电力系统基础知识

第一章

电力系统基础知识

继电保护、自动装置对电力系统起到保护和安全控制的作用,因此首先应明确所要保护和控制对象的相关情况,涉及的内容包括:电力系统的构成,电力系统中性点接地方式及其特点,电力系统短路电流计算及其相关概念。这是学习继电保护、自动装置等本书内容的基础。

>>第一节电力系统基本概念

一、电力系统构成

电力系统是由发电厂、变电站(所)、送电线路、配电线路、电力用户组成的整体。其中,联系发电厂与用户的中间环节称为电力网,主要由送电线路、变电所、配电所和配电线路组成,如图1-1中的虚框所示。电力系统和动力设备组成了动力系统,动力设备包括锅炉、汽轮机、水轮机等。

在电力系统中,各种电气设备多是三相的,且三相系统基本上呈现或设计为对称形式,所以可以将三相电力系统用单相图表述。动力系统、电力系统及电力网之间的关系示意图如图1-l所示。

图1-1 动力系统、电力系统及电力网示意图

需要指出的是,为了保证电力系统一次电力设施的正常运行,还需要配置继电保护、自动装置、计量装置、通信和电网调度自动化设施等。

电力系统主要组成部分和电气设备的作用如下。

(1)发电厂。发电厂是把各种天然能源转换成电能的工厂。天然能源也称为一次能源,例如煤炭、石油、天然气、水力、风力、太阳能等,根据发电厂使用的一次能源不同,发电厂分为火力发电厂(一次能源为煤炭、石油或天然气)、水力发屯厂、风力发电厂等。

(2)变电站(所)。变电站是电力系统中联系发电厂与用户的中间环节,具有汇集电能和分配电能、变换电压和交换功率等功能,是一个装有多种电气设备的场所。根据在电力系统中所起的作用,可分为升压变电站和降压变电站;根据设备安装位置,可分为户外变电站、户内变电站、半户外变电站和地下变电站。

变电站内一次电气设备主要有变压器、断路器、隔离开关、避雷器、电流互

感器、电压互感器、高压熔断器、负荷开关等。变电站内还配备有继电保护和自动装置、测量仪表、自动控制系统及远动通信装置等。

(3)输电网。输电网是通过高压、超高压输电线将发电厂与变电站、变电站与变电站连接起来,完成电能传输的电力网络,又称为电力网中的主网架。

(4)配电网。配电网是从输电网或地区发电厂接受电能,通过配电设施将电能分配给用户的电力网。配电设施包括配电线路、配电变压器、配电设备等。配电网按照电压等级,可分为高压配电网、中压配电网和低压配电网;按照地域服务对象,可分为城市配电网和农村配电网;按照配电线路类型,可分为架空配电网和电缆配电网。

我国配电网电压等级划分为,高压配电网电压:35kV、66kY、110kV;中压配电网电压:10(20)kV;低压配电网电压:380/220V。

(5)负荷。电力负荷是用户的用电设备或用电单位总体所消耗的功率,可以表示为功率(kW)、容量(kVA)或电流(A)。发电厂对外供电所承担的负荷的总和称为供电负荷,包括这一时刻用电负荷(用户在某一时刻对电力系统的功率需求)以及能量在传输过程中的功率损失(网损)。

(6)变压器。变压器利用电磁感应原理,把一种交流电压和电流转换成相同频率的另一种或几种交流电压和电流。在电力系统中,由于传输电能和用户用电的需要,无论是发电厂还是变电站,都可以看到各种型式和不同容量的电力变压器。

(7)断路器。断路器是一种开关设备,既能关合、承载、开断运行回路的负荷电流,又能关合、承载、开断短路等异常电流。断路器的形式较多,结构也不尽相同,但从原理上看,均由动触头、静触头、灭弧装置、操动机构、绝缘支架等构成。

(8)隔离开关。隔离开关是将电气设备与电源进行电气隔离或连接的设备,因为没有特殊的灭弧装置,一般只能在无负荷电流的情况下进行分、合操作,与断路器配合使用。隔离开关由导电回路、绝缘支架、操作系统及底座支架等组成。

(9)负荷开关。负荷开关是另一种开关设备,既能关合、承载、开断运行线路的正常电流(包括规定的过载电流),并能关合、承载短路等异常电流,但不能开断短路故障电流。负荷开关可以看成是断路器功能的简化,或隔离开关功能的延伸。负荷开关由灭弧装置、操动机构和绝缘支架等组成。

(10)主接线。主接线是以电源和引出线为基本环节,以母线为中间环节构成的电能通路。变电站主接线将变压器、断路器、隔离开关、互感器、母线等一次电气设备,按照一定的顺序连接,实现汇集和分配电能,按有无汇流母线分为有母线接线和无母线接线两大类。变电站主接线图一般用单线图表示。

(11)互感器。互感器有电流互感器(TA)和电压互感器(TV)。电流互感器是—种变流设备,将交流一次侧大电流转换成二次电流,供给测量、保护等二次设备使用,一般二次额定电流为5A或1A;电压互感器是—种变压设备,将交流一交侧高电压转换成二次电压,供给控制、测量、保护等二次设备使用,—般二次额定的相电压为100/3V。

二、电力系统中性点运行方式

电力系统中性点运行方式即中性点接地方式,是指电力系统中发电机或变压器的中性点的接地方式,是一种工作接地。目前,我国电力系统中性点接地方式分为中性点直接接地与非直接接地两大类,具体有;中性点不接地、经电阻接地、经电抗接地、经消弧线圈接地和直接接地等。

1.中性点直接接地方式

中性点直接接地是指电力系统中至少有一个中性点直接与接地设施相连接,

如图1-2中的N点接地,通常应用于500kV、330kV、220kV、110kV电网。

中性点直接接地系统保持接地中性点零电位,发生单相接地故障时如图1-2所示,非故障相对地电压数值变化较小。由于高压、尤其是超高压电力变压器中性点的绝缘水平、电气设备的绝缘水平都相对较低,采用中性点直接接地方式,对保证变压器及其电气设备的安全尤其重要。但由于中性点直接接地,与短路点构成直接短路通路,故障相电流很大,造成接于故障相的电气设备过电流。为此,需要通过继电保护和断路器动作,切断短路电流。

2.中性点不接地方式

中性点不接地系统指电力系统中性点不接地。中性点不接地系统发生单相接地故障时如图1-3所示,中性点电压发生位移,但是三相之间的线电压仍然对称,且数值不变;由于没有直接的短路通路,接地故障电流由线路和设备对地分布电容回路提供,是容性电流,通常数值不大,一般不需要立即停电,可以带故障运行一段时间(一般不超过2h);但非故障相对地电压升高,数值最大为额定相电压的3倍,因此用电设备的绝缘水平需要按线电压考虑。中性点不接地方式具有跳闸次数少的优点,因此普遍应用于接地电容电流不大的系统,例如66kV、35kV 电网。

“一低两高三不变”

当中性点不接地系统发生一相接地情况时,该相的对地电压变低,甚至为零,此为一低;此时其它两相的对地电压升高,最大可为系统线电压.此为两高;由于中性点没有接地,此时接地相没有形成电流通路,接地时三相对地电流基本不变(先前有每相的对地电容电流,一般很小)当为三不变了.正因如此,线电压是肯定不变的了。3.中性点经消弧线圈接地方式

当电网的电容电流不大时,单相接地故障点的电弧可以自行熄灭;如果电容电流较大,接地故障点的电弧不会自行熄灭,并且产生间歇性电弧,引起过电压,可能导致绝缘损坏,使故障扩大。因目前,10kV电网采用的中性点接地低值电阻一般为10Ω。

对于6kV和10kV主要由架空线构成的系统,单相接地故障电流较小时(接地故障电流小于10A),为了防止谐振、间歇性电弧接地过电压等对设备的损害,可以采用中性点经高值电阻接地。此时发生单相接地故障时,不立即跳闸,可运行一段时间。

>>第二节电力系统短路故障

一、短路的一般概念

电力系统应该正常不间断地供电,保证用户生产和生活的正常进行。但是当发生短路故障时,可能破坏电力系统正常运行,从而影响用户的生产和生活。

“短路”是指电力系统中相与相之间或相与地之间,通过电弧或其他较小阻抗形成的一种非正常连接。电力系统中发生短路的原因有多种,归纳如下:

1)电气设备绝缘损坏。其原因有设计不合理、安装不合格、维护不当等,还有外界原因如架空线断线、倒杆及挖沟时损坏电缆、雷击或过电压等。

2)运行人员误操作。如带负荷拉合隔离开关(刀闸)、带地线合闸、误将带地线的设备投入等。

3)其他原因。如鸟兽跨接导体造成短路等。

电力系统短路的基本类型有:三相短路、两相短路、单相接地短路、两相接地短路等。各种短路故障示意图和代表符号如表1-1所示,其中三相短路为对称短路,其他为不对称短路。

运行经验和统计数据表明,电力系统中各种短路故障发生的几率是不同的,

其中发生三相短路的几率最少,发生单相接地短路的几率最大。

在实际工程问题中,经常需要计算短路电流,计算中涉及到如下概念:

(1)无限大容量系统。无限大容量电力系统指,容量相对于被供电系统容量大得多的电力系统,其特征是,当被供电系统中负荷变动甚至发生短路故障,电力系统母线电压及频率基本维持不变。一般,电力系统等值电源阻抗不超过短路电路阻抗的5%~10%,或电力系统容量超过被供电系统容量50倍时,可视为无限大容量电力系统,简称无限大系统或无穷大系统。实际应用中对11OkV配电网,可将供电变压器看作无穷大系统对11OkV配电网供电。

(2)短路电流周期分量。电力系统发生短路故障时,与正常负荷状态相比,供电回路的阻抗大为减小,因此出现数值很大的短路电流。显然,短路电流的大小由电源电压和短路回路阻抗决定,电源电压是正弦周期分量,与之对应,产生的是短路电流中的周期分量。在计算中,通常求取的就是这个短路电流周期分量,即在非周期分量衰减完毕后的稳态短路电流。

(3)短路电流非周期分量。电力系统正常运行时,线路和设备上流过负荷电流,当发生短路时,在短路回路中将流过短路电流。由于短路回路存在电感,导致电流不能突变,因此,在电流变化的过渡过程中,将出现一个随时间衰减的非周期分量电流,即短路电流中的非周期分量。

(4)短路冲击电流。短路全电流中的最大瞬时值称为短路冲击电流,其数值约为短路电流周期分量的1.82倍。

二、三相对称短路

在电力系统的各种短路故障中,虽然三相短路发生的几率最小,但其对电力系统的影响和危害最大。无穷大系统发生三相短路示意图如图1-9所示。

三相短路时,三相仍然对称,三相的短路回路完全相同,短路电流相等,相位互差120o 因此只计算一相即可。根据电路计算原理,采用有名值计算三相短路电流周期分量如下:

=X E I s k 3/)3( (1-1) 式中)3(k I ——三相短路电流周期分量有效值;

s E ——等值电源线电动势,实际计算时可采用平均额定电压;

∑X ——短路回路总电抗,通常计算时不考虑回路的电阻。

例1-1 某电力系统如图1-10所示,在母线B 和母线C 分别发生三相短路,试求短路点的短路电流周期分量。(等值电源电抗为Ω=22.0s X ,线路单位电抗为km x /38.01Ω=,变压器T1、T2的额定容量为1000kVA 、短路电压为5.4%=k U )

解:(1)母线B 三相短路。

Ω

=+=+=Ω

=⨯==∑12.29.122.09.1538.0)1(1AB s k AB AB X X X L x X kA kV X U I k A k 86.212.235.103)1()3(1=Ω

⨯==∑ (2)母线C 三相短路。计算时需要将等值电源电抗和线路电抗折算到0.4kV 侧,并计算变压器电抗(详细论述请参考电力系统故障分析计算的有关书籍)。

21)2(32

.22132242

2//102.71000

)4.0(1005.4100%1076.25.104.09.1102.35.104.022.0T T AB s k T N C k T T A C AB AB A C s s X X X X X S U U X X U U X X U U X X +'+'=Ω⨯=⨯=≈=Ω⨯=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭

⎫ ⎝⎛='Ω⨯=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭

⎫ ⎝⎛='∑--- Ω

⨯=⨯+⨯+⨯=----33341068.62

/102.71076.2102.3 kA kV X U I k C k 57.341068.634.033)2()3(2=Ω

⨯⨯==-∑ 三、不对称短路

电力系统不对称短路包括两相短路、两相接地短路和单相接地短路。

(一)序分量的概念

当电力系统发生不对称短路时,三相不再对称,三相的电流和电压数值也不再相等。如果将此不对称的电流或电压进行分解,可以分解出正序分量、负序分量,对于接地短路还有零序分量,分别用下标1、2和0表示。以电流为例,各序分量电流相量图如图1-11所示,对于工频50Hz ,正序电流三相对称,即大小相等,相位互差120o ;负序电流三相对称,即大小相等,相位互差120o ;但相序与正序电流相反;零序电流三相大小相等,相位相同。三相短路电流为

(1-2)

可得零序电流为

)(3

10kC kB kA I I I I ++= 用瞬时值表示为

[])()()(3

1)(0t i t i t i t i kC kB kA ++= 显然,电力系统正常运行时仅有正序分量。

(二)短路电流

1、两相短路

无穷大系统供电发生BC 两相短路示意图如图1-12所示。电力系统发生两相短路,经故障相和短路点构成短路回路,由故障相电源的线电动抛产生短路电流,流过故障线路,非故障线路没有短路电流,因此出现三相不对称。不在计负荷电流的情况下,三相的短路电流分别为

kB

C C kC B B kB A A kA I I I I I I I I I I -=+=+==+=212

12

10 (1-4) 0210

210

21I I I I I I I I I I I I C C kC B B kB A A kA ++=++=++=

可见两相短路时的特点是,三相不对称,出现负序电流;只有故障相存在短路电流,且两相的短路电流数值相等,相位相反。

根据图1-12,短路电流数值可计算如上:

=X E I s k 2)2( (1-5) 式中)2(k I ——两相短路电流周期分量有效值。

s E ——等值电源线电动势,实际计算进可以采用平均额定电压;

∑X ——一相短路回路总电抗。

将式(1-5)与式(1-1)比较可得

)3()3()2(866.02

3k k k I I I == (1-6) 式(1-6)说明,两相短路电流数值为同一地点三相短路电流的0.866倍,在实际计算中,常常求出三相短路电流后,直接用以上关系得到两相短路电流。

2、单相接地短路

(1)中性点直接接地系统。

中性点直接接地的无穷大系统供电,发生A 相单相接地短路示意图如图1-13所示。

中性点直接接地电力系统发生单相接地时,经直接接地的中性点、故障相和短路点构成短路回路,由故障相电源电动势产生短路电流,流过故障线路,非故障线路没有短路电流,因此出现三相不对称,在不计负荷电流的情况下,三相的短路电流分别为

0030

210

2110

021=++==+++==++=C C C kC B B B B kB A A A kA I I I I I I I I I I I I I I (1-7) 可见单相接地短路时的特点是,三相不对称,出现负序电流和零序电流;故障相存在短路电流,在图1-13(b )中的数值为3I 。

关于单相接地短路电流计算及两相接地短路问题需要用到复合序网等概念,在此不作介绍。

(2)中性点不接地系统。

中性点不接地的无穷大系统供电,发生单相接相短路时的特点和短路电流分

布见第三章的第三节。

(三)短路特征

根据以上分析,归纳不对称短路的部分特征如表1-2。

表1-2 不对称短路部分特征

第二章

电力二次系统概述

本章介绍电力系统继电保护、安全自动装置(以下简称自动装置)、二次回路的相关概念,使读者掌握其作用和三者之间的关系;介绍电力系统对继电保护和自动装置的四个基本要求、继电保护和自动装置的基本组成,为读者学习和分析继电保护、自动装置的具体问题打下基础。

>>第一节继电保护、自动装置、二次回路

一、继电保护

电力系统在运行中会发生故障,最常见的故障是各种类型的短路。当短路故障发生时,将伴随出现很大的短路电流和部分地区电压降低,对电力系统可能产生以下后果:

(1)破坏电力系统并联运行的稳定性,引发电力系统振荡,甚至造成系统瓦解、崩溃;

(2)故障点通过很大的短路电流和燃烧电弧,损坏或烧毁故障设备;

(3)在电源到短路点之间,短路电流流过非故障设备,产生发热和电动力,造成非故障设备损坏或缩短使用寿命;

(4)故障点附近部分区域电压大幅度下降,用户的正常工作遭到破坏或影响产品质量。

电力系统运行中还可能出现异常运行状态,使电力系统的正常工作受到干扰,运行参数偏离正常值。最常见的电力系统异常状态是过负荷,过负荷使电力系统元件或设备温度升高,加速绝缘老化,甚至发展成故障。另外,电力系统异常状态还有电办系统振荡、频率降低、过电压等。

故障和异常运行如果得不到及时处理,都可能在电力系统中引起事故。电力系统事故是指整个系统或部分的正常运行遭到破坏,造成对用户少送电或电能质量严重恶化,甚至造成人身伤亡、电气设备损坏或大面积停电等事故。

针对电力系统可能发生的故障和异常运行状态.需要装设继电保护装置。继电保护装置是在电力系统故障或异常运行情况下动作的一种自动装置,与其他辅助设备及相应的二次回路一起构成继电保护系统。因此,继电保护系统是保证电力系统和电气设备的安全运行,迅速检出故障或异常情况,并发出信号或向断路

器发跳闸命令,将故障设备从电力系统切除或终止异常运行的一整套设备。

继电保护的任务是:

1)反映电力系统元件和电气设备故障,自动、有选择性、迅速地将故障元件或设备切除,保证非故障部分继续运行,将故障影响限制在最小范围·

2)反映电力系统的异常运行状态,根据运行维护条件和设备的承受能力.自动发出信号,减负荷或延时跳闸。

二、自动装置

保障电力系统安全经济运行、提高供电可靠性和保证电能质量,电力系统自动装置是必不可少的。电力系统自动装置可分为自动调节装置和自动操作装置。

自动调节装置一般是为了保证电能质量、消腧系统异常运行状态等对某些电量实施自动地调节,例如同步发电机励磁自动调节、电力系统频率自动调节等。自动操作装置的作用对象往往是某些断路器,自动操作的目的是提高电力系统的供电可靠性和保证安全运行,例如备用电源自动投入装置、线路自动重合闸装置、低频减载装置等;还有某些自动操作装置用来提高电力系统的自动化程度,例如发电机自动并列装置等。

三、二次回路

发电厂、变电站的龟气系统,按其作用分为一次系统和二次系统。一次系统是直接生产、传输和分配电能的设备及相互连接的电路。在电能生产和使用的过程中,对一次电力系统的发电、输配电以及用电的全过程进行监视、控制、调节、调度,以及必要时的保护等作用的设备称为二次设备,二次设备及其相互问的连接电蹄称为二次系统或二次回路。可见,二次回路也是电力系统正常、安全运行的必不可少的部分。

二次系统或二次回路主要包括继电保护、自动装置、测量仪表、控制、信号

和操作电源等子系统。

(1)继电保护和自动装置系统。由互感器、变换器,各种继电保护装置和自动装置、选择开关及其回路接线构成,实现电力系统故障和异常运行时的自动处理。

(2)控制系统。由各种控制开关和控制对象(断路器、隔离开关)的操动机构组成,实现对开关设备的就地和远方跳、合闸操作,满足改变一次系统运行方式和故障处理的需要。

(3)测量及监测系统。由各种电气测量仪表、监测装置、切换开关及其回路接线构成,实现指示或记录一次系统和设备的运行状态和参数。

(4)信号系统。由信号发送机构、接收显示元件及其回路接线构成,实现准确、及时显示一次系统和设备的工作状态。

(5)调节系统。由测量机构、传送设备、执行元件及其回路接线构成,实现对某些设备工作参数的调节。

(6)操作电源系统。由直流电源设备和供电网络构成,实现供给以上二次系统工作电源。

>>第二节对继电保护自动装置的基本要求

电力系统对反映故障、动作于跳闸的继电保护有选择性、快速性、灵敏性、可靠性四个基本要求。对反映异常运行状态、作用于信号的继电保护,则不要求同时满足这四个基本要求,例如快速性要求可以降低。

一、选择性

选择性是指继电保护装置动作时.仅将故障元件或设备切除,使非故障部分继续运行,停电范围尽可能小。

继电保护动作具有选择性,要求首先由故障元件或设备本身的保护切除故障,即最靠近故障点的保护和断路器动作;当故障元件或设备本身的保护或断路器拒动时,才允许由相邻元件或设备的保护动作(通常称为后备保护)。所以,选择性有两个含义:笫一,应由装设在故障元件或设备上的继电保护动作切除故障,第二,考虑继电保护或断路器存在拒动的可能,由后备保护切除故障时,也应保证停电范围尽可能小。因此,选择性要求系统中的继电保护之间,在动作时必须满足一定的配合关系。以图2-l为例.说明继电保护的选择性。

当kl点发生故障时,应该由保护1和保护2动作使断路器IQF和2QF跳闸,切除故障线路L1,保证系统其他部分继续运行;k2点发生故障时,应该由保护4动作使断路器4QF跳闸切除故障线路L4,保证系统其他部分继续运行。这种按照电力系统安全性要求,故障发生后首先动作的继电保护是主保护。故障元件的主保护正确动作的结果,将故障范围限制在最小,甚至可以保证所有母线都不停电(例如上述kl点故障的情况),这是选择性的第一个含义。

如果线路L4在k2点故障时,其主保护拒动,则应由线路L4的另一套具有后备作用的保护动作,使断路器4QF跳闸切除故障,这就是近后备保护}如果线

路L4的主保护和近后备保护都拒动或断路器4QF拒动,则应由上一级线路L3的后备保护动作,使断路器3QF跳闸切除故障,实现保护3对线路L4的远后备保护作用。这种当故障时主保护拒动或断路器拒动,由后备保护动作切除故障,也是具有选择性的,即选择性的第二个含义。

综上所述继电保护根据所承担的任务分为主保护和后备保护。电力系统故障时,主保护按照电力系统的安全性要求·以最短的时限和最小的停电范围动作切除故障,保证电力系统和设备的安全;后备保护一般动作延时较长,是当主保护拒动或断路器拒动时,以大于主保护的动作时限动作切除故障。近后备保护是在主保护拒动时。由本设备的另—保护实现的后备保护;远后备保护是在保护拒动或断路器拒动时,由上一级设备或线路保护实现的后备保护。

可见,继电保护动作的选择性是为了提高供电的可靠性,而继电保护无选择性动作,必将扩大停电范围,带来不应有的损失。

二、快速性

快速性是指继电保护装置应以尽可能快的速度动作切除故障元件或设备。

继电保护快速动作切除故障,可以控制故障影响程度,减少设备损伤,避免造成设备无法修复的损坏;减小故障影响时间,城少用户在低电压情况下的工作时间,避免用户电动机转速严重下降、甚至自启动失败;防止系统稳定性破坏,提高电力系统运行的稳定性。

故障切除时闻等于保护装置动作时间和断路器动作时间之和。实际中,应根据具体电网对故障切除时间的不同要求,设计继电保护的动作延时。

三、灵敏性

灵敏性是指继电保护装置对保护范围内故障的反应能力,通常用灵敏系数K

sen 来衡量,也称为灵敏度。

衡量继电保护的灵敏度,需考虑继电保护在保护范围内,应该反映的各种故障类型,即保证在最不利于保护动作的条件下仍能够可靠动作。在被保护元件或设备故障时,保护的灵敏度用保护装置反应的故障参数(例如短路电流)与保护装置的动作参数(例如动作电流)之比表示。

对于反应故障参数上升而动作的过量保护装置,如过流保护、过压保护等灵敏系数计算式为

保护装置的动作参数计算值

短路时故障参数的最小

保护范围未发生金属性

sen

K(2-1) 例如反应故障时电流增大动作的过电流保护,要使保护动作,流过保护的短路电流必须大于保护的动作电流,即灵敏系数必须大于1。

对于反应故障参数降低而动作的欠量保护装置,如电动机的欠压保护

灵敏系数计算式为

(2-2)例如反应故障时电压降低动作的低电压保护,要使保护动作,保护安装处的母线残压必须小于保护的动作电压,同样灵敏系数必须大于1。

式(2-1)和式(2-2)中,故障参数计算值根据保护类型和保护范围,采用最不利于保护动作的系统运行方式、短路类型和短路点,计算实际可能的最小灵敏度,故式(2-1)用故障参数的最小计算值,式(2-2)用故障参数的最大计算值。在继电保护的相关规程中,对各类保护的灵敏系数都作了具体的规定。

另外,对上、下级保护之间的灵敏性和动作时限还有配合的要求,一般用在后备保护(例如过电流保护),指下一级保护的灵敏度应高于上一级保护的灵敏度,下一级保护的动作延时应小于上一级保护的动作延时,如图2-2所示.各保护的

(完整版)电力系统分析基础知识点总结

一.填空题 1、输电线路的网络参数是指(电阻)、(电抗)、(电纳)、(电导)。 2、所谓“电压降落”是指输电线首端和末端电压的(相量)之差。“电压偏移”是指输电线某点的实际电压和额定 电压的(数值)的差。 3、由无限大的电源供电系统,发生三相短路时,其短路电流包含(强制/周期)分量和(自由/非周期)分量,短路 电流的最大瞬时的值又叫(短路冲击电流),他出现在短路后约(半)个周波左右,当频率等于50HZ时,这个时间应为(0.01)秒左右。 4、标么值是指(有名值/实际值)和(基准值)的比值。 5、所谓“短路”是指(电力系统正常运行情况以外的相与相之间或相与地之间的连接),在三相系统中短路的基本 形式有(三相短路),(两相短路),(单相短路接地),(两相短路接地)。 6、电力系统中的有功功率电源是(各类发电厂的发电机),无功功率电源是(发电机),(电容器和调相机),(并联 电抗器),(静止补偿器和静止调相机)。 7、电力系统的中性点接地方式有(直接接地)(不接地)(经消弧线圈接地)。 8、电力网的接线方式通常按供电可靠性分为(无备用)接线和(有备用)接线。 9、架空线是由(导线)(避雷线)(杆塔)(绝缘子)(金具)构成。 10、电力系统的调压措施有(改变发电机端电压)、(改变变压器变比)、(借并联补偿设备调压)、(改变输电线路参 数)。 11、某变压器铭牌上标么电压为220±2*2.5%,他共有(5)个接头,各分接头电压分别为(220KV)(214.5KV)(209KV) (225.5KV)(231KV)。 二:思考题 1.电力网,电力系统和动力系统的定义是什么?(p2) 答: 电力系统:由发电机、发电厂、输电、变电、配电以及负荷组成的系统。 电力网:由变压器、电力线路、等变换、输送、分配电能的设备组成的部分。 动力系统:电力系统和动力部分的总和。 2.电力系统的电气接线图和地理接线图有何区别?(p4-5) 答:电力系统的地理接线图主要显示该系统中发电厂、变电所的地理位置,电力线路的路径以及它们相互间的连接。但难以表示各主要电机电器间的联系。 电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机电器、线路之间的电气结线。但难以反映各发电厂、变电所、电力线路的相对位置。 3.电力系统运行的特点和要求是什么?(p5) 答:特点:(1)电能与国民经济各部门联系密切。(2)电能不能大量储存。(3)生产、输送、消费电能各环节所组成的统一整体不可分割。(4)电能生产、输送、消费工况的改变十分迅速。(5)对电能质量的要求颇为严格。 要求:(1)保证可靠的持续供电。(2)保证良好的电能质量。(3)保证系统运行的经济性。 4.电网互联的优缺点是什么?(p7) 答:可大大提高供电的可靠性,减少为防止设备事故引起供电中断而设置的备用容量;可更合理的调配用电,降低联合系统的最大负荷,提高发电设备的利用率,减少联合系统中发电设备的总容量;可更合理的利用系统中各类发电厂提高运行经济性。同时,由于个别负荷在系统中所占比重减小,其波动对系统电能质量影响也减小。联合电力系统容量很大,个别机组的开停甚至故障,对系统的影响将减小,从而可采用大容高效率的机组。 5.我国电力网的额定电压等级有哪些?与之对应的平均额定电压是多少?系统各元件的额定电压如何确定? (p8-9) 答:额定电压等级有(kv):3、6、10、35、110、220、330、500 平均额定电压有(kv):3.15、6.3、10.5、37、115、230、345、525 系统各元件的额定电压如何确定:发电机母线比额定电压高5%。变压器接电源侧为额定电压,接负荷侧比额定电压高10%,变压器如果直接接负荷,则这一侧比额定电压高5%。 6.电力系统为什么不采用一个统一的电压等级,而要设置多级电压?(p8) S 。当功率一定时电压越高电流越小,导线答:三相功率S和线电压U、线电流I之间的固定关系为

电力系统的基础知识

共131题 1. 一条指令代码,通常由操作码和操作数两部分组成。 2. 既有大小又有方向的量叫做向。 3. 我们把用“ 0”表示高电平,“ 1”表示低电平的方式叫做负逻 辑 ____ 。 4. 示波器是用来观测电压______ 、电流______ 波形的一种电子仪器,凡能变换成电压、电流的其它电量和非电量,也可以用示波器进行观测。 5. 微波收发信设备的基本功能就是 频率变换和波形变换。 6. A/D转换是将模拟量转换为数字量。 7. 正弦波的三要素是振幅_______ ,频率_____ 和初相角______ 。 8. 运算器可进行两种运算,包括—算术运算 _____ 和一逻辑运算____ o 9. 按照传送信息的类型,总线可以分为—数据总线_控制总线—, 和地址总线。

10.OSI模型可分为七层,从最底层开始分别是:物理层、数据链路 层、网络层、传输层、会话层、表示层、应用层。 11. TCP/IP层次模型共分为四层:应用层、传输层、网络层、数据链路层。 12. 存贮器分为内存贮器禾口夕卜存贮器两部分,简称 内存和外存。 13. 对计算机远动系统的要求:可靠性高、实时性强、 数据准确一、设计合理、可维护性好、信道混用、设备多样化、兼容性强、使用方便、抗干扰能力强一。 14. 系统产生死锁的原因有:系统资源不足____ 、进程推进顺序 非法____ 。 15. 计算机病毒分为一感染文件型一和—引导区型____ 。 16. 进程是程序在一个数据集合_____ 上运行的过程,使系统进行— 资源分配_和_调度一的一个独立单位。 17. 中央处理器CPU具有运算器和控制器两部分。 18. 进程通常由—程序—、一数据集合_ 、_讲程控制块 _ 三部分 组成. 19. 计算机网络中,主计算机系统应选择分时类操作系统

电力系统基础知识

第一章 电力系统基础知识 继电保护、自动装置对电力系统起到保护和安全控制的作用,因此首先应明确所要保护和控制对象的相关情况,涉及的内容包括:电力系统的构成,电力系统中性点接地方式及其特点,电力系统短路电流计算及其相关概念。这是学习继电保护、自动装置等本书内容的基础。 >>第一节电力系统基本概念 一、电力系统构成 电力系统是由发电厂、变电站(所)、送电线路、配电线路、电力用户组成的整体。其中,联系发电厂与用户的中间环节称为电力网,主要由送电线路、变电所、配电所和配电线路组成,如图1-1中的虚框所示。电力系统和动力设备组成了动力系统,动力设备包括锅炉、汽轮机、水轮机等。 在电力系统中,各种电气设备多是三相的,且三相系统基本上呈现或设计为对称形式,所以可以将三相电力系统用单相图表述。动力系统、电力系统及电力网之间的关系示意图如图1-l所示。 图1-1 动力系统、电力系统及电力网示意图 需要指出的是,为了保证电力系统一次电力设施的正常运行,还需要配置继电保护、自动装置、计量装置、通信和电网调度自动化设施等。 电力系统主要组成部分和电气设备的作用如下。 (1)发电厂。发电厂是把各种天然能源转换成电能的工厂。天然能源也称为一次能源,例如煤炭、石油、天然气、水力、风力、太阳能等,根据发电厂使用的一次能源不同,发电厂分为火力发电厂(一次能源为煤炭、石油或天然气)、水力发屯厂、风力发电厂等。 (2)变电站(所)。变电站是电力系统中联系发电厂与用户的中间环节,具有汇集电能和分配电能、变换电压和交换功率等功能,是一个装有多种电气设备的场所。根据在电力系统中所起的作用,可分为升压变电站和降压变电站;根据设备安装位置,可分为户外变电站、户内变电站、半户外变电站和地下变电站。 变电站内一次电气设备主要有变压器、断路器、隔离开关、避雷器、电流互感器、电压互感器、高压熔断器、负荷开关等。变电站内还配备有继电保护和自动装置、测量仪表、自动控制系统及远动通信装置等。 (3)输电网。输电网是通过高压、超高压输电线将发电厂与变电站、变电站与变电站连接起来,完成电

(完整版)电力系统知识介绍

原理图 一、电力系统基本概念 1、基本概念 电能是一种十分重要的二次能源,它方便、经济地从蕴藏于自然界中的一次能源(煤炭、石油、天然气、太阳能、水力、风能等)转换而来,并且可以转换为其他能量供人们使用。 电能是由发电厂生产的,大容量发电厂往往建在燃料、水力资源丰富的地方,而用户往往远离发电厂需要建设较长的输电线路进行输电,建设升压和降压变电所进行变电,通过配电线路向各类用户供电。 电力系统-由发电、输电、变电、配电和用电连接成的统一整体。是现代社会中最重要、最庞杂的系统工程之一 电力网-由输电、变电、配电所组成的部分。它包括升、降压变压器和各种电压的输电线路。它的任务就是把远处发电厂生产的电能输送到负荷中心,同是还联系区域电力网行程跨省、跨地区的大电力系统,如我国的东北、华北、华中、华东、西北和南方电网等,就属于这种类型。 动力网-在电力系统的基础上,把发电厂的动力部分(如火力发电厂的锅炉、汽轮机和水力发电厂的水库、水轮机以及核动力发电厂的反应堆等)包含在内的系统 2、电力系统组成

由发电厂的发电机、升压及降压变电设备、电力网及电能用户(用电设备)组成的系统统称 为电力系统。 (1)发电厂:生产电能。 (2)电力网:分为输电网和配电网。 输电网:以高压甚至超高压电将发电厂、变电所或变电所之间连接起来的输电网络, 所以又称为电力网中的主网架。 配电网:直接将电能送到用户的网络。它的作用是将电能分配给各类不同的用户,变换电压、传送电能。 电力网按电压等级分类: 低压网:电压等级在1kV以下; 中压网:1~35kV; 高压网:高于35kV、低于330kV; 超高压网:低于750kV; 特高压网:1000kV及以上。 (3)用电设备:消耗电能。 二、大型电力系统的优点: 1、提高供电可靠性; 2、减少系统的备用容量; 3、降低系统的高峰负荷; 4、提高供电 质量;5、便于利用大型动力资源 三、电力生产的特点: 1、同时性,电能不能大量存储,各环节组成的统一整体不可分割,过渡过程非常迅速, 瞬间生产的电力必须等于瞬间取用的电力,所以电力生产的发电输电、配电到用户的每一环 节都非常重要; 2、集中性,电力生产是高度集中、统一的,无论多少发电厂、供电公司、电网必须统一 调度、统一管理标准,统一管理办法;安全生产,组织纪律,职业品德都有严格的要求; 3、适用性,电力行的的服务对象是全方位的,涉及到全社会所有人群,电能质量,电价 水平与广大电力用户的利益密切相关。 4、先行性,国民经济发展电力必须先行。 四、对电力系统提出的要求: 1、保证供电可靠性; 2、保证电能质量; 3、提高电力系统运行的经济性; 4、环境保护 问题

电力考试:电力系统基础知识介绍

电力考试:电力系统基础知识介绍 1、电力系统基本概念 1)电力系统定义 由发电厂内的发电机、电力网内的变压器和输电线路以及用户的各种用电设备,按照一定的规律连接而组成的统一整体,称为电力系统。 2)电力系统的组成 电力系统由发电厂的发电机、电力网及电能用户(用电设备)组成的。 3)电力系统电压等级 系统额定电压:电力系统各级电压网络的标称电压值。 系统额定电压值是:220V、380V、3kV、6kV、10kV、35kV、63kV、110kV、220kV、330kV、500kV、750 kV。 4)电力设备 电力系统的电气设备分为一次设备和二次设备,一次设备(也称主设备)是构成电力系统的主体,它是直接生产、输送和分配电能的设备,包括发电机、电力变压器、断路器、隔离开关、电力母线、电力电缆和输电线路等。二次设备是对一次设备进行控制、调节、保护和监测的设备,它包括控制器具、继电保护和自动装置、测量仪表、信号器具等。二次设备通过电压互感器和电流互感器与一次设备取得电的联系 2、电力系统故障及其危害 凡造成电力系统运行不正常的任何连接或情况均称为电力系统的故障。电力系统的故障有多种类型,如短路、断线或它们的组合。短路又称横向故障,断线又称为纵向故障。 短路故障可分为三相短路、单相接地短路(简称单相短路)两相短路和两相接地短路,注意两相短路和两相接地短路是两类不同性质的短路故障,前者无短路电流流入地中,而后者有。三相短路时三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相回路不

对称,因此称为不对称短路。 断线故障可分为单相断线和两相断线。断线又称为非全相运行,也是一种不对称故障。大多数情况下在电力系统中一次只有一处故障,称为简单故障或单重故障,但有时可能有两处或两处以上故障同时发生,称为复杂故障或多重故障。 短路故障一旦发生,往往造成十分严重的后果,主要有: (1)电流急剧增大。短路时的电流要比正常工作电流大得多,严重时可达正常电流的十几倍。大型发电机出线端三相短路电流可达几万甚至十几万安培。这样大的电流将产生巨大的冲击力,使电气设备变形或损坏,同时会大量发热使设备过热而损坏。有时短路点产生的电弧可能直接烧坏设备。 (2)电压大幅度下降。三相短路时,短路点的电压为零,短路点附近的电压也明显下降,这将导致用电设备无法正常工作,例如异步电动机转速下降,甚至停转。 (3)可能使电力系统运行的稳定性遭到破坏。电力系统发生短路后,发电机输出的电磁功率减少,而原动机输入的机械功率来不及相应减少,从而出现不平衡功率,这将导致发电机转子加速。有的发电机加速快,有的发电机加速慢,从而使得发电机相互间的角度差越来越大,这就可能引起并列运行的发电机失去同步,破坏系统的稳定性,引起大片地区停电。 (4)不对称短路时系统中将流过不平衡电流,会在邻近平行的通讯线路中感应出很高的电势和很大的电流,对通讯产生干扰,也可能对设备和人身造成危险。在以上后果中,最严重的是电力系统并列运行稳定性的破坏,被喻为国民经济的灾难,其次是电流的急剧增大。 除此之外,电力系统中还可能出现一些不正常工作状态,如电气设备超过额定值运行(称为过负荷),它也将使电气设备绝缘加速老化,造成故障隐患甚至发展成故障;如发电机尤其是水轮发电机突然甩负荷引起定子绕组的过电压、电力系统的振荡、电力变压器和发电机的冷却系统故障以及电力系统的频率下降等。系统中的故障和不正常运行状态都可能引起电力系统事故,不仅使系统的正常工作遭到破

电力系统基础知识

电力系统的基础知识 一、电力系统的构成 一个完整的电力系统由分布各地的各种类型的发电厂、升压和降压变电所、输电线路及电力用户组成,它们分别完成电能的生产、电压变换、电能的输配及使用。 二.电力网、电力系统和动力系统的划分 电力网:由输电设备、变电设备和配电设备组成的网络。 电力系统:在电力网的基础上加上发电设备。 动力系统:在电力系统的基础上,把发电厂的动力部分(例如火力发电厂的锅炉、汽轮机和水力发电厂的水库、水轮机以及核动力发电厂的反应堆等)包含在内的系统。 三.电力系统运行的特点 一是经济总量大。目前,我国电力行业的资产规模已超过2万多亿,占整个国有资产总量的四分之一,电力生产直接影响着国民经济的健康发展。 二是同时性,电能不能大量存储,各环节组成的统一整体不可分割,过渡过程非常迅速,瞬间生产的电力必须等于瞬间取用的电力,所以电力生产的的发电、输电、配电到用户的每一环节都非常重要。 三是集中性,电力生产是高度集中、统一的,无论多少个发电厂、供电公司,电网必须统一调度、统一管理标准,统一管理办法;安全生产,组织纪律,职业品德等都有严格的要求。 四是适用性,电力行业的服务对象是全方位的,涉及到全社会所有人群,电能质量、电价水平与广大电力用户的利益密切相关。 五是先行性,国民经济发展电力必须先行。 四、电力系统的额定电压 电网电压是有等级的,电网的额定电压等级是根据国民经济发展的需要、技术经济的合理性以及电气设备的制造水平等因素,经全面分析论证,由国家统一制定和颁布的。 我们国家电力系统的电压等级有220/380V、3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。随着标准化的要求越来越高,3 kV、6 kV、20 kV、66 kV也很少使用。供电系统以10 kV、35 kV、为主。输配电系统以110 kV以上为主。发电机过去有6 kV与10 kV两种,现在以10 kV为主,低压用户均是220/380V。 用电设备的额定电压和电网的额定电压一致。实际上,由于电网中有电压损失,致使各点实际电压偏离额定值,为了保证用电设备的良好运行,显然,用电设备应具有比电网电压允许偏差更宽的正常工作电压范围。发电机的额定电压一般比同级电网额定电压要高出5%,用于补偿电网上的电压损失。 变压器的额定电压分为一次和二次绕组。对于一次绕组,当变压器接于电网末端时,性质上等同于电网上的一个负荷(如工厂降压变压器),故其额定电压与电网一致,当变压器接于发电机引出端时(如发电厂升压变压器),则其额定电压应与发电机额定电压相同。对于二次绕组,考虑到变压器承载时自身电压损失(按5%计),变压器二次绕组额定电压应比电网额定电压高5%,当二次侧输电距离较长时,还应考虑到线路电压损失(按5%计),此时,二次绕组额定电压应比电网额定电压高10%。 五、电力系统的中性点运行方式

电力系统基础知识

电力系统基础知识 电力系统是由发电厂、送变电线路、供配电所和用电单位组成的整体,在同一瞬间,发电厂将发出的电能通过送变电线路,送到供配电所,经过变压器将电能送到用电单位,供给工农业生产和人民生活。因此掌握电力系统基础知识和电力生产特点,是对进网作业电工的基本要求。 第一节电力系统、电力网构成 发电厂将燃料的热能、水流的位能或动能以及核能等转换为电能。电力经过送电、变电和配电到各用电场所,通过各种设备在转换成为动力(机械能)热、光、等不同形式的能量,为国民经济、工农业生产和人民生活服务。由于目前电力不能大量储存,其生产、输送、分配和消费都在同一时间内完成,因此,必须将各个环节有机的联成一个整体。这个由发电、送电、变电、配电和用电组成的整体称为电力系统。电力系统中的送电、变电、配电三个部分称为电力网。 什么叫电力网?电力网是将各电压等级的输电线路和各个类型的变电所连接而成的网络,简称电网。 配电网中又分为高压配电网指110KV及以上电压、中压配电网指(35KV)10KV、6KV、3KV 电压及低压配电网220V、380V。 我国标准:0.38,3,6,10,35,66,110,220,(330),500,750,1000 KV。 辽宁电网的电压中枢点为: 南关岭、红旗堡、沙河营、沈东变、清河厂220KV母线及辽阳变500KV母线 辽宁沈阳电网一次系统结线图

什么叫电力系统?电力系统:是指由发电厂(不包括动力部分)、变电站、输配电线路直到用户等在电气上相互联结的整体,它包括了发电、输电、配电直到用电这样一个全过程。 10kV输电线路 动力系统与电力系统、电力网关系示意图 为什么要采用高压输电低压配电? 采用高压输电,可以减小功率损耗、电能损耗和电压降落,保证电能质量,提高运行中的经济性。 P=√3UI (U↑I ↓) 一、大型电力系统优点 1提高了供电可靠性 2减少了系统的备用容量 3通过合理地分配负荷 4提高了供电质量 5形成大的电力系统,便于利用大型动力资源,特别是能充分发挥水力发电厂的作用。

电力系统基本知识

电力系统基本知识 一、电力系统与电力网 1、电力系统 由发电厂的发电部分、输配电线路、变配电所,以及用户的各种用电设备所组成的整体,称为电力系统,简称系统。 现代化电力系统规模一般较大,通常把许多不在一地的发电厂并列起来,连成较大的电力系统,可以充分发挥系统运行的稳定性和安全性,提高发、供电的经济效益。大型电力系统在技术、经济上具有以下优点: 1)提高供电可靠性; 2)减少系统备用容量; 3)便于发展大型机组及利用大型动力资源,特别是充分发挥水力发电厂电能生产成本低的优越性; 4)通过合理分配负荷可以降低系统的高峰负荷,提高运行经济性; 5)提高供电质量。 2、电力网 不同电压等级的电力线路和变配电所组成的网络叫电力网,简称电网。电网是电力系统的重要组成部分,担负着输电、变电与配电

(统称供电)的任务。电力网按其在电力系统中的作用不同,分为输电网和配电网。 1)输电网 输电网是以高电压甚至超高电压将发电厂、变电所或变电所之间连接起来的送电网络,是电力网中的主网架。输电网的电压一般在35kV及以上,330kV及以上称为超高压输电线路。 2)配电网 直接将电能送到用户去的网络,称为配电网。配电网的电压根据用户负荷情况和供电要求而定。 (1)高压配电网 一般指 35kV、110kV及以上电压。

(2)中压配电网 一般指20kV、10kV、6kV、3kV 电压。 (3)低压配电网 低压配电网通常又称为二次配电网,一般指220V、400V电压。 二、电力系统的运行特点 1、电能的生产和使用同时完成 电能的生产、输送和使用处于一种动态的平衡状态,若供用电出现不平衡,系统运行的稳定性就会被破坏。 2、过渡过程迅速 电能以电磁波形式传播,有极高的传输速度,电力系统中的过渡过程非常迅速。 3、地区性突出 我国地域辽阔,自然资源分布很广,使电能结构有很强的地域特点。 4、与国民经济关系密切 电能为国民经济各部门提供动力,也是人们物质文化生活现代化的基础。 三、电力系统的运行要求 电力系统的基本任务是为国民经济和人民生活提供充足、可靠、经济且质量好的电能,这是对电力系统运行的最基本要求。 1、保证供电的可靠性 保证供电的可靠性是对电力系统最基本的要求。不同的用户对供电可靠性的要求也不一样。根据用户负荷性质和中断供电在经济、政治上所造成的损失和影响程度,用户负荷分为三类。 1)一类负荷 指突然中断供电,将会造成火灾、爆炸、中毒而导致人身伤亡或重大设备损坏,使国民经济中重点企业的连续生产被打乱而需要长时间才能恢复;中断供电影响到重大政治、经济意义的用电单位的正常工作,如重要的铁路枢纽,重要的通信枢纽,重要宾馆及经常用于国际活动的大量人员集中的公共场所等,这些用电单位的重要电力负荷

电力系统基础知识

电力系统基础知识 1、电力系统:这些生产、输送、分配和消费电能的各种电器设备连接而成的整体称为电力系统。 2、电力网是电力系统中输送和分配电能的部分。 3、电力网的分类:地方电力网、区域电力网、超高压远距离输电网。 4、电力系统运行的特点:电能不能大量储存(发电、输电、变电、配电和用电都是在同一时刻进行的)、电力系统的暂态过程非常短暂、与国民经济各部门及人民日常生活有密切的关系。 5、电力系统的基本要求:保证供电的安全可靠性、保证良好的电能质量(电压、频率、相位、波形)、保证电力系统运行的经济性。 6、第一级负荷中断供电后,后果极为严重,可能发生危机人身安全的事故;第二级负荷中断供电造成大量减产,使城市居民的大量生活受到影响;第三极负荷停电影响不大。 7、减小电晕的有效办法通常采用增大线路半径(常用分裂导线来增加导线的等值半径)。 8、电力系统的接线图分为电力系统地理接线图和电力系统电气接线图。 9、电力系统的接线按供电可靠性分为无备用和有备用两类。无备用接线的网络中,每一个负荷只能靠一条线路取得电能,单回路放射式、干线式和链式网络即属于这一类。 10、配电网络采用哪一类界限,主要取决于负荷的性质。无备用接线只使用于向第三级负荷供电。对于低一级和第二级负荷占较大比重的用户,应由有备用网络供电。 11、在选择接线方式时,必须考虑的主要因素是:满足用户对供电可靠性和电压质量的要求,运行要灵活方便,要有好的经济指标。 12、电力系统的额定电压等级:同一个电压级别下,各种设备的额定电压并不完全相等;电力线路的额定电压和用电设备的额定电压相等;发电机的额定电压通常比电网的额定电压高5%;变压器具有发电机和负荷的双重性,一次侧接电源电源相当于负荷,其额定电压与电网的额定电压相等,但直接与发电机连接时,其额定电压则与发电机的额定电压相等。 13、电力系统中性点是指星形连接的变压器或发电机的中性点。 14、我国电力系统常见的中性点主要有3种接地方式,即中性点不接地(中性点经小电阻接地)、中性点经消弧线圈接地和中性点直接接地。 15、中性点接地的补偿方式分为:全补偿、欠补偿、过补偿。 16、随着输电电压的增高和线路的增长,消弧线圈已不便使用。克服中性点不接地系统缺点的另一种方法,是将中性点直接接地。 17、中性点直接接地系统的缺点有:由于中性点直接接地系统在单相短路时须断开故障线路,中断用户供电,将影响供电的可靠性;单相短路时短路电流很大,甚至会超过三相短路电流,有可能需选用较大的容量的开关设备。 18、中性点直接接地系统的优点,是在单相接地时中性点的电位接近于零,未接地相对地电压接近于相电压。 19、电力线路按结构可分为架空线路和电缆线路两大类。 20、架空线路的主要元件有:导线、避雷针、杆塔、绝缘子及金具。 21、电力线路的参数:电阻、电抗、电导、电纳。 22、电晕:架空线路高压线路导线表面的电厂强度超过空气的击穿强度时,导体附近的空气游离而产生的局部放电现象称为电晕。

电力系统分析基础知识点总结

电力系统分析基础 稳态部分 一 一、单选题 1、我国国家标准规定的额定电压有3kv 、6kv、10kv、35kv 、110kv 、220kv 、330kv、500kv 。 2、电能质量包含电压质量、频率质量、波形质量三方面。 3、无备用结线包括单回路放射式、干线式、链式网络。 4、有备用界结线包括双回路放射式、干线式、链式、环式、两端供电网络。 5、我国的六大电网:东北、华北、华中、华东、西南、西北。 6、电网中性点对地运行方式有:直接接地、不接地、经消弧线圈接地三种, 其中直接接地为大接地电流系统。 7、我国110kv及以上的系统中性点直接接地,35kv及以下的系统中性点不接地。 二、多选题 1、电力网络是指在电力系统中由变压器、电力线路等变换、输送、分配电能设备所组成的部分。 2、电力系统是指由发电机、各类变电所和输电线路以及电力用户组成的整体。 3、总装机容量是指电力系统中实际安装的发电机组额定百功功率的总和。 4、电能生产,输送,消费的特点: (1)电能与国民经济各个部门之间的关系都很密切 (2)电能不能大量储存 (3)生产,输送,消费电能各个环节所组成的统一整体不可分割

(4)电能生产,输送,消费工况的改变十分迅速 (5)对电能质量的要求颇为严格 5、对电力系统运行的基本要求 (1)保证可靠的持续供电 (2)保证良好的电能质量 (3)保证系统运行的经济性 6、变压器额定电压的确定: 变压器的一次侧额定电压应等于用电设备额定电压(直接和发电机相联的变压器一次侧额定电压应等于发电机的额定电压),二次侧额定电压应较线路额定电压高10%。只有漏抗很小的、二次直接与用电设备相联的和电压特别高的变压器,其二次侧额定电压才可能较线路额定电压仅高5%。 7、所谓过补偿是指感性电流大于容性电流时的补偿方式,欠补偿正好相反,实践中,一般采用过补偿。 二 一、单选题 1、按绝缘材料,电缆可分为纸绝缘、橡胶绝缘、塑料绝缘三种类型。 2、架空线路由导线、避雷线、杆塔、绝缘子和金具等构成。 3、电缆线路由导线、绝缘层、保护层等构成。 4.、导线主要由铝(Z)、钢(G)、铜(T)等材料构成。 5、线路电压超过220KV时为减小电晕损耗或线路电抗,采用扩径导线或分裂导线。 6、为了减少三相参数的不平衡采取架空线路的换位。 二、多选题 1、⑴普通钢芯、铝线,标号为LGJ,铝线和钢线部分截面积的比值为5.3~6.0。 ⑵加强型钢芯铝线,标号为LGJT, 铝线和钢线部分截面积的比值为4.3~4.4。 ⑶轻型钢芯铝线,标号为LGJQ, 铝线和钢线部分截面积的比值为8.0~8.1。 2、整换位循环,指一定长度内,有两次换位而三相导线都分别处于三个不同位置,完成一次完整的循环。

电力系统基础知识科普

电力系统基础知识科普 1.电力系统、动力系统和电力网的划分 电力网:由变电所和不同电压等级输电线路组成的网络。 电力系统:由发电设备、输电设备和用电设备组成的网络。 动力系统:在电力系统的基础上,把发电厂的动力部分包含在内的系统。 2.电力系统运行的特点 电力系统运行特点: 电能不能大量存储;各环节组成的统一整体不可分割;过渡过程非常迅速(百分之几秒到十分之几秒);电力系统的地区性特点较强;对电能质量的要求颇为严格;与国民经济各部门和人民生活关系极其密切 3.电力系统运行的基本要求 保证供电的可靠性:减少停电损失,要求元件有足够的可靠性,要求提高系统运行的稳定性 保证良好的供电质量:电压、频率、波形 提高电力系统运行的经济性:降低能耗 4.发电厂的类型 发电厂的类型: 常规能源发电(主要发电形式):火力发电厂,水力发电厂,核能电厂 新能源发电:地热电厂、潮汐电厂、风力发电厂、太阳能电站、海洋能发电、磁流体发电、氢能发电、核聚变发电 5.电力系统的中性点接地方式 4种中性点接地方式:(前两种属于小电流接地,后两种属于大电流接地) 中性点不接地;中性点经消弧线圈接地;中性点直接接地;中性点经电阻接地

6.日负荷曲线、年最大负荷曲线的用途。 日负荷曲线对电力系统有很重要的意义,它是安排日发电计划,确定各发电厂发电任务以及确定系统运行方式等的重要依据。每日的最大负荷不尽相同,一般是年初底,年末高。夏季小于冬季。 把每天的最大负荷抽取出来按年绘成曲线,成为年最大负荷曲线。年最大曲线的用途:安排各发电厂检修计划的依据;安排新装机组计划的依据。 7.电力系统的电压等级。 我国电力系统的电压等级分为: 电力系统的标称电压 3、6、10、35、60、 110 、220、330、 500、750 KV 对应的最高电压 3.6、7.2、12、40.5、72.5、126、252、 363、550、800 KV 8.架空线路的结构组成 架空线路由导线,避雷线(架空地线),绝缘子,金具,杆塔等主部件组成。 9. 架空线路换位的目的 消除由于位置原因引起的不对称电抗,从而消除产生的电流畸变。 10. 分裂导线的优点 增大导线的有效半径,减少导线的电晕损耗,减少导线的电抗 11.导纳阵的特点 稀疏矩阵,对称矩阵 12.潮流计算的目的、在潮流的计算机算法中,节点的划分。 潮流计算的目的: 电力系统规划中用于选择系统的接线方式、选择电气设备及导线的截面;在电力系统的运行中,用于确定运行方式和合理的供电方案,确定电压调整措施等;提供继电保护、自动装置的设计与整定依据。 节点的划分: PQ节点,PV节点,平衡节点 13.电压降落、电压损耗、电压偏移的定义

电力系统分析基础知识点总结

电力系统分析基础知识点总结 稳态部分 01.我国国家标准规定的额定电压有3kv.6kv.10kv.35kv.110kv.220kv.330kv.500kv。02.电能质量包含电压质量.频率质量.波形质量三方面。 03.无备用结线包括单回路放射式.干线式.链式网络。 04.有备用界结线包括双回路放射式.干线式.链式.环式.两端供电网络。 05.我国的六大电网:东北.华北.华中.华东.西南.西北。 06.电网中性点对地运行方式有:直接接地.不接地.经消弧线圈接地三种,其中直接接 地为大接地电流系统。 07.我国110kv及以上的系统中性点直接接地,35kv及以下的系统中性点不接地。 08.电力网络是指在电力系统中由变压器.电力线路等变换.输送.分配电能设备所组成的部分。 09.电力系统是指由发电机.各类变电所和输电线路以及电力用户组成的整体。 10.总装机容量是指电力系统中实际安装的发电机组额定百功功率的总和。 11.电能生产,输送,消费的特点: (1) 电能与国民经济各个部门之间的关系都很密切; (2) 电能不能大量储存; (3) 生产,输送,消费电能各个环节所组成的统一整体不可分割; (4) 电能生产,输送,消费工况的改变十分迅速; (5) 对电能质量的要求颇为严格。 16.对电力系统运行的基本要求: (1) 保证可靠的持续供电; (2) 保证良好的电能质量; (3) 保证系统运行的经济性。 17.变压器额定电压的确定: 变压器的一次侧额定电压应等于用电设备额定电压(直接和发电机相联的变压器一次 侧额定电压应等于发电机的额定电压),二次侧额定电压应较线路额定电压高10%。只有 漏抗很小的.二次直接与用电设备相联的和电压特别高的变压器,其二次侧额定电压才可 能较线路额定电压仅高5%。 18.所谓过补偿是指感性电流大于容性电流时的补偿方式,欠补偿正好相反,实践中,一 般采用欠补偿。 19.按绝缘材料,电缆可分为纸绝缘.橡胶绝缘.塑料绝缘三种类型。 20.架空线路由导线.避雷线.杆塔.绝缘子和金具等构成。 21.电缆线路由导线.绝缘层.保护层等构成。

电力基础知识

电力基础知识 第一章概论 一、动力系统、电力网、电力系统的划分 动力系统:习惯上,将有带动发电机转动的动力部分、发电机、升压变电所、输电线路、降压变电所和负荷等环节构成的整体成为动力系统。 电力网:由各类降压变电所、输电线里和生涯变电所组成的电能传输和分配的网络成为电力网。 电力系统:由发电机、电力网和负荷组成的统一体成为电力系统。 二、电厂的分类 火力发电厂:利用固体、液体、气体燃料的化学能来生产电能的的工厂。 水力发电厂:利用河流所蕴藏的水能资源来生产电能的工厂。可分为堤坝式和引水式电厂。 还有核电厂、风力发电、地热发电、潮汐发电、太阳能发电等。

三、电力网 电压等级的分类:3、6、10、35、63、110、220、330、500、750,均为三相交流系统的线电压。 由以上可知,当输送功率一定时,线路的电压越高,线路中通过的电流就越小,所用导线的截面就可以减小,用于导线的投资可以减少,而且线路中的功率损耗、电能损耗也就会相应降低。因此大容量、远距离输送电能要采用高压输电。 电压越高,要求线路的绝缘水平也就越高;线路杆塔投资增大,输电走廊加宽,变压器、电力设备等的投资也增加。 根据经验,电力系统输电额定电压等级中相邻的两个电压之比,在电压为110以下是一般为3倍左右,在110以上时宜在2倍左右。 四、电气设备的额定电压

理论上,用电设备的额定电压应和电网的额定电压相一致。实际上,由于输送电能时在线路和变压器等元件上产生的电压损失,会使线路上各处的电压不相等,使各点的实际电压偏离额定电压。即线路首端的电压将高出额定电压5%,线路末端的电压会低于额定电压5%。 发电机的额定电压:因为发电机总是接在线路的首端,因此它的额定电压应比电网的额定电压高5%,用于补偿电网上的电压损失。 变压器的额定电压:在电力系统中,变压器具有发电机和用电设备的双重性。因此规定:变压器一次绕组的额定电压等于电网的额定电压;若变压器一次绕组直接及发电机出线端相连是,其一次绕组的额定电压应及发电机的额定电压相同;变压器二次绕组的额定电压是指变压器空载运行是的电压。因此规定,二次绕组的额定电压应比同级电网的额定电压高10%。当变压器的二次侧输电距离较短或者变压器阻抗较小是,则变压器的二次绕组的额定电压可比同级电网的额定电压高5%。 五、电力网的类型 根据电压的高低和供电范围的大小,电力网可分为地方电

电力系统的基本知识

安全管理文书 电力系统的基本知识 日期:___________ 单位:____________

电力系统的基本知识 1什么叫电力系统的稳定和振荡? 答:电力系统正常运行时,原动机供给发电机的功率总是等于发电机送给系统供负荷消耗的功率,当电力系统受到扰动,使上述功率平衡关系受到破坏时,电力系统应能自动地恢复到原来的运行状态,或者凭借控制设备的作用过度到新的功率平衡状态运行,即谓电力系统稳定。这是电力系统维持稳定运行的能力,是电力系统同步稳定(简称稳定)研究的课题。 电力系统稳定分为静态稳定和暂态稳定。静态稳定是指电力系统受到微小的扰动(如负载和电压较小的变化)后,能自动地恢复到原来运行状态的能力。暂态稳定对应的是电网受到大扰动的情况。 系统的各点电压和电流均作往复摆动,系统的任何一点电流与电压之间的相位角都随功角S的变化而改变、频率下降等我们通常把这种现象叫电力系统振荡。 2、电力系统振荡和短路的区别是什么? 答:电力系统振荡和短路的主要区别是: 振荡时系统各点电压和电流值均作往复摆动,而短路时电流、电压值是突变的。此外,振荡时电流、电压值的变化速度较慢,而短路时的电流、电压值突变量很大。 振荡时系统任何一点电流与电压之间的相位角随功角S的变化而改变;而短路时,电流与电压之间的相位是基本不变的。 振荡时无零序和负序分量,短路时有零序和负序分量。 3、电力系统振荡时,对继电保护装置有那些影响?那些保护装置不受影响?

答:电力系统振荡时,对继电保护装置的电流继电器、阻抗继电器有影响。 对电流继电器的影响。当保护装置的时限大于1.5-2秒时,就可能躲过振荡不误动作。 对阻抗继电器的影响。丨f UJ保护动作,I J Uf保护返回。距离段采用振荡闭锁原理躲开系统振荡,以防止阻抗继电器误动作。 原理上不受振荡影响的的保护有相差动保护,和电流差动纵联保护,零序电流保护等。 4、我国电力系统中性点接地有几种方式?它们对继电保护的要求 是什么? 答:我国电力系统中性点接地有三种方式:①中性点直接接地方式;②中性点经过消弧线圈接地方式;③中性点不接地方式。 110KV以上电网的中性点均采用第①种接地方式。在这种系统中,发生单相接地故障时接地短路电流很大,故称大接地电流系统。在大接地系统中,发生单相接地故障的几率较高,可占短路故障的70%左右, 因此要求其接地保护能灵敏、可靠、快速、有选择地切除短路接地故障,以免危及电气设备的安全。 3-35KV电网的中性点采用第②或第③种接地方式。在这种系统中,发生单相接地故障时接地短路电流较小,故称小接地电流系统。在小接地电流系统中发生单相接地故障时,并不破坏系统线电压的对称性,系统还可以继续运行1-2个小时,同时由绝缘监察装置发出无选择性信号,由值班人员采取措施加以消除。 5、小接地电流系统中,为什么采用中性点经消弧线圈接地?

电力系统基础知识

电力系统基础知识

第一章 电力系统基础知识 继电保护、自动装置对电力系统起到保护和安全控制的作用,因此首先应明确所要保护和控制对象的相关情况,涉及的内容包括:电力系统的构成,电力系统中性点接地方式及其特点,电力系统短路电流计算及其相关概念。这是学习继电保护、自动装置等本书内容的基础。 >>第一节电力系统基本概念 一、电力系统构成 电力系统是由发电厂、变电站(所)、送电线路、配电线路、电力用户组成的整体。其中,联系发电厂与用户的中间环节称为电力网,主要由送电线路、变电所、配电所和配电线路组成,如图1-1中的虚框所示。电力系统和动力设备组成了动力系统,动力设备包括锅炉、汽轮机、水轮机等。 在电力系统中,各种电气设备多是三相的,且三相系统基本上呈现或设计为对称形式,所以可以将三相电力系统用单相图表述。动力系统、电力系统及电力网之间的关系示意图如图1-l所示。 图1-1 动力系统、电力系统及电力网示意图

中性点直接接地是指电力系统中至少有一个中性点直接与接地设施相连接,如图1-2中的N点接地,通常应用于500kV、330kV、220kV、110kV电网。 中性点直接接地系统保持接地中性点零电位,发生单相接地故障时如图1-2所示,非故障相对地电压数值变化较小。由于高压、尤其是超高压电力变压器中性点的绝缘水平、电气设备的绝缘水平都相对较低,采用中性点直接接地方式,对保证变压器及其电气设备的安全尤其重要。但由于中性点直接接地,与短路点构成直接短路通路,故障相电流很大,造成接于故障相的电气设备过电流。为此,需要通过继电保护和断路器动作,切断短路电流。 2.中性点不接地方式 中性点不接地系统指电力系统中性点不接地。中性点不接地系统发生单相接地故障时如图1-3所示,中性点电压发生位移,但是三相之间的线电压仍然对称,且数值不变;由于没有直接的短路通路,接地故障电流由线路和设备对地分布电容回路提供,是容性电流,通常数值不大,一般不需要立即停电,可以带故障运行一段时间(一般不超过2h);但非故障相对地电压升高,数值最大为额定相电压的3倍,因此用电设备的绝缘水平需要按线电压考虑。中性点不接地方式具有跳闸次数少的优点,因此普遍应用于接地电容电流不大的系统,例如66kV、35kV 电网。

电力基础知识(完整版)

一、名词解释: 1、三相交流电:由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统,叫三相交流电。 2、一次设备:直接与生产电能和输配电有关的设备称为一次设备。包括各种高压断路器、隔离开关、母线、电力电缆、电压互感器、电流互感器、电抗器、避雷器、消弧线圈、并联电容器及高压熔断器等。3、二次设备:对一次设备进行监视、测量、操纵控制和保护作用的辅助设备。如各种继电器、信号装置、测量仪表、录波记录装置以及遥测、遥信装置和各种控制电缆、小母线等。 4、高压断路器:又称高压开关,它不仅可以切断或闭合高压电路中的空载电流和负荷电流,而且当系统发生故障时,通过继电保护装置的作用,切断过负荷电流和短路电流。它具有相当完善的灭弧结构和足够的断流能力。 5、负荷开关:负荷开关的构造秘隔离开关相似,只是加装了简单的灭弧装置。它也是有一个明显的断开点,有一定的断流能力,可以带负荷操作,但不能直接断开短路电流,如果需要,要依靠与它串接的高压熔断器来实现。 6、空气断路器(自动开关):是用手动(或电动)合闸,用锁扣保持合闸位置,由脱扣机构作用于跳闸并具有灭弧装置的低压开关,目前被广泛用于500V 以下的交、直流装置中,当电路内发生过负荷、短路、电压降低或消失时,能自动切断电路。 7、电缆:由芯线(导电部分)、外加绝缘层和保护层三部分组成的电

线称为电缆。 8、母线:电气母线是汇集和分配电能的通路设备,它决定了配电装置设备的数量,并表明以什么方式来连接发电机、变压器和线路,以及怎样与系统连接来完成输配电任务。 9、电流互感器:又称仪用变流器,是一种将大电流变成小电流的仪器。 10 、变压器:一种静止的电气设备,是用来将某一数值的交流电压变成频率相同的另一种或几种数值不同的交流电压的设备。 11 、高压验电笔:用来检查高压网络变配电设备、架空线、电缆是否带电的工具。 12 、接地线:是为了在已停电的设备和线路上意外地出现电压时保证工作人员的重要工具。按部颁规定,接地线必须是25mm 2 以上裸铜软线制成。 13 、标示牌:用来警告人们不得接近设备和带电部分,指示为工作人员准备的工作地点,提醒采取安全措施,以及禁止微量某设备或某段线路合闸通电的通告示牌。可分为警告类、允许类、提示类和禁止在等。 14 、遮栏:为防止工作人员无意碰到带电设备部分而装设备的屏护,分临时遮栏和常设遮栏两种。 15 、绝缘棒:又称令克棒、绝缘拉杆、操作杆等。绝缘棒由工作头、绝缘杆和握柄三部分构成。它供在闭合或位开高压隔离开关,装拆携带式接地线,以及进行测量和试验时使用。 16 、跨步电压:如果地面上水平距离为0.8m 的两点之间有电位差,

电力基础知识科普

电力系统基础知识科普 1.电力系统、动力系统和电力网的划分 电力网:由变电所和不同电压品级输电线路组成的网络。 电力系统:由发电设备、输电设备和用电设备组成的网络。 动力系统:在电力系统的基础上,把发电厂的动力部分包含在内的系统。 2.电力系统运行的特点:电能不能大量存储;各环节组成的统一整体不可分割;过渡进程超级迅速(百分之几秒到十分之几秒);电力系统的地域性特点较强;对电能质量的要求很是严格;与国民经济各部门和人民生活关系极为紧密 3.电力系统运行的大体要求:保证供电的靠得住性:减少停电损失,要求元件有足够的靠得住性,要求提高系统运行的稳固性,保证良好的供电质量:电压、频率、波形,提高电力系统运行的经济性:降低能耗 4.发电厂的类型:常规能源发电(要紧发电形式):火力发电厂,水力发电厂,核能电厂; 新能源发电:地热电厂、潮汐电厂、风力发电厂、太阳能电站、海洋能发电、磁流体发电、氢能发电、核聚变发电 5.电力系统的中性点接地址式 四种中性点接地址式:(前两种属于小电流接地,后两种属于大电流接地) 中性点不接地;中性点经消弧线圈接地;中性点直接接地;中性点经电阻接地 6.电力系统的电压品级。 我国电力系统的电压品级分为:用电电压品级从220V(380V)、3 kV、6kV、10kV、35kV、66kV(农电)、110kV、220kV、380kV(国外)、500kV、750kV、1000kV这几个品级。 电力行业通常所说的高压指的是35kV以上到500kV为高压,500~1000kV为超高压,1000kV以上为特高压。中压是国外的概念,一样指的是6~35kV那个品级。随着电机制造工艺的提高,10 kV 电动机已批量生产,因此3 kV、6 kV已较少利用,20 kV、66 kV也很少利用。供电系统以10 kV、35 kV为主。输配电系统以110 kV以上为主。发电厂发电机有6 kV与10 kV两种,此刻以10 kV 为主,用户均为220/380V kV)低压系统。 依照《城市电力网规定设计规那么》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电网为 kV(220V/380V)。发电厂发出6 kV或10 kV电,除发电厂自己用(厂用电)之外,也能够用10 kV电压送给发电厂周围用户,10 kV供电范围为10Km、35 kV为20~50Km、66 kV为30~100Km、110 kV为50~150Km、220

相关文档
最新文档