备及开展项目 2.仪器设备的操作规程 2.1试模:规格为100m*100m*400m或100mm*100mm*515mm的金属试模,两个端板的中心有放置测钉的孔,用于安装测钉。 2.2测钉:以不锈的金属制成。 2.3测长仪器: ①测量标距为540mm~600mm,允许偏差为0.01mm的测微计(附有标准棒)。 ②其它测长仪,至少达到0.002%的相对测量精度。 ③测量混凝土变形的装置应具有殷钢或石英玻璃制作的标准杆,以便在测量前及测量过程中校核仪器的读数。 2.4干缩室(箱):室(箱)内控制温度为202,相对湿度为60%5%,室(箱)内配有温度、湿度自动记录仪,记录温度、湿度变化。置于恒温室中的干缩内须放干燥剂取湿。 3.检测工作主要程序及样品处理 本方法适用于不同水泥混凝土干缩性能的比较,本方法规定集料公称最 大粒径不大于26.5mm。 引用标准:T 0551—2005《水泥混凝土试件制作与硬化水泥混凝土现场取样方法》

3.1干缩率试验以三个试件为一组。混凝土的拌和、成型按下方法进行。 3.1.1水泥混凝土的拌和参照T 0521—2005《水泥混凝土拌和物的拌和于现场取样方法》。成型前试模内壁涂一层矿物油。 3.1.2取拌和物的总量至少应比所需量高20%以上,并去除少量混凝土拌和物代表样,在5min内进行坍落度或维勃试验,认为合格后。应在15min内开始制件或其它试验。 3.1.3对于坍落度小于25mm时,可采用 25mm的插入式振捣棒成型。拌和物分厚度大致相等的两层装入试模。以试模的纵轴为对称轴,呈对称方式填料。插入密度以每层分三次插入。振捣底层时,振捣棒距底板10mm~20mm且不要接触底板:振捣上层时,振捣棒插入该层底面下15mm深。振捣直到表面出浆为止,且应避免过振,以防止混凝土离析。一般时间为20s。振完一层后,如有棒坑留下,可用橡皮锤敲击试模侧面10~15下。振捣棒拔出时要缓慢。用刮刀刮去多余的混凝土,在临近初凝时,用刀抹平,使表面略低于试模边缘1mm2mm。 注:这里不适于用水量非常低的水泥混凝土;同时不适于直径或高度不大于100mm的试件。 3.1.4当坍落度大于25mm且小于70mm时,用标准振动台成型。将试模放在振动台上夹牢,防止试模自由跳动,将拌和物一次装满试模并稍有富余,开动振动台至混凝土表面出现乳状水泥浆时为止。振动过程中随时添加混凝土使试模常满,记录振动时间(约为维勃秒数的23倍,一般不超过90s)。振动结束后,用金属直尺沿试模边缘刮取多余混凝土,用镘刀将试件收浆后,再次用镘刀将试件仔细抹平,使表面略低于试模边缘1mm~2mm。 3.1.5当坍落度大于70mm时,用人工成型。 对于试件直径200mm时,拌和物分厚度大致相等的三层装入试模。以试模的纵轴为对称轴,呈对称方式填料。每层插捣25下,捣固时按螺旋方向从边缘到中心均匀地进行。插捣底层时,捣棒应到达模底,插捣上层时,捣棒插入该层底面下20mm~30mm处。插捣时应用力将捣棒压下,不得冲击,捣完一层后,如有棒坑留下,可用橡皮锤敲击试模侧面10~15下。用镘刀将试件仔细抹平,使表面略低于试模边缘1m~m2mm。 而对于试件直径为100mm或150mm时,分两层装料,各层厚度大致相 等。试件直径为150mm时,每层插捣15下;试件直径为100mm时,每层插捣8

相关文档
最新文档