几何中的尺规作图法

几何中的尺规作图法
几何中的尺规作图法

第七讲尺规作图

尺规作图的基本知识

一、几何作图的含义和意义

含义:给定条件,设法作具备这些条件的图形,能据条件作出图形或作不出图形,故几何作图是存在问题的证明。

意义:建立学生具体几何观念的重要手段,是克服死记硬背定理的好办法;学以致用;为制图学提供理论基础;培养逻辑思维能力。

二、作图公法

(1)通过两个已知点可作一直线;

(2)已知圆心和半径作圆;

(3)若两已知直线相交,或一已知直线和一已知圆(或圆弧)相交,或两已知圆相交,则可作出其交点。

上面三条叫作图公法。

若一个图不能有限次根据作图公理作出图形,则叫几何作图(或尺规作图)不能问题。

三、作图成法

我们把根据作图公法或一些已经解决的作图题而完成的作图,叫做作图成法。它可以在以后的作图中直接应用。下面列举一些:

(1)任意延长已知线段。

(2)在已知射线上自端点起截一线段等于已知线段。

(3)以已知射线为一边,在指定一侧作角等于已知角。

(4)已知三边,或两边及夹角,或两角及夹边作三角形。

(5)已知一直角边和斜边,作直角三角形。

(6)作已知线段的中点。

(7)作已知线段的垂直平分线。

(8)作已知角的平分线。

(9)过已知直线上或直线外一已知点,作此直线的垂线。

(10)过已知直线外已知点,作此直线的平行线。

(11)已知边长作正方形。

(12)以定线段为弦,已知角为圆周角,作弓形弧。

(13)作已知三角形的外接圆,内切圆,旁切圆。(14)过圆上或圆外一点作圆的切线。

(15)作两已知圆的内、外公切线。

(16)作已知圆的内接(外切)正三角形、正方形,或正六边形。 (17)作一线段,使之等于两已知线段的和或差。 (18)作一线段,使之等于已知线段的n 倍或n 等分。 (19)内分或外分一已知线段,它们的比等于已知比。

(20)作已知三线段,,a b c 的第四比例项。 (21)作已知两线段,a b 的比例中项。

(22)已知线段,a b 作一线段为x =,或作一线段为)x a b =

>。

四、解作图题的步骤

① 分析:遇到不是一目了然的作图题,常假定符合条件的图已做出,研究已知件和求作件间的关系,从而得到作图的线索。这个过程就是分析,是解题重要的一步。 ②作法:利用已知作图题时,只需说明清楚,不必一一累述。 ③证明:证所作图确实具有所设条件。

④讨论:作图题解的有无,多与寡,定与不定,决定于已知条件的大小、位置及相互关系。 尺规作图法举例

一、交轨法

一个作图题的解决,往往归结到某一点的确定,而一点的确定,须用两个条件1C 和2C ,如果能求出合于条件1C 的轨迹1F 和合于条件2C 的轨迹2F ,那么1F 和2F 的交点同时满足

1C 和2C ,这种由轨迹相交以解作图题的方法,称为交轨法。

决定某一点的轨迹有若干个,选择熟知的和简易的。

例1 在已知弧AmB 上求一点M ,使弦的比为::1MA MB p q =≠。

分析:设点M 已求到,满足::MA MB p q =,则点M 既在弧AmB 上,又在一个阿氏圆上,内分、外分AB 于C 、D ,使:::AC CB AD BD p q ==,阿氏圆是以CD 为直径的圆。 作法:如分析过程定出C 、D 两点,以CD 为直径作圆,它与AmB 相交于所求点M 。图形略。

证明:略(阿氏圆的性质知显然) 讨论:本题恒有一解。(C 在圆内而D 在圆外,两圆相交于两点,但其中一点必在阿氏圆直径CD 的另一侧,不在AmB 上)。

解法二:由角平分线性质知,∠AMB 的平分线MN 必过C 点,故不必作阿氏圆,只要定出C 和N 即可,而N 为AB 的中点,作AB 的中垂线即可。如下图所示。

例2 已知△ABC 的底边a ,顶角A 以及余二边的平方和2

2

2

b c k +=,求作这三角形。

分析:如图,设△ABC 已作成,,BC a A α==,且222

AB AC k +=。任作BC a =后,

A 的一个轨迹是以BC 为弦而内接角等于α的圆弧。若以M 表示BC 的中点,则

222221

22k AB AC AM a =+=+ (斯特瓦尔特定理)

即A 点的另一轨迹是以M A 点定。 作法:作线段BC a =,在BC 上作内接角等于α的圆弧;作221

(,22

M ;圆与圆弧的交点为所求的A 点。 证明:略。

讨论:显然a >,否则无意义;若A 为锐角,当cot 222

a a α

<<时,

221

(,

22

M 与圆弧AmB 有两交点A 与A ',但A B C AB

C '???,只算作一解;否则无解。

若A 为钝角,当

cot 222

a a α≤时有一解,否则无解。 若A 为直角,a=k 时显然有无穷多解,当a ≠k 时无解。

二、三角形奠基法

作图题中,往往可先作图形的一个三角形,从而奠定全部图形的基础,进而作出其它图形,这种三角形称为基础三角形。该方法称为三角形奠基法。 例3 已知ABC ?的三中线,,a b c m m m 的长度,求作该三角形。

分析:设ABC ?已作出,G 为重心,图中无奠基的三角形。延长GL 到K , 使LK GL =,则BGK ?三边已知,各为中线长的2/3。

作法:作BGK ?,使(2/3)a G K m =,(2/3)b GB m =,(2/3)c BK m =,作GK 的中点L ,并延长BL 到C 使LC BL =。延长LG 至A 使2GA LG =,则ABC ?即所求者。 证明:由作法,L 是BC 的中点,因而AL 是ABC ?的中线。由于2GA LG =,G 是ABC ?的重心,并且 3(3/2)a AL LG GK m ===,以M 、N 表CA 、AB 的中点,由于G 是重心,则(3/2)b BM BG m ==,(3/2)(3/2)c CN CG BK m ===,所以ABC ?合于条件。 讨论:本题有无解,取决于BGK ?是否存在,存在的条件是:

a b c m m m +>,b c a m m m +>,c a b m m m +>.

故所给三中线能构成三角形时,有一解,否则无解。

例4 已知△ABC 的,,a a a h t m ,求作该三角形。

分析:△ABC 若已作成,高a AH h =,角平分线a AT t =,中线a AM m =.

Rt AHT ?和AMH ?都可作出,取AMH ?为基础三角形,设AT 交外接圆于P ,则P 为BC

的中点,P 可由AT 及MH 在M 点的垂线相交决定。然后定圆心O ,O 在PM 上,也在AP 的中垂线上,故外接圆可作出,从而可定出B 、C 。

作法:作直角AHM ?,使90AHM ∠=,a AH h =,a AM m =.

在射线HM 上作T 点使 a AT t =,过M 作HM 的垂线与直线AT 相交于P 。作AP 的中垂线交PM 于O 。以O 为中心,以OA 为半径作圆,设其交直线HM 于B 及C ,则ABC ?即所求。

证明:因O 在AP 的中垂线上,则OP =OA ,从而P 是BC 的中点,从而AM 是ABC ?的中线,而AP 是BAC ∠的平分线。可见ABC ?中,有高a AH h =,中线a AM m =,平分角线a AT t =,即ABC ?合于所设条件。 讨论:

① 当,,a a a h t m 三者有两个相等时,△ABC 为等腰三角形,这时若三者不都相等无解,若

都相等便成不定问题,有无穷多解。

② 当,,a a a h t m 互不相等时,解要存在,则△AMH 存在且P 存在,并且P 和A 落在HM

的异侧(若a a m t <,则P 与A 落在MH 同侧),才能保证B 、C 存在,要保证这些事项,则必有T 介于H 和M 之间,有解的条件是:a a a h t m <<.

例5 求作△ABC ,已知,,a b c m h m .

分析:设△ABC 已作出,G 为重心,由重心的性质知1

3

BCG ABC S S ??=

,从而11

33

a GM AH h =

=,△BCG 可作。 证明:略(关键是证G 为重心,连AG 交BC 于点F ,证明N 是中点)

讨论:△ABC 能否作出决定于△BCG 能否作出。显然,GM GC <且GM GB <,即

2a b h m <且2a c h m <时有一解,否则无解。

三、合同变换法

将图形中某些元素施行适当的合同变换,然后借助于各元素的新旧位置关系发现作图的方法。常用的有对称变换、平移变换和旋转变换。

例6 求作△ABC ,已知,a a h ,两底角之差B C α∠-∠=.

分析:△ABC 已作出,先作BC a =,由于a h AH =,故A 点的一个轨迹是BC 的一条平行线XY 。现为了把α表示在图形上,延长BA 到E ,作C 关于XY 的对称点D ,则

B C EAY CAY EAY DAY α=∠-∠=∠-∠=∠-∠ ∴180BAD α∠=-,从而A 的另一轨迹是以BD 为弦内接角等于180α-的弓形弧。 作法证明:略。

讨论:以BD 为弦内接角等于180α-的弓形弧的对称弧交XY 于一点A ',但A BC '?中,

C B α∠-∠=,不符合条件,故本题只有一解。

例7 给定两平行线x 及y 和它们外侧各一点A 、B (如下图 ),求自A 至B 的最短路线,使介于x 、y 间的部分与定直线z 平行。

分析:在x 、y 上任取点X '、Y '满足//X Y z '

',AX X Y Y B ''''++最短在于AX Y B ''+最短。现()

T MN AX CY ''???→,C

为定点(实际上,()

T MN A C ???→),且

AX BY CY BY BC ''''+=+≥.则Y 定,进而X 定。X 、Y 为所求。

作法:略。

证明:略。

讨论:本题恒有一解。

例8 给定△ABC ,求作一直线平行于BC ,交AB 、AC 于D 、E ,使AD =EC.

分析:如图,将()

T ED EC DF ???

→,则BAF DFA CAF ∠=∠=∠,所以AF 为A ∠的平分线。由F 定D ,然后定E 即可。恒有一解。

作法:由分析作法显然。 证明:略。

例9 给三平行线,,a b c ,求以a 上一定点A 为顶点作正三角形ABC ,使余二点分别落在b 、

c 上。

分析:设△ABC 已作好,作AH b ⊥,(,60)

R A ABH ACH '?????→?,这时,b 旋转为b ',b '

与c 的交点为C ,进而可定B 。

作法:作AH b ⊥于H ,作60HAH '∠=且AH AH '=,过H '作b AH ''⊥,b '交c 于点

C ,再作60BAC ∠=,使BAC ∠与HAH '∠有相同转向,B 是直线AB 与b 的交点。

证明:只要证明AB =AC 就足以保证ABC ?是正三角形。由于'BAC HAH ∠=∠,立刻推出'BAH CAH ∠=。所以两个直角三角形BAH 和 'CAH 有一直角边及一锐角对应相等,因而合同。所以AB =AC 。

讨论:由于(,60)

R A AH AH '????→或(,60)

R A AH AH -'''????→,所以有两解。

四、代数分析法

有的作图题,解题的关键在于一条线段的算出,这时可借助于代数计算求得该线段,此方法叫代数分析法。

例10 求作一圆,使通过两定点A 、B 并切于已知直线l 。

分析:如图 ,关键在于确定切点T 的位置,如能定,过A 、B 、T 三点的圆就为所求。 设AB 与l 交于O ,x OT =,则2

x AO OB =?,即x 是线段OA 、OB 的比例中项,即T 可确定,进而圆可定。

作法:如分析所作,见下图1。 证明:略。 讨论: ① 直线AB 与l 交于一点且A 、B 在l 的同侧时,有二解,如图1。 ② //AB l 或A 、B 之一在l 上时,有一解如图2和3。 ③ A 、B 在l 的异侧时无解。

例11 求作一直线平行于梯形的底边,且平分该面积。

分析:设图已作成,设AB 交CD 于O ,,,OA a OB b OE x ===,则

12OEF OAD ABCD S S S ??=+,1

2OEF OBC ABCD S S S ??=-

由此 1

()2OEF OAD OBC S S S ???=+,又222::::OEF OAD OBC S S S x a b ???=,

所以 222

1()2

x a b =+.故E 点定。

作法:如图。 证明:略。

讨论:恒有一解。

尺规作图可能性的判断

一、判断准则

任何能用尺规完成的图形,归结为三条作图公理的有限次组合,即由一些点作直线、作圆,再由直线和圆产生新点。在直角坐标系中,这些新点的坐标由方程0x cy d ++=或0y d '+=或220x y ex fy d ++++=三种不同组合组成的方程组的解。而方程组的解是通过方程系数之间的加、减、乘、除、开平方运算得来的,故得尺规作图准则为: 定理:一个作图题中所求线段x ,可由一次齐次式12(,,,)n x F a a a =表示,则x 能由尺规

作出?F 仅含关于已知线段(1,2,,)i a i n =的有限次加、减、乘、除、开平方运算,并且

F 在定义域中能取实值。

二、几个古典几何作图题

1.倍立方问题:求作一立方体,使它的体积等于已知立方体的体积的2倍。

设已知立方体棱长为a ,求作的立方体的棱长为x ,则3

3

2x a =,惟一的实根为

x =,不可能由a 经过有限次加、减、乘、除、开平方运算得到。不能由尺规作出。

2.三等分任意角问题:设α是任一角,求θ,使3αθ=.

由三倍角公式3

cos cos34cos 3cos αθθθ==-,令cos x θ=,则方程化为

3430x x a --= (cos a α=已知)

不妨取60α=,这时12

a =

,方程为3

8610x x --=,此方程无有理根,故不可能分解为以有理数为系数的两因式之积。不能由尺规作出。

3.化圆为方问题:求作一正方形,使面积等于已知圆的面积。

设已知圆为单位圆,正方形的边长为x ,则2

x π=,π为超越数,故x 不能作出。 4.作圆内接正多边形

①正多边形的尺规作图,归结为方程10n

x -=的n 次本原单位根的尺规作图问题。(如果某一个n 次单位根的各次幂可得出所有n 次单位根,这样的n 次单位根叫做本原单位根。 如三次单位根243

3

123,,1i i e

e

π

πωωω===中,23121,1ωωω==,可见1ω为本原单位根;同

理2ω也是本原单位根,但3ω不是。)在n 次单位根中,21i n

e

πω=必是n 次本原单位根。

②定理:圆内接正(3)n n ≥边形可用尺规作图?12

2m

r n p p p =??(2,21

h i

i m o p ≥=+

的素数或者为1,1,2,,i r =)。

当100n <可作正n 边形有24种,3,6,12,24,48n =;4,8,16,32,64n =;5,10,20,40,80n =;15,30,60n =;17,34,68n =;51n =;85n =.

例12十等分圆周(黄金分割,即内外比)

分析:设半径为R ,正十边形边长为x ,AB 为其中一边,如下图1。显然

36,72AOB OAB ∠=∠=,BC 平分角ABO ,则OAB BAC ??

∴::OA AB AB AC =,又由OC BC AB ==得::OA OC OC AC =,称点C 将线段OA 分成外内比或黄金分割,即全线段与长部分的比等于长部分与短部分的比。

∴圆内接正十边形的边长是将半径分成黄金分割所得的长部分。下面作x ,由

::OA OC OC AC =,得220x Rx R +-=,从而1)2

R

x =

,作法如下图2所示,OC 为所求x . 注:

①圆内接正十边形长101)2

R

a =.

②由弦与圆周角的关系

2AB

R =圆周角

知1sin181)4=.

④ 0.618≈,即黄金分割数,在优选法上常用,来源于黄金分割。

例13 五角星的作法

法一:将圆周十等分(例12),从第一个分点起,每隔开三个分点相连即得。 法二:将圆周五等分,从第一个分点起间点相连即得。 注:

①圆内接正十边形、五边形、半径的关系

510,,AB a AC BC a OA R ====,作OE AC ⊥于E ,交AB 于D ,则DAC

CAB ??,

∴::AD AC AC AB =,即2

AC AB AD =?,由AOB

ODB ??有

:::()AB OB OB DB OB AB AD ==-,∴2()R AB AB AD =?-,

与上两式相加即得2

2

2

AB AC R =+,

∴22222510106a a R a a =+=+,即同圆的正五边形、正六边形、正十边形的边构成直角三角形,由此得正五边形更简单的作法。

作法:PQ 、AS 为二垂直直径,M 为OQ 的中点,作MA MN =;作AN =AB ;则

510,AB a ON a ==.

证明:2

2

2

2

2

2

AB AN AO ON R ON ==+=+,

1022

R

ON MN OM MA MO R a =-=-=

-=,得证。

初中数学总复习尺规作图大全

中考总复习---尺规作图专项训练 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。题目二:作已知线段的中点。 已知:如图,线段a . 已知:如图,线段MN. 求作:线段AB,使AB = a . 求作:点O,使MO=NO(即O是MN的中点). 题目三:作已知角的角平分线。题目四:作一个角等于已知角。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 题目五:已知三边作三角形。题目六:已知两边及夹角作三角形。 已知:如图,线段a,b,c. 已知:如图,线段m,n, ∠α. 求作:△ABC,使AB = c,AC = b,BC = a. 求作:△ABC,使∠A=∠α,AB=m,AC=n.题目七:已知两角及夹边作三角形。 已知:如图,∠α,∠β ,线段m .求作:△ABC,使∠A=∠α,∠B=∠ β ,AB=m. 课堂测试

C B A C B A A C B C B 1.如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定这个圆形零件的半径. 2.如图,107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论) 三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况? 3、过点C 作一条线平行于AB ; 4、过不在同一直线上的三点A 、B 、C 作圆O ; 5、过直线外一点A 作圆O 的切线。 6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案(要求用尺规作图,保留作图痕迹) 7、某公园有一个边长为4米的正三角形花坛,三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1 )按圆形设计,利用图1画出你所设计的圆形花坛示意图; (2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由 . C B A

几何画板十个实例教学教程

几何画板实例教程:(1)模拟时钟 1,制作表盘 打开图表----定义坐标系,以原点为圆心构造圆O,右击圆周选选择粗线,颜色任意。在圆周上取点B,选取点O、B打开菜单变换---缩放选择固定比为4:5得到点B′ 构造线段BB′右击选择粗线,选择点O 打开变换标记中心,选择线段BB′(不要断点)打开菜单变换---旋转六十度,同理旋转十一次得到 。

在圆周任意取点C,选取O和C打开菜单变换---缩放,固定比选择为9:10 得到C′构造线段CC′,选取点C和线段CC′变换旋转6°,C旋转得到点D,然后选取点C打开菜单变换---迭代,影像选择点D,迭代次数操作键盘加号得到58次:

设y轴与圆的交点为E以点0为缩放中心将点E分别缩放90%,60℅,30%,得到点F、G、H隐藏网格和坐标轴,分别构造线段OF,OG,OH并设置为虚线、细线、粗线得到图:到此为止表盘完成了。 2:制作按钮操作时钟 打开菜单图标—新建参数标签改为秒,值的精确度选择为百分之一 打开菜单度量---计算,使用函数trunc分别计算一下结果:秒针旋转的角度、分针的旋转角度、时针的旋转角度。

选取参数“秒=1”打开编辑---操作类按钮—动画 范围设置为0到86400(一天一夜二十四小时共86400秒),标签改为“启动时钟”。 再次选择参数秒同上面一样打开动画按钮,不同的是把范围改为0到0.001,(此范围保证各指针的旋转的角度为0°),标签改为“归零”

选取打开菜单变换---标记角度,然后选取秒针(即图中的虚线)做变换—旋转变换,同理再分别选取分针和时针的旋转角度

做分针和时针的旋转变换。 此时点击启动时钟和归零就可以得到时钟的转动的效果了。(没有用的线可以隐藏了) 3.制作合并文本 用文本工具分别作时、分、秒三个独立的文本 再分别打开度量---计算下面三个值: 此结果是小时的取整; 此结果是秒的显示数字; 此结果为分的显示数字 分别右键单击三个结果选择属性—值的精确度选择单位。 依次选择下面的文本和值打开菜单编辑—合并文本

实用文库汇编之数学 八年级上 尺规作图练习题

*作者:座殿角* 作品编号48877446331144215458 创作日期:2020年12月20日 实用文库汇编之图1 图2 1 用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是() A.(SAS)B.(SSS)C.(ASA)D.(AAS) 2 如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是() 作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E; ②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C; ③画射线OC,射线OC就是∠AOB的角平分线. A.ASA B.SAS C.SSS D.AAS 3 如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以 B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠ EBA;③EB平分∠AED;④ED=AB中,一定正确的是()

A.①②③B.①②④C.①③④D.②③④ 图3 图4 4 如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:①BD垂直平分AC;②AC平分∠BAD;③AC=BD;④四边形ABCD是中心对称图形. 其中正确的有()A.①②③B.①③④C.①② ④D.②③④第1页 5 观察图中尺规作图痕迹,下列结论错误的是() A.PQ为∠APB的平分线B.PA=PB C.点A、B到PQ的距离不相 等D.∠APQ=∠BPQ

解读高斯正十七边形的作法(下)

解读高斯正十七边形的作法 正十七边形的尺规作法: 步骤1:在平面直角坐标系xOy 中作单位圆O 步骤2:在x 轴负半轴上取点N ,使|ON|= 41,易知|NB|=417,以N 为圆心,NB 为半径作弧,交x 轴于F 、F’,易知|OF|= 2a ,|OF’|=2b 步骤3:此时|FB|=122+?? ? ??a =242+a ,以F 为圆心,|FB|为半径作弧,交x 轴正半轴于G ,此时|OG|=2 422++a a =c 步骤4:.类似地,|F’B|=122 +?? ? ??b =242+b ,以F’为圆心,|F’B|为半径作弧,交x 轴正半轴于点G’,此时|OG’|=2422++b b =e 步骤5:以|CG’|为直径作圆,交y 轴正半轴于点H ,易知OH 2=1·e

步骤6:以H 为圆心, 21|OG|为半径作弧,交x 轴正半轴于点K ,则有|OK|=222OH OG -??? ??=222e c -?? ? ??=242e c -步骤7:以K 为圆心,|KH|=2 1|OG|为半径作弧,交x 轴正半轴于点L ,则|OL|=2 42e c c -+步骤8:取OL 的中点M ,则|OM|=4 42e c c -+=cos 172π步骤9:过点M 作y 轴的并行线交单位圆O 于两点A 2和A 17,则Α为正十七边形的第一个顶点,A 2为第二个顶点,A 17为第十七个顶点,从而作出正十七边形。 正十七边形边长的表达式 在上面得到的一系列等式: a =2171+-, b =2171--, c =242++a a ,e =2 42++b b ,cos 172π=4 42e c c -+中,依次求出c =4 17234171-++-,

几何画板视频教程全集(完整)(完整资料).doc

此文档下载后即可编辑 几何画板视频教程全集(完整) 一、绘制几何图形和几何体[本章实例下载] 实例1 利用画点工具任意画三点 实例2 绘制线段 实例3 绘制过同一点的三条直线 实例4 绘制相同端点的三条射线 实例5 绘制三个同心圆 实例6 绘制共点圆 实例7 绘制圆在第一象限内的部分 实例8 绘制三角形的中线 实例9 绘制三角形的三条角平分线 实例10 绘制三角形的三条高 实例11 绘制相邻两边可以随意改变的平行四边形实例12 绘制菱形 实例13 绘制梯形的中位线 实例14 绘制等腰梯形 实例15 绘制正三角形 实例16 绘制正五边形 实例17 绘制关于某条直线对称的两个全等的三角形实例18 绘制关于某点对称的两个三角形 实例19 绘制相似三角形 实例20 绘制五角星 实例21 绘制正方体 实例22 绘制相邻三条棱可改变的三棱柱 实例23 绘制三棱台 实例24 绘制圆柱 实例25 绘制圆锥 实例26 绘制圆台

二、制作度量型课件[本章实例下载] 实例1 验证三角形的中位线定理 实例2 验证圆幂定理 实例3 验证三角形内角和 实例4 验证圆周角与圆心角的关系实例5 验证同底等高三角形面积相等实例6 验证三角形的面积公式 实例7 验证勾股定理 实例8 验证两点间的距离公式 实例9 验证正弦定理 实例10 验证两平行线间的斜率关系实例11 验证余弦定理 实例12 绘制分段函数

三、制作图像型课件[本章实例下载] 实例1 二次函数的图像 实例2 指数函数的图像 实例3 对数函数的图像 实例4 函数y=sinx的图像 实例5 绝对值函数的图像 实例6 可变系数的二次函数的图像 实例7 可变系数的三角函数的图像 实例8 定义在区间[a,b]上的函数的图像实例9 椭圆的参数方程 实例10 星形线 实例11 圆锥曲线的统一方程 实例12 心脏线

中考尺规作图大全-(含练习答案)

a ③ ② ① P B 尺规作图(含练习与答案)-word 【知识回顾】 1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 2、五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。 已知:如图,线段a .求作:线段AB,使AB = a . 作法: (1)作射线AP; (2)在射线AP上截取AB=a . 则线段AB就是所求作的图形。 (2)题目二:作已知线段的垂直平分线。 已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点). 作法: (1)分别以M、N为圆心,大于MN 2 1的相同线段为半径画弧,两弧相交于P,Q; (2)连接PQ交MN于O. 则点PQ就是所求作的MN的垂直平分线。 (3)题目三:作已知角的角平分线。 已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 作法: (1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N; (2)分别以M、N为圆心,大于MN 2 1的线段长为半径画弧,两弧交∠AOB内于P; (3)作射线OP。 则射线OP就是∠AOB的角平分线。 (4)题目四:作一个角等于已知角。 已知:如图,∠AOB。 求作:∠A’O’B’,使A’O’B’=∠AOB 作法: (1)作射线O’A’; (2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N; (3)以O’为圆心,以OM的长为半径画弧,交O’A’ 于M’; (4)以M’为圆心,以MN的长为半径画弧,交前弧于 N’; (5)连接O’N’并延长到B’。 则∠A’O’B’就是所求作的角。 (5)题目五:经过直线上一点做已知直线的垂线。

专题:五种基本作图的详细作图过程

尺规作图的基本步骤和作图语言 一、作线段等于已知线段 已知:线段a 求作:线段AB ,使AB =a 作法:1、作射线AC 2、在射线AC 上截取AB =a ,则线段AB 就是所要求作的线段 二、作角等于已知角 已知:∠AOB 求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB. 作法: (1)作射线O ′A ′. (2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D. (3)以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于点C ′. (4)以点C ′为圆心,以CD 长为半径画弧,交前面的弧于点D ′. (5)过点D ′作射线O ′B ′.∠A ′O ′B 三、作角的平分线 已知:∠AOB, 求作:∠AOB 内部射线OC,使:∠AOC=∠BOC, 作法:(1)在OA 和OB 上,分别截取OD 、OE ,使OD=OE . (2)分别以D 、E 为圆心,大于的 DE 2 1 长为半径作弧,在∠AOB 内,两弧交于点C . (3)作射线OC .OC 就是所求作的射线. 四、作线段的垂直平分线(中垂线)或中点 已知:线段AB 求作:线段AB 的垂直平分线 作法: (1)分别以A 、B 为圆心,以大于AB 的一半为半 径在AB 两侧画弧,分别相交于E 、F 两点 (2)经过E 、F ,作直线EF (作直线EF 交AB 于 点O )直线EF 就是所求作的垂直平分线 (点O 就是所求作的中点) A O

五、过直线外一点作直线的垂线. (1)已知点在直线外 已知:直线a 、及直线a 外一点A.(画出直线a 、点A) 求作:直线a 的垂线直线b ,使得直线b 经过点A. 作法: (1)以点A 为圆心,以适当长为半径画弧,交直线a 于点 C 、D. (2)以点C 为圆心,以AD 长为半径在直线另一侧画弧.(3)以点D 为圆心,以AD 长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A 、B 作直线AB. 直线AB 就是所画的垂线b.(如图) (2)已知点在直线上 已知:直线a 、及直线a 上一点A. 求作:直线a 的垂线直线b ,使得直线b 经过点作法: (1) 以A 为圆心,任一线段的长为半径画弧, 交a 于C 、B 两点 (2) 点C 为圆心,以大于CB (3) 以点B 为圆心,以同样的长为半径画弧, 两弧的交点分别记为M (4) 经过A 、M ,作直线AM 直线AM 常用的作图语言: (1)过点×、×作线段或射线、直线; (2)连结两点××; (3)在线段××或射线××上截取××=××; (4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×; (5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×; (6)延长××到点×,使××=××。 二:作图题说明 在作图中,有属于基本作图的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。 (1)作线段××=××; (2)作∠×××=∠×××; (3)作××(射线)平分∠×××; (4)过点×作××⊥××,垂足为点×; (5)作线段××的垂直平分线××

最全的几何画板实例教程

上篇用几何画板做数理实验 图1-0.1 我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。 案例一四人分饼 有一块厚度均匀的三角形薄饼,现在要把它平 均分给四个人,应该如何分? 图1-1.1 思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。 方案一:画三角形的三条中位线,分三角形所成的四部 分面积相等,(其实四个三角形全等)。如图1-1.2。 图1-1.2

方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。 图1-1.3 用几何画板验证: 第一步:打开几何画板程序,这时出现一个新绘图文件。 说明:如果几何画板程序已经打开,只要由菜单“文件”→“新绘图”,也可以新建一个绘图文件。 第二步:(1)在工具箱中选取“画线段”工具; (2)在工作区中按住鼠标左键拖动,画出一条线段。如图 1-1.4。 注意:在几何画板中,点用一个空心的圈表示。 图1-1.4 第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5: 注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做: 用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。如图 1-1.6 图1-1.6 在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明 B 图1-1.5 第四步:(1)再次选取“画线段”工具,移动鼠标与点A 重合,按左键拖动画出线段AC ;(2)画线段BC ,标出标签C ,如图1-1.7。 注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。 B 图1-1.7 第五步:(1) 用“选择”工具单击线段AB ,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2) 由菜单“作图”→“中点”,画出线段AB 的中点,标上标签。得如图1-1.8。 注意:如果被选取的是点,点的外面会有一个粗黑圆圈。在几何画板中,选取线段是不包括它的两个端点的,以后的问题都是这样,如果不小心多选了某个对象,可以 B C D 图1-1.8

高斯与正十七边形

高斯与正十七边形 数学就象一棵美丽的星球,他那博大精深、简明透彻的数学美就是他的引力场。许许多多人类的精英被他的引力所吸引,投入他的怀抱为他献出了自己毕生的精力。被誉为“数学王子”的伟大数学家高斯就是其中之一。 高斯是个数学天才,幼年时巧妙地计算1+2+3+…+100为101×50=5050的故事几乎尽人皆知。其实,学生日期的高斯不仅数学成绩优异,而且各科成绩都名列前茅。小学毕业后,高斯考了文科学校。由于他古典文学成绩突出,入学后直接上了二年级。两年以后高斯又升入了高中哲学班。 15岁时,高斯在一位公爵的资助下上了大学-卡罗琳学院。在那里,他掌握了希腊文、拉丁文、法文、英文有丹麦文,又学会了代数、几何、微积分。语言学和数学是他最喜爱的两门课程。 18岁时,高斯进入了哥廷根大学深造。这时,高斯面临着一个非常痛苦的选择:是把语言学作为自己的终生事业?还是把数学作为自己的终生事业?两棵下不了决心进行最后的选择。 后来,一次数学研究上的突破改变了两个引力场的均衡。高斯终于下定决心,飞向了数学之星。 事情是这样的,尺规作图是几何学的重要内容之一,从古希腊开始,人们一直认为正多边形是最美的图形,因此,用尺规作图法能够作出哪些正多边形,历来就是一个极具魅力的问 题。到高斯的时代,人们已经解决了边数是n 23?、n 24?、n 25?、n 253??(=n 0,1, 2,3……)的正多边形的尺规作图问题。但是,还没有人能作出正7边形、正11边形、正17边形等等。很多人认为,当边数是大于5的素数时,那样的正多边形是不可以用尺规作图完成的。 高斯一直对正多边形尺规作图问题非常着迷。经过持久地,如醉如痴的思考与画图,于1796年3月30日,19岁的高斯出人意料地作出了正17边形。并且,他把正多边形作图问题与高次方程联系起来,彻底解决了哪些正多边形能作出,哪些正多边形不能作出。他证明 了一切边数形如122+t (=t 0,1,2,3,……)的正多边形都只可以作出,而边数为7、11、14,……的正多边形是作不出的。 正17边形作图问题不仅震撼了数学界,也震撼了高斯自己的心灵。他再也无法控制自己,在数学美的巨大引力的作用下,飞向了自己理想的星球-他选择了数学。 从此,高斯的数学成就象喷泉一样涌了出来。他在几乎所有的数学学科中留下了自己的光辉成就,成为伟大的数学家。 高斯直到晚年还十分欣赏使自己走上数学之路的正17边形,对数学美的赞叹与追求伴高斯渡过了他的一生。高斯逝世后,人们按照他的遗嘱,在他的雕像下面建立了一座正17边枎的底座,用他非常欣赏的《李尔王》中的诗句赞美道:“你,自然,我的女神,我要为你的规律而献身”。

初中最基本的尺规作图总结

尺规作图 一、理解“尺规作图”的含义 1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的. 2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差. 二、熟练掌握尺规作图题的规范语言 1.用直尺作图的几何语言: ①过点×、点×作直线××;或作直线××;或作射线××; ②连结两点××;或连结××; ③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; 2.用圆规作图的几何语言: ①在××上截取××=××; ②以点×为圆心,××的长为半径作圆(或弧); ③以点×为圆心,××的长为半径作弧,交××于点×; ④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤 尺规作图题的步骤: 1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; 2.求作:能根据题目写出要求作出的图形及此图形应满足的条件; 3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法. 在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要. 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线;

尺规作图方法大全

七年级数学期末复习资料(七) 尺规作图 【知识回顾】 1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本 图, 通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 ,最常用的尺规作 2、五种基本作图: 1 、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。 已知:如图,线段 a . 求作:线段AB,使 AB = a . 作法: (1)作射线 AP; (2)在射线 AP上截取 AB=a . 则线段 AB就是所求作的图形。 (2)题目二:作已知线段的中点。 已知:如图,线段 MN. 求作:点O,使 MO=NO(即 O是 MN的中点) .作法: (1)分别以M、 N为圆心,大于 的相同线段为半径画弧,两 弧相交于 P,Q; (2)连接PQ交 MN于 O. 则点 O就是所求作的MN的中点。 (3)题目三:作已知角的角平分线。 已知:如图,∠ AOB, 求作:射线 OP, 使∠ AOP=∠ BOP(即 OP平分∠作法: (1)以 O为圆心,任意长度为半径画弧, 分别交 OA, OB于 M, N; (2)分别以M、N为圆心,大于的线段长为半径画弧,两弧交∠AOB内于P; (3)作射线OP。 则射线 OP就是∠ AOB的角平分线。 a A M AOB)。 M O B P P O N Q A P N B

(4)题目四:作一个角等于已知角。 已知:如图,∠ AOB。 求作:∠ A’ O’ B’,使 A’ O’ B’ =∠ AOB B B' N N'N' O MA O' M' A'O'M'A'O'M' A'① ②③ 作法: (1)作射线O’ A’; (2)以 O为圆心,任意长度为半径画弧,交OA于M,交OB于N;(3)以 O’为圆心,以 OM的长为半径画弧,交 O’ A’于 M’;(4)以 M’为圆心,以 MN的长为半径画弧,交前弧于N’; (5)连接 O’ N’并延长到 B’。 则∠ A’ O’B’就是所求作的角。 (5)题目五:经过直线上一点做已知直线的垂线。 已知:如图, P 是直线 AB上一点。 求作:直线 CD,是 CD经过点 P,且 CD⊥AB。 M A P B A 作法: (1)以 P为圆心,任意长为半径画弧,交AB于 M、 N;C Q N P B D (2)分别以 M、 N 为圆心,大于 (3)过D、Q作直线CD。 则直线 CD是求作的直线。1 MN 的长为半径画弧,两弧交于点Q;2 (6)题目六:经过直线外一点作已知直线的垂线 D 已知:如图,直线AB及外一点 P。 P P 求作:直线 CD,使 CD经过点P, 且CD⊥ AB。 A B A M N B Q C

初中尺规作图详细讲解含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习 惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图 有如下三条: ⑴经过两已知点可以画一条直线; ⑵已知圆心和半径可以作一圆; ⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴三等分角问题:三等分一个任意角; ⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、

的几何画板实例教程

上篇用几何画板做数理实验 图1-0、1 我们主要认识一下工具箱与状态栏,其它的功能在今后的学习过程中将学会使用。 案例一四人分饼 有一块厚度均匀的三角形薄饼,现在要把它平 均分给四个人,应该如何分? 图1-1、1 思路:这个问题在数学上就就是如何把一个三角形分成面积相等的四部分。 方案一:画三角形的三条中位线,分三角形所成的四部分 面积相等,(其实四个三角形全等)。如图1-1、2。 图1-1、2

方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1、3。 图 1-1、3 用几何画板验证: 第一步:打开几何画板程序,这时出现一个新绘图文件。 说明:如果几何画板程序已经打开,只要由菜单“文件”→“新绘图”,也可以新建一个绘图文件。第二步:(1)在工具箱中选取“画线段”工具; (2)在工作区中按住鼠标左键拖动,画出一条线段。如图 1-1、4。 注意:在几何画板中,点用一个空心的圈表示。 图1-1、4 第三步:(1)选取“文本”工具;(2)在画好的点上单击左键, 可以标出两点的标签,如图1-1、5: 注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做: 用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。如图1-1、6 图1-1、6 在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明 B 图1-1、5 第四步:(1)再次选取“画线段”工具,移动鼠标与点A重 合,按左键拖动画出线段AC;(2)画线段BC,标出标签C,如 图1-1、7。 注意:在熟悉后,可以先画好首尾相接的三条线段后再标 上标签更方便。 B 图1-1、7 第五步:(1) 用“选择”工具单击线段AB,这时线段上出现 两个正方形的黑块,表示线段处于被选取状态;(2) 由菜单 “作图”→“中点”,画出线段AB的中点,标上标签。得 如图1-1、8。 注意:如果被选取的就是点,点的外面会有一个粗黑圆 圈。在几何画板中,选取线段就是不包括它的两个端点 的,以后的问题都就是这样,如果不小心多选了某个对象,可以按Shi f t键后用左键再次单击该对象取消选取。 B D 图1-1、8

尺规作图学习知识归纳

考点名称:尺规作图 尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。 其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。 尺规作图的中基本作图: 作一条线段等于已知线段; 作一个角等于已知角; 作线段的垂直平分线; 作已知角的角平分线; 过一点作已知直线的垂线。 还有: 已知一角、一边做等腰三角形 已知两角、一边做三角形 已知一角、两边做三角形 依据公理: 还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。注意: 保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。

尺规作图方法: 任何尺规作图的步骤均可分解为以下五种方法: ·通过两个已知点可作一直线。 ·已知圆心和半径可作一个圆。 ·若两已知直线相交,可求其交点。 ·若已知直线和一已知圆相交,可求其交点。 ·若两已知圆相交,可求其交点。 【学习目标】 1.了解什么是尺规作图. 2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由. 4.学会使用精练、准确的作图语言叙述画图过程. 5.学会利用基本作图画三角形等较简单的图形. 6.通过画图认识图形的本质,体会图形的内在美. 【基础知识精讲】 1.尺规作图: 限定只用直尺和圆规来完成的画图,称为尺规作图. 注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.

正十七边形做法及证明.

步骤一: 给一圆O,作两垂直的直径OA、OB, 作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA 作AO延长线上E点使得∠DCE=45度 步骤二: 作AE中点M,并以M为圆心作一圆过A点, 此圆交OB于F点,再以D为圆心,作一圆 过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。 正十七边形的尺规作图存在之证明:

设正17边形中心角为a,则17a=360度,即16a=360度-a 故sin16a=-sina,而 sin16a=2sin8acos8a=22sin4acos4acos8a=2 4 sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a=-1 注意到 cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8№a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a(cos3a+cos5a+cos6a+cos7a =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a 经计算知xy=-1 又有 x=(-1+根号17/4,y=(-1-根号17/4 其次再设:x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17/4 y1+y2=(-1-根号17/4 最后,由cosa+cos4a=x1,cosacos4a=(y1/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

几何画板课件制作实例教程

几何画板课件制作实例教程_小学数学篇 几何画板课件制作实例教程 第一章小学数学 1. 1数与代数 实例1 整数加法口算出题器 实例2 5以内数的分成 实例3 分数意义的动态演示 实例4 求最大公约数和最小公倍数 实例5 直线上的追及问题 1.2 空间与图形 实例6 三角形分类演示 实例7 三角形三边的关系 实例8 三角形内角和的动态演示 实例9 三角形面积公式的推导 实例10 长方形周长的动态演示 实例11 长方体的初步认识 实例12 长方体的体积 1.3 统计与概率 实例13 数据的收集与整理 实例14 折线统计图 “几何画板”软件以其动态探究数学问题的功能,为数学教育活动施行“动手实践、自主探索、合作交流”的学习方式提供了可能性。经笔者们的尝试,她除了

可在小学数学中“空间与图形”这个学习领域中大展手脚,在“数与代数”、“统计与概率”这两个学习领域中,同样也能折射出其独特的魅力光芒。 小学生的数学学习心理的特点决定其数学学习活动需以直观的形象作为探索数学问题的支撑,以操作、实验作为主要途径之一。因此,本章实例课件的制作以几何画板善于表现数学思想的特色积极渗透各种数学思想,注重以课件所蕴含的思想推行“致力于改变学生的学习方式”教学策略,同时也努力实现学生个体在自主操作与学习课件中充分进行“观察、实验、猜测、验证、推理与交流”等数学活动,促使学生在课件的引导下亲身体验“做数学”,实现数学的“再创造”。 1. 1数与代数 培养学生的数感与符号感是“数与代数”学习内容的一个很重要的目标,而采用几何画板能较轻易地实现“数形结合”。以“数形结合”的方式可帮助小学生体会数与运算的意义以及其所含的数学思想。因此,本节实例课件的设计体现了促进学生经历从实际问题到抽象出数与运算的全过程的观念,同时也充分展露了几何画板善于以直观的图形表现抽象的数学思想的特点。 实例1 整数加法口算出题器 【课件效果】 新课程标准规定:小学一年级学生要求熟练掌握20以内整数的口算加减法。编制“口算出题器”类课件,以往可能要在可编程类软件的平台上进行,现在却可以利用几何画板的参数【动画】功能,较轻易地实现。 如图1-1所示,单击按钮,出示随机加法算式,单击按钮,显示当前算式的结果。本实例适用于整数加法意义的教学、20以内的加法口算测试等,显示了信息技术与学科整合的优势。 整数加法口算出题器 4+8= 图1.1 图1-1 课件效果图 【构造分析】 1.技术要点 υ几何画板软件参数【动画】的运用 υ【带参数的迭代】的运用 2.思想分析

尺规作图方法大全(正式)

【知识回顾】 1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本些复杂的尺规作图都是由基本作图组成的。 2、五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。 已知:如图,线段 a . 求作:线段AB,使AB = a . 作法: (1)作射线AP (2)在射线AP上截取AB=a . a ! A rB-P 尺规作图 则线段AB就是所求作的图 形。 (2)题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点0,使M0=N Q即0是MN的中点). 作法: (1)分别以M N为圆心,大于 的相同线段为半径画弧,两弧相交于P, Q (2)连接PQ交MN于0. 则点0就是所求作的MN的中点。 (3)题目三:作已知角的角平分线。 已知:如图,/ A0B 求作:射线0P,使/ A0P=Z BOP(即卩0P平分/ A0B 。作法: (1)以0为圆心,任意长度为半径画弧,分别交0A 0B于 M, N; (2)分别以M N为圆 心,大于f的线I段长为半径画弧,两弧交/ A0B内于P; (3)作射线0P A M P 则射线0P就是/ A0B的角平分线。 (4)题目四:作一个角等于已知角。已知:如图,/ A0B 求作:/ A 0 B',使A' 0 B' =/A0B 作法: (1)作射线0' A'; ,最常用的尺规作图,通常称基本作图。

(2) (3) (4) (5) 以O 为圆心,任意长度为半径画弧,交 OA 于M 交OB 于N; 以O 为圆心,以 OM 的长为半径画弧,交 O A '于M ; 以M 为圆心,以 MN 的长为半径画弧,交前弧于 连接O N' 并延长到B 'o N'; 则/ A O' B '就是所求作的角。 (5)题目五:经过直线上一点做已知直线的垂线。 已知:如图,P 是直线 AB 上一点。 求作:直线 CD,是CD 经过点P,且CD 丄ABo 作法: (1) AB 于M N ; (2) 以P 为圆心,任意长为半径画弧,交 1 分别以M N 为圆心,大于-MN 的长为半径画弧, 2 两弧交于点 Q; (3) 则直线CD 是求作的直线。 (6)题目六:经过直线外一点作已知直线的垂线 已知: 求作: 过D Q 作直线CD 作法: (1) (2) 如图,直线 AB 及外一点P 。 直线CD,使CD 经过点P, 且 CDL ABo 以P 为圆心,任意长为半径画弧,交 AB 于M N; 1 分别以M N 圆心,大于丄MN 长度的一半为半径画弧,两弧交于点 2 (3) 则直线CD 就是所求作的直线。 (5) 已知 求作 作法 (1) (2) 过P 、Q 作直线CD 题目七:已知三边作三角形。 如图,线段 a , b , c. △ ABC 使 AB = c , AC = b , BC = a. 作线段AB = c ; 以A 为圆心,以b 为半径作弧, 以B 为圆心,以a 为半径作弧与 前弧相交于C; 连接AC, BC (3) 则厶ABC 就是所求作的三角形。 题目八:已知两边及夹角作三角形。 已知 求作 作法 (1) (2) (3) 如图,线段 m n, / . △ ABC 使/ A=z , AB=m AC=n. 作/ A=Z ; 在AB 上截取AB=m ,AC=n ; 连接BC, A Q 则厶ABC 就是所求作的三角 形。

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解 初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条: ⑴ 经过两已知点可以画一条直线; ⑵ 已知圆心和半径可以作一圆; ⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴ 三等分角问题:三等分一个任意角; ⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴ 正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵ 四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的 表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释

相关文档
最新文档