钢材硬度涡流无损检测技术的研究

钢材硬度涡流无损检测技术的研究
钢材硬度涡流无损检测技术的研究

焊接钢管在线涡流探伤

焊接钢管在线涡流探伤 曾祥照 摘要:涡流探伤具有连续、快速、检测灵敏度高的特点,适合于焊接钢管在生产线上的连续检测,是焊管生产中重要的质量控制方法。概述了EEC数字型涡流探伤仪在焊管生产线上涡流应用情况。 主题词:涡流探伤焊接钢管灵敏度 一.焊管涡流探伤的必要性 高频焊接钢管(简称焊接钢管或焊管)在流体输送、建筑构件和五金家具制作上有广泛的用途。焊缝中不得有裂缝、裂纹、未熔焊等缺陷,表面不得有超标的划痕、压伤等缺陷。由于焊管在生产线上(简称在线)具有连续、快速生产的特点,焊速15~60米/分,因此,焊管质量仅靠人工事后检验是很难保证的;而涡流探伤检验方法则具有检测速度快,无需要与工件表面耦合,检测灵敏度等优点,适合于焊管生产的质量控制和质量检验。 二.EEC-22型涡流探伤仪的功能 高频焊接钢管的生产是在生产线上进行的,简称在线生产。EEC-22型智能金属管道涡流探伤仪适用于金属管道的在线或离线涡流探伤,采用了数字电子技术,操作简单、方便;它在一台微机基础上配置涡流检测专用器件而成,在DOS或WINDOWS环境下配中文操作系统支持涡流检测软件运行,配有穿过式线圈和平面探头,平面探头用于焊缝纵向的扫查,穿过式线圈则用于整个钢管圆周截面的扫查,适合于钢管的在线或离线探伤。钢管的在线涡流探伤是指在生产线上与生产过程同步的探伤,主要用生产过程的质量控制;钢管的离线探伤是指钢管成品离开生产线后的探伤,主要用于钢管产品的质量检验。本厂是生产高频焊接钢管的工厂,因此将涡流探伤主要用于在线钢管对接纵向焊缝的质量控制,采用平面探头。 三.焊管涡流探伤灵敏度的调节 1.标样管的选取 焊接钢管涡流探伤执行GB7735《钢管涡流探伤检验方法》标准,探伤结果借助于对比试样中人工缺陷与自然缺陷显示信号的幅值对比进行判断,对比试样的钢管与被检钢管的公称尺寸应相同,化学成分、表面状态、热处理状态相似,即应有相似的电磁特性。 对比试样上的人工缺陷可分为钻孔和槽口两种,根据实际情况选其中一种。对于焊管而言,焊缝开裂、裂纹、未熔合等纵向缺陷是焊管的主要缺陷,其危害性要大于其他面积状的缺陷,因此选用槽口作为焊管的主要模拟缺陷是合理的,它有利焊缝线性缺陷的检出。槽口的深度为被检测钢管壁厚的12.5% ,最小深度为0.5mm,最大深度为1.50mm ;长度不小于50mm ,或两倍的检测线圈的宽度;槽口的宽度不大于槽口的深度。 在焊管生产过程中很容易找到符合标准规定的槽口尺寸的实际标样管,这种标样管既含有焊缝的开口裂缝,又含有裂纹或暗裂纹和未熔合,这些缺陷是连续缓慢过渡的,简称为缓变伤或自然伤。因此,可取选取一段符合槽口尺寸要求含有自然伤的焊管作为涡流探伤的标样管。 2.探伤灵敏度的调节 开机后进入EEC子目录,即进入涡流探伤程序,用键盘的编辑键,暂选择检测频率为50KHZ

无损探伤常见问题汇总

无损探伤常见问题汇总 资料整理:无损检测资源网 沧州市欧谱检测仪器有限公司

物理探伤就是不产生化学变化的情况下进行无损探伤。 一、什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,无损检测资源网可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。

七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某些零件的剩磁将会使附近的仪表指示失常。因此某些零件在磁粉探伤后为什么要退磁处理。 十、超声波探伤的基本原理是什么? 答:超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。 十一、超声波探伤与X射线探伤相比较有何优的缺点? 答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。 十二、超声波探伤的主要特性有哪些? 答:1、超声波在介质中传播时,在不同质界面上具有反射的特性,如

钢管质量无损检测方式 及其执行标准

钢管质量标准表: 标准代号 内容 项目 SY/T5037-2000 GB/T9711.1-1997(A级) API Spec 5L(42) 适用范围燃气、水、煤气、空气、采暖、蒸气等普通流体输送管道用钢管石油天然气工业输送用钢管石油天然气工业输送用钢管钢种Q195、Q215、Q235 L175——L483 A、B、X42——X70 尺寸管体外径D<508 ±0.75%D D≥508 ±1.00%D D<508 ±0.75%D D≥508 ±1.00%D D<508 ±0.75%D 508≥D≥914 -0.25%D~+0.75%D D>914 -3.20~+6.35 管端外径D<508 ±0.75%D ±2.5 取小值D≥508 ±1.00%D ±4.5 取小值 D≤273.1 -0.40~+1.59 D>323.9 -0.79~+2.38 D≤273.1 -0.40~+1.59 D>273.1 -0.79~+2.38 偏差壁厚D<508 ±12.5%t -12.5%t~+15.0%t -12.5%t~+15.0%t D≥508 ±10.0%t L175~L245 -10.0%t~+17.5%t 不高于B级-12.5%t~+17.5%t L290~L555 -8.0%t~+19.5%t 不低于X42 -8.0%t ~+19.5%t 椭圆度管端100范围内±1%D D>508的钢管在距管端101.6范围内最大外径不得比公称外径大1%;最小外径不得比公称外径小1% D>508的钢管在距管端101.6范围内最大外径不得比公称外径大1%;最小外径不得比公称外径小1% 弯曲度(直度)不得超过钢管总长的0.2% 不得超过钢管总长的0.2% 不得超过钢管总长的0.2% 管端坡口坡口角30°--35°钝边 1.6±0.8 坡口角30°--35°钝边 1.59±0.79 坡口角30°--35°钝边1.59±0.79 切斜D<813 , ≤1.6 D≥813 , ≤3.0 <1.59 <1.59 错边t≤12.7 0.35t且不得大于3.0 ≤1.59 ≤1.59 t>12.7 0.25t 0.1251与3.18的取最小值0.1251与3.18的取最小值焊缝余高t≤13…<3.2 t>13 <4.8 t≤12.7…<3.18 t>12.7 <4.76

电磁电涡流测厚原理及测厚仪

电磁/电涡流测厚原理及测厚仪 对材料表面保护、装饰形成的覆盖层,如涂层、镀层、敷层、贴层、化学生成膜等,在有关国家和国际标准中称为覆层(coating)。覆层厚度测量已成为加工工业、表面工程质量检测的重要一环,是产品达到优等质量标准的必备手段。为使产品国际化,我国出口商品和涉外项目中,对覆层厚度有了明确的要求。 覆层厚度的测量方法主要有:楔切法,光截法,电解法,厚度差测量法,称重法,X射线荧光法,β射线反向散射法,电容法、磁性测量法及涡流测量法等。这些方法中前五种是有损检测,测量手段繁琐,速度慢,多适用于抽样检验。 X射线和β射线法是无接触无损测量,但装置复杂昂贵,测量范围较小。因有放射源,使用者必须遵守射线防护规范。X射线法可测极薄镀层、双镀层、合金镀层。β射线法适合镀层和底材原子序号大于3的镀层测量。电容法仅在薄导电体的绝缘覆层测厚时采用。 随着技术的日益进步,特别是近年来引入微机技术后,采用磁性法和涡流法的测厚仪向微型、智能、多功能、高精度、实用化的方向进了一步。测量的分辨率已达0.1微米,精度可达到1%,有了大幅度的提高。它适用范围广,量程宽、操作简便且价廉,是工业和科研使用最广泛的测厚仪器。 采用无损方法既不破坏覆层也不破坏基材,检测速度快,能使大量的检测工作经济地进行。 测量原理与仪器 一.磁吸力测量原理及测厚仪 永久磁铁(测头)与导磁钢材之间的吸力大小与处于这两者之间的距离成一定比例关系,这个距离就是覆层的厚度。利用这一原理制成测厚仪,只要覆层与基材的导磁率之差足够大,就可进行测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成型,所以磁性测厚仪应用最广。测厚仪基本结构由磁钢,接力簧,标尺及自停机构组成。磁钢与被测物吸合后,将测量簧在其后逐渐拉长,拉力逐渐增大。当拉力刚好大于吸力,磁钢脱离的一瞬间记录下拉力的大小即可获得覆层厚度。新型的产品可以自动完成这一记录过程。不同的型号有不同的量程与适用场合。 这种仪器的特点是操作简便、坚固耐用、不用电源,测量前无须校准,价格也较低,很适合车间做现场质量控制。 二.磁感应测量原理 采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定

实验 涡流探伤实验指导书

实验涡流探伤实验(烟台大学王海波) 一、实验目的 1.了解涡流探伤的基本原理; 2.掌握涡流探伤的一般方法和检测步骤; 3.熟悉涡流探伤的特点。 二、实验原理 1. EEC-35/RFT涡流检测仪简介 EEC-35/RFT智能全数字式多频远场涡流检测仪是新一代涡流无损检测设备,它采用了最先进的数字电子技术、远场涡流技术及微处理机技术,能实时有效地检测铁磁性和非铁磁性金属管道的内、外壁缺陷。EEC-35/ RFT 既是一套完整的远场涡流检测系统,也可与常规的多频、多通道的普通涡流检测系统融为一体成为高性能、多用途、智能化的涡流检测新型设备。 EEC-35/RFT由于具备了四个相对独立的测试通道,可同时获得二个绝对、二个差动的涡流信号。仪器可通过软开关切换成两台二频二通道的涡流检测仪,同时连接两只探头进检测。具有5Hz 至5MHz 的可变频率范围,因此 EEC-35/RFT 特别适用于核能、电力、石化、航天、航空等部门在役铜、钛、铝、锆等各种管道、金属零部件的探伤和壁厚测量以及各种铁磁性管道的探伤、分析和评价。例如:锅炉管、热交换器管束、地下管线和铸铁管道等的役前和在役检测。EEC-35/RFT 具有可选的多个检测程序,同屏多窗口显示模式,同屏显示多个涡流信号的相位、幅度变化及其波形的情况。多个相对独立的检测通道,有多达三个混频单元,能抑制在役检测中由支撑板、凹痕、沉积物及管子冷加工产生的干扰信号,去伪存真,提高对涡流检测信号的评价精度。且由于采用了全数字化设计,能够在仪器内建立标准检测程序,方便用户现场检测时调用。 此外,仪器还具有组态分析功能,能够用于金属表面硬度、硬化深度层深等的检测及材料分选。 2.涡流检测原理 涡流检测是以电磁感应为基础的,它的基本原理可以描述为:当载有交变电

钢管的水压试验和涡流探伤试验比较

钢管的水压试验和涡流探伤试验比较 展开全文 锅炉钢管的水压试验和涡流探伤都是材料的致密性能试验,它们之间在试验方法上具有等效性;而且钢管的涡流探伤具有快速、准确、易实现自动化检测等特点,它在试验方法上优于既费时又费力、准确性较差的水压试验方法,因此,涡流探伤检测方法完全可以用来代替锅炉钢管的逐根水压试验,而其他形式的无损探伤方法不能代替涡流探伤的致密性试验,这对于控制锅炉钢管的材料质量和提高锅炉制造质量以及保证锅炉的安全可靠性都具有重要意义。由于涡流探伤技术在锅炉钢管的质量检测和控制有很强的实用性,因而在锅炉行业中具有

良好的应用前景和推广价值。 钢管水压试验机组一、锅炉钢管的质量问题锅炉用无缝钢管(以下简称锅炉钢管)是制造锅炉用的重要材料,它的质量如何将直接关系锅炉制造质量以致于安装质量和使用质量。锅炉钢管质量本应是由钢管厂来作出保证的,但是在供不应求的情况下,提供给锅炉制造厂使用的锅炉钢管总免不了存在一些质量问题,用它制成的锅炉主要受压部件如水冷壁管、对流管、过热器管、换热器管等漏水或爆管现象时有发生,已成为困扰锅炉产品质量的一个大问题,对此锅炉制造厂和用户都很有意见。在卖方市场的情况下,锅炉制造厂几乎承担了包括材料供应方在内的全部责任;如何控制锅炉钢管的质量现已成为锅炉制造厂家越来越关心的问题,解决的办法不外乎是两个:一个是对锅炉钢管进行逐根的水压试验;另一个是对锅炉钢管实行100%的涡流探伤。 二、锅炉钢管的缺陷与伤按照材料学的观点,优良的金属材料其化学成分、物理性能、几何形状应该是连续的、纯洁的和均匀的。如果这三方面存在不足或受到破坏,就认为金属材料存在缺陷。如果金属材料在几何形状上存在着不连续性(即不紧密性或不密实性或者不致密性),例如有裂纹、缩孔、起皮、凹坑、分层、针孔、夹渣等,则认为金属材料存在伤痕(简称为伤),它不包括化学成分的不连续或物理性

无损检测综合试题

无损检测综合试题 选择题(选择一个正确答案) 1.超声波检测中,产生和接收超声波的方法,通常是利用某些晶体的(c ) a.电磁效应 b.磁致伸缩效应 c.压电效应 d.磁敏效应 2.目前工业超声波检测应用的波型是(f ) a.爬行纵波 b.瑞利波 c.压缩波 d.剪切波 e.兰姆波 f.以上都是 3.工件内部裂纹属于面积型缺陷,最适宜的检测方法应该是(a ) a.超声波检测 b.渗透检测 c.目视检测 d.磁粉检测 e.涡流检测 f.射线检测 4.被检件中缺陷的取向与超声波的入射方向(a )时,可获得最大超声波反射: a.垂直 b.平行 c.倾斜45° d.都可以 5.工业射线照相检测中常用的射线有(f ): a.X射线 b.α射线 c.中子射线 d.γ射线 e.β射线 f.a和d 6.射线检测法适用于检验的缺陷是(e ) a.锻钢件中的折叠 b.铸件金属中的气孔 c.金属板材中的分层 d.金属焊缝中的夹渣 e. b和d 7.10居里钴60γ射线源衰减到1.25居里,需要的时间约为(c ): a.5年 b.1年 c.16年 d.21年 8.X射线照相检测工艺参数主要是(e ): a.焦距 b.管电压 c.管电流 d.曝光时间 e.以上都是 9.X射线照相的主要目的是(c ): a.检验晶粒度; b.检验表面质量; c.检验内部质量; d.以上全是 10.工件中缺陷的取向与X射线入射方向(b )时,在底片上能获得最清晰的缺陷影 像:a.垂直 b.平行 c.倾斜45°d.都可以 11.渗透检测法适用于检验的缺陷是(a ): a.表面开口缺陷 b.近表面缺陷 c.内部缺陷 d.以上都对 12.渗透检测法可以发现下述哪种缺陷?(c ) a.锻件中的残余缩孔 b.钢板中的分层 c.齿轮的磨削裂纹 d.锻钢件中的夹杂物 13.着色渗透探伤能发现的缺陷是(a ): a.表面开口缺陷 b.近表面缺陷 c.内部未焊透

焊管涡流探伤

所谓焊管涡流探伤,是利用涡流技术对焊管进行检测,这类检测是以无损为前提的。同时,我们需要明确的是,焊管通俗来讲,就是我们平时常常说的钢管,是通过焊接的钢管。对于涡流探伤技术,我们来详细了解一下。 1、涡流探伤的定义: 涡流探伤是利用交流电磁线圈在金属构件表面感应产生的涡流遇到缺陷会产生变化的原理,来检测构件缺陷的无损探伤技术。利用电磁感应原理用激磁线圈使导电构件内产生涡电流,借助探测线圈测定涡电流的变化量,从而获得构件缺陷的有关信息。涡流探伤是以交流电磁线圈在金属构件表面感应产生涡流的无损探伤技术。它适用于导电材料,包括铁磁性和非铁磁性金属材料构件的缺陷检测。由于涡流探伤,在检测时不要求线圈与构件紧密接触,也不用在线圈与构件间充满藕合剂,容易实现检验自动化。但涡流探伤仅适用于导电材料,只能检测表面或近表面层的缺陷,不便使用于形状复杂的构件.在火力发电厂中主要应用于检测凝汽器管、汽轮机叶片、汽轮机转子中间孔和焊缝等。 2、涡流探伤的原理: 交流电通入线圈时,若所用的电压及频率不变,则通过线圈的电流也将不变。如果在线圈中放入一金属管,管子表面感生周向电流,即涡流。涡流磁场

方向与外加电流的磁化方向相反,因此将抵消一部分外加电流,从而使线圈的阻抗、通过电流的大小相位均发生变化。管的直径、厚度、电导率和磁导率的变化以及有缺陷存在时,均会影响线圈的阻抗。若保持其他因素不变,仅将缺陷引起阻抗的信号取出,经仪器放大并予检测,就能达到探伤目的。涡流信号不仅能给出缺陷的大小,同时由于涡流探伤时可以根据表面下的涡流滞后于表面涡流一定相位,采用相位分析能判断出缺陷的位t(深度)。 3、涡流探伤的分类 检测线圈在涡流检验中,为了适应不同探伤目的,按照检测线圈和被检构件的相互关系分为穿过式线圈、内通式线圈和放里式线圈三大类。如需将工件插入并通过线圈检测时采用穿过式线圈。对管件进行检测时,有时需把线圈放入管子内部进行检验,则采用内通式线圈。采用放t式(点式)线圈时,把线圈放置于被查的工件表面进行检测。这种线圈体积小、线圈内部一般带有磁芯,灵敏度高,便于携带,适用于大型构件以及板材、带材等表面裂纹检验。按照检测线圈的使用方式,可分为绝对线圈式、标准比较线圈式和自比较式等三种型式。只用一个检测线圈称为绝对线圈式,用两个检测线圈接成差动形式,称为标准比较线圈式。采用两个线圈放于同一被检构件的不同部位,作为比较标准线圈,称自比较式,是标准比较线圈式的特例。墓本电路由振荡器、检测线圈信号输出电路、放大器、信号处理器、显示器和电源等部分组成。 4、涡流探伤技术的发展状况 涡流探伤技术是常规无损探伤技术之一,现在多频涡流、脉冲涡流及低频涡流等探伤方法已获得成功应用。我国从60年代中期开始研究此项技术,70

多口径钢管涡流探伤系统的研究与设计张吉亮

多口径钢管涡流探伤系统的研究与设计 张吉亮,张双伟,王桂敏 (山东省煤田地质钻探工具厂,山东泰安272400) 摘 要 该文针对实际生产过程中,钢管口径种类多的情况,研究设计了一种新型涡流探伤系统。该系统实现了自动化控制,操作安全可靠,生产效率高。适合Φ73 Φ340mm 口径钢管探伤工艺,具有广阔的推广应用前景。关键词 多口径钢管 涡流探伤 点探头 自动控制 中图分类号TG115.28 文献标识码 B Research and Design of ET for many Diameter Tubes Abstract In view of the actual production process ,the steel pipe diameter many kinds of situations ,study design a kind of new ET system.This system realizes the automatic control ,safe and reliable operation ,high production efficiency.Suitable for a Φ73 Φ340mm pipe diameter ,has the broad appli-cation prospect.Key words many Diameter Tubes ET probe automatic control 1钢管无损探伤概述 无损探伤是在不损害被检对象的前提下,探测其 内部或外表缺陷的现代化检验技术,近年来已被广泛 应用于钢管生产检验中。用于无缝钢管生产中的无损 探伤方法主要有超声波探伤、磁力探伤、涡流探伤以及渗透探伤等。各种探伤方法都有其一定的使用范围。几种主要探伤方法的特点及比较见表1。 表1钢管无损探伤方法的比较 项目 超声波法涡流法磁力法 磁粉 漏磁 渗透法 基本原理缺陷对超声波的反射和吸收缺陷处漏电流的变化引起感应磁场的变化表面缺陷产生的漏磁对磁粉的吸引表面缺陷产生的漏磁的直接检测显示液对表面裂纹渗透 探伤部位表面,内部表面,内部表面(限于磁性材料)表面(限于磁性材料)表面灵敏度很高 高 较高 较高 高 检测纪录及显示方式 自动在线,立即显示 自动在线,立即显示 着色磁粉显示或荧光磁粉在暗室显示 自动在线,立即显示 着色液显示或荧光液在暗室显示 超声波探伤是一种最基本的无损探伤方法。它的 优点是能发现其他探伤方法不能发现的内部缺陷,能准确地确定缺陷的位置 ,而且操作简单、迅速。这种方法的缺点是,不能判断缺陷的性质,对钢管表面粗糙度要求达2.5 5μm 。 磁粉探伤方法可用于探测铁磁性材料表面上或近表面的裂纹以及其他缺陷。磁粉探伤对表面缺陷的灵敏度最大;对表面以下的缺陷,探伤的灵敏度随着缺陷埋藏深度的增加而迅速降低。采用磁粉探伤方法检验铁磁性材料的表面缺陷,比采用超声波探伤有更高的灵敏度,而且操作简单,结果可靠。因此磁粉探伤是一种良好的表面探伤方法。 涡流探伤就是使导电的试件(导体)内产生涡电流(简称涡流),通过测量涡流的变化量来进行探伤的 *收稿日期:2011-09-07 作者简介:张吉亮(1982-),男,汉族,山东省平阴县人,工程师,硕士在读,煤炭矿山机电方向。 探伤方法。涡流探伤的优点是:探伤结果可以直接用 电信号输出,便于进行自动化检测;由于采用非接触式的方法,探伤速度很快;适用于表面缺陷的探伤。缺点是:对表面下较深部位的缺陷不能检测;容易产生杂乱信号;难以直接从检测所得的显示信号来判别缺陷的种类。 渗透探伤是以液体对固体的润湿能力和毛细现象(包括渗透和上升现象)为基础的探伤方法。和别的探伤方法相比,渗透探伤的优点是设备和探伤材料简单,显示缺陷直观,并同时可以显示各个方向的各类缺陷。其缺点是只能检查开口暴露于表面的缺陷,另外操作工序较繁杂。2 钢管涡流探伤现状分析 根据工业无损探伤的特点,为了实现探伤系统的自动化控制,目前我国钢管加工企业中,Ф180mm 以下规格无缝钢管涡流检测大多采用传统的穿过式线圈探伤方法。对于超过Ф180mm 的无缝钢管如果采用传统 2 712012年第1期

锻件质量无损检测方法

锻件质量无损检测方法 对于锻件的质量检验所采用的无损检测方法一般有:磁粉检验法MT、渗透检验法PT、涡流检验法ET、超声波检验法UT等。 磁粉检验法广泛地用于检查铁磁性金属或合金锻件的表面或近 表面的缺陷,如裂纹、发纹、白点、非金属夹杂、分层、折叠、碳化物或铁素体带等。该方法仅适用于铁磁性材料锻件的检验,对于奥氏体钢制成的锻件不适于采用该方法。 渗透检验法除能检查磁性材料锻件外,还能检查非铁磁性材料锻件的表面缺陷,如裂纹、疏松、折叠等,一般只用于检查非铁磁性材料锻件的表面缺陷,不能发现隐在表面以下的缺陷。 超声波检验法用以检查锻件内部缺陷如缩孔、白点、心部裂纹、夹渣等,该方法虽然操作方便、快且经济,但对缺陷的性质难以准确地进行判定。 随着无损检测技术的发展,现在又出现了诸如声振法,声发射法、激光全息照相法、CT法等新的无损检测方法,这些新方法的出现及在锻件检验中的应用,必将使锻件质量检验的水平得以大大地提高。 锻件质量的分析实际上是各种测试方法的综合应用及各个测试 结果的综合分析,对于大型复杂的锻件所出现问题不能单纯地依赖于某一种方法,从这一点上可以说各种试验方法在分析过程中是相辅相成的,各种试验方法的有机配合,并对各自试验结果进行综合分析,才能得出正确的结论。同时就锻件质量分析的目的而言,除了正确的检验外,还应进行必要的工艺试验从而找出产生质量问题的真正原因

并提出圆满的改进措施及防止对策。在实际工作中究竟选用那些检测方法,运用何种检测手段应根据锻件的类别和规定的检测项目来进行。在选择试验方法和测试手段时,既要考虑到先进性,又要考虑到实用性、经济性,不能单纯地追求先进性,能用一种手段解决问题就不要用二种或更多种,测试手段的选择应准确地判定缺陷的性质和确切找出缺陷产生的原因为出发点,有时测试手段选择得过于先进反而会导致不必要的后果以致造成不应有的损失。

涡流探伤在焊管行业的应用

高频焊管在线涡流探伤应用 摘要:高频焊接钢管(简称焊接钢管或焊管)在流体输送、建筑构件和五金家具制作上有广泛的用途。涡流探伤机是一种利用涡流原理检测金属表面及近表面缺陷的仪器,涡流探伤以交流电磁线圈在金属构件表面感应产生涡流的无损探伤技术。由于涡流探伤,在检测时不要求线圈与构件紧密接触,也不用在线圈与构件间充满藕合剂,容易实现钢管在线检验。 关键词:高频焊管涡流探伤仪磁化探头 一、行业应用概述 高频焊接钢管(简称焊接钢管或焊管)在流体输送、建筑构件和五金家具制作上有广泛的用途。焊缝中不得有裂缝、裂纹、未熔焊等缺陷,表面不得有超标的划痕、压伤等缺陷。由于焊管在生产线上(简称在线)具有连续、快速生产的特点,因此,焊管质量仅靠人工事后检验是很难保证的;而涡流探伤检验方法则具有检测速度快,无需要与工件表面耦合,检测灵敏度等优点,适合于焊管生产的质量控制和质量检验。在线焊管(壁厚6mm以内)探伤,只有选择涡流探伤最可靠、合适。 焊管的在线涡流探伤是指在生产线上与生产过程同步的探伤,主要用生产过程的质量控制;焊接钢管涡流探伤执行GB/T7735-2004《钢管涡流探伤检验方法》标准,探伤结果借助于对比试样中人工缺陷与自然缺陷显示信号的幅值对比进行判断,对比试样的钢管与被检钢管的公称尺寸应相同,化学成分、表面状态、热处理状态相似,即应有相似的电磁特性。 在线探伤系统可以实现缺陷的实时检测、记录、报警及延时打标功能,检测报告数据可以长期保存在电脑硬盘里,如需要可以进行打印输出。 二、涡流探伤原理及优势 涡流流检测就是运用电磁感应原理,将高频正弦波电流激励探头线圈,当探头接近金属表面时,线圈周围的交变磁场在金属表面产生感应电流。对于平板金属,感应电流的流向是以线圈同心的圆形,形似旋涡称为涡流。同时涡流也产生相同频率的磁场称涡流场,其方向与线圈磁场方向相反。涡流通道的损耗电阻,以及涡流产生的反磁通,又反射到探头线圈,改变了线圈的电流大小及相位,即改变了线圈的阻抗。因此,探头在金属表面移动,遇到缺陷(如未熔焊、暗缝、开口裂纹、气孔、夹渣和折叠等)或材质、尺寸等变化时,使涡流磁场对线圈的反作用不同,引起线圈阻抗变化,通过涡流检测仪器测量出这种变化量就能鉴别金属表面有无缺陷或其它物理性质变化。 按探测线圈的形状不同,可分为穿过式(用于管、棒、线材的检测)、局部放置式(用于工件

混凝土结构常用无损检测方法

混凝土结构常用无损检测方法 摘要:介绍了回弹法、超声波法、雷达法等各种混凝土无损检测方法的工作原理,分析了各自的特点及适用范围。在实际工程中,宜使用两种或两种以上方法进行检测,以互相验证,提高检测的效率及可靠性。? 无论是工业及民用建筑,还是公路、铁路、水利及水电工程等都广泛使用混凝土材料,混凝土的质量关系到整个工程的质量。传统的混凝土强度检验方法是在浇筑地点随机抽取试样,对试样进行抗压强度试验,由试验结果来评定混凝土的强度。由于试样的制作条件、养护环境及受力状态与原位混凝土均存在着明显的差异,试样的实验结果难以全面、准确地反映原位混凝土的质量状况,显然无损检测是获得原位混凝土真实质量的有效方法。早在20 世纪30 年代,人们就开始研究混凝土无损检测技术。1948 年,瑞士科学家施密特( E. Schmidt )研制成回弹仪;1949 年莱斯利(Leslie )等人用超声脉冲成功检测混凝土;60年代费格瓦洛(I. Facaoaru)提岀用声速、回弹综合法估算混凝土强度;80年代中期,美国的Mary Sansalone 等用机械波反射法进行混凝土无损检测;90 年代以来,随着科学技术的快速发展,涌现岀一批新的测试方法,如微波吸收、雷达扫描、红外线谱、脉冲回波等方法。我国从50年代开始引进瑞士、英国、波兰等国的超声波仪器和回弹仪,并结合工程应用开展了一定的研究工作;60 年代初我国研制成功多种型号的超声波仪器,随后广泛进行了混凝土无损检测技术的研究和应用;80 年代混凝土无损检测技术在我国得到快速发展,并取得了一定的研究成果,除了超声、回弹等无损检测方法外,还进行了钻芯法、后装拔岀法的研究;90 年代以来,雷达技术、红外成像技术、冲击回 波技术等进入实用阶段,同时超声波检测仪器也由模拟式发展为数字式,可将测试数据传入计算机进行各种数据处理,以进一步提高检测的可靠性。 混凝土无损检测的方法主要有回弹法、超声法、超声回弹综合法、雷达法、冲击回波法、红外成像法、钻芯法、拔岀法及超声波CT 法等,其中钻芯法和拔岀法属局部破损或半破损检测方法。以下就各种方法的工作原理、特点及适用范围作以述评。 各种无损检测方法工作原理及其特点述评 1.1 回弹法 回弹法是以在混凝土结构或构件上测得的回弹值和碳化深度来评定混凝土结构或构件强度的一种方法,它不会对结构或构件的力学性质和承载能力产生不利影响,在工程上已得到广泛应用。 回弹法使用的仪器为回弹仪,它是一种直射锤击式仪器,是用一弹击锤来冲击与混凝土表面接触的弹击杆,然后弹击锤向后弹回,并在回弹仪的刻度标尺上指示岀回弹数值。回弹值的大小取决于与冲击能量有关的回弹能量,而回弹能量则反映了混凝土表层硬度与混凝土抗压强度之间的函数关系,即可以在混凝土的抗压强度与回弹值之间建立起一种函数关系,以回弹值来表示混凝土的抗压强度。回弹法只能测得混凝土表层的质量状况,内部情况却无法得知,这便限制了回弹法的应用范围,但由于回弹法操作简便,价格低廉,在工程上还是得到了广泛应用。 回弹法的基本原理是利用混凝土强度与表面硬度之间的关系,通过一定动能的钢杆件弹击混凝土表 面,并测得杆件回弹的距离(回弹值),利用回弹值与强度之间的相关关系来推定混凝土强度。 通常采用试验的方法得到回弹值与强度之间的相关关系,即建立混凝土强度f c cu与回弹值R之间 的一元回归公式,或混凝土强度与回弹值R及主要影响因素(如碳化深度)之间的二元回归公式。回归 的公式可采用各种不同的函数方程形式,根据大量试验数据进行回归拟合,择其相关系数较大者作为实用经验公式。目常常用的形式主要有以下几种: 直线方程 f c cu A BR 幂函数方程 f c cu AR B

五大常规无损检测技术之一:涡流检测(ET)的原理和特点

五大常规无损检测技术之一:涡流检测(ET)的原理和特点 涡流检测(Eddy Current Testing),业内人士简称E T,在工业无损检测(Nondestructive Testing)领域中具有重要的地位,在航空航天、冶金、机械、电力、化工、核能等领域中发挥着越来越重要的作用。 涡流检测主要的应用是检测导电金属材料表面及近表面的宏观几何缺陷和涂层测厚。 涡流检测是五大常规无损检测技术之一,其他四种是:射线检测(Radiographic Testing):射线照相法、超声检测(Ultrasonic Testing):A型显示的超声波脉冲反射法、磁粉检测(Magnetic Particle Testing)、渗透检测(Penetrant Testing)。 按照不同特征,可将涡流检测分为多种不同的方法: (1)按检测线圈的形式分类: a)外穿式:将被检试样放在线圈内进行检测,适用于管、棒、线材的外壁缺陷。b)内穿式:放在管子内部进行检测,专门用来检查厚壁管子内壁或钻孔内壁的缺陷。 c)探头式:放置在试样表面进行检测,不仅适用于形状简单的板材、棒材及大直径管材的表面扫查检测,也适用于形状福州的机械零件的检测。

(2)按检测线圈的结构分类: a)绝对方式:线圈由一只线圈组成。 b)差动方式:由两只反相连接的线圈组成。 c)自比较方式:多个线圈绕在一个骨架上。 d)标准比较方式:绕在两个骨架上,其中一个线圈中放入已经样品,另一个用来进行实际检测。 (3)按检测线圈的电气连接分类: a)自感方式:检测线圈使用一个绕组,既起激励作用又起检测作用。 b)互感方式:激励绕组和检测绕组分开。 c)参数型式:线圈本身是电路的一个组成部分。 涡流检测原理 涡流检测,本质上是利用电磁感应原理。 无论什么原因,只要穿过闭合回路所包围曲面的磁通量发生变化,回路中就会有电流产生,这种由于回路磁通量变化而激发电流的现象叫做电磁感应现象,回路中所产生的电流叫做感应电流。 电路中含有两个相互耦合的线圈,若在原边线圈通以交流电1,在电磁感应的作用下,在副边线圈中产生感应电流2;反过来,感应电流又会影响原边线圈中的电流和电压的关系。如下图所示:

涡流检测原理及部件

涡流原理及主要配件上海佳创精工机械有限公司

一、概述 1.1 涡流检测的原理 涡流检测就是运用电磁感应原理,将激励信号加到探头线圈,当探头接近金属表面时,线圈周围的交变磁场在金属表面产生感应电流。对于平板金属,感应电流的流向是以线圈同心的圆形,形似漩涡,成为涡流。涡流的大小、相位及流动形式受到试件导电性能的影响。涡流也会产生一个磁场,这个磁场反过来又会使检测线圈的阻抗发生变化。 因此当导体表面或近表面出现缺陷或测量的金属材料发生变化时,将影响到涡流的强度和分布,涡流的变化又引起了检测线圈电压和阻抗的变化,根据这一变化,就可以间接地知道导体内缺陷的存在及金属材料的性能是否有变化。 1.2 涡流检测技术的特点 涡流检测时一种应用较为广泛的无损检测技术,它具有如下技术特点: ●检测速度快,且易于实现自动化。 ●表面、亚表面缺陷检出灵敏度高。 ●能在高温状态下进行检测。 ●抑制多种干扰因素。 涡流检测的对象必须是导电材料,且不适用于检测金属材料深层的内部缺陷,这是涡流检测在应用上的局限所在。其次,涡流检测至今仍处于当量比较阶段,对缺陷作出准确的定性定量判断技术尚待开发研究。 1.3 涡流的探伤及材质分选 涡流法可以用来测量非金属表面层的电导率,也可以用来检验与电导率数值有对应关系的性能,如化学成分和组织状态等。因此,涡流检测可以成功地用于按牌号分选合金,检验材料热处理质量及机械性能等。 涡流探伤不仅对于导电材料表面上或近表面的裂纹、孔洞以及其它类型的缺陷,涡流实验具有良好的检测灵敏度并能提供缺陷深度的信息,还可以发现于薄的油漆层或涂层下的这些缺陷。 涡流检测仪的操作请参考《多频多通道智能数字涡流检测仪操作使用说明书》。

BS EN10246-3无缝 焊接钢管涡流探伤要点

钢管非破坏性试验--- 第3部分: 无缝钢管和焊接钢管(埋弧焊除外)的自动涡流探伤欧洲标准EN 10246-3: 1999 为英国标准状态.

国家标准前言 该英国标准为官方英语版本的EN10246-3:1999. 该英国标准包含BS 3889-1:1983的元素. 标准附件A中完整列出EN 10246的部分. 该标准部分代替了BS 3889-1:1983, 并且当所有相关部分被发布时BS 3889-1: 1983将被撤回. 英国参与的准备工作被委托给技术委员会,承压用钢的ISE/73, 承压钢管的ISE/73/1, 责任如下: ---协助咨询者理解文本 ---向负责的欧洲委员会提交任何关于解释或改变建议的查询, 并保持英国的利益通报 ---监视相关的国际和欧洲发展并在英国发布它们 代表该委员会的组织架构清单可以通过向委员会秘书要求获得 相关引用 本文所提及到的国际或欧洲出版实施的英国标准可以在BSI 标准中”国际标准对照索引”中找到, 或者通过使用BSI 标准文件电子目录的”查找”设置找到. 仅英国标准不意味着包括合同所有必须的条款. 符合英国标准本身并不赋予法律义务的豁免权 页面摘要 这份文件包括封面, 封二和EN标准的标题页 第2至第14页, 封三及封底 文档最后一次发行时显示BSI版权声明 发布以来下达的修改 修改编号日期意见

钢管非破坏性试验--- 第3部分: 无缝钢管和焊接钢管(埋弧焊除外)的自动涡流探伤 该欧洲标准于1999年10月6日被CEN通过 CEN成员必须遵守CEN/CENELEC 内部规定,保证赋予本欧洲标准的国家标准状态没有发生改变. 该欧洲标准拥有三种官方版本(英语, 法语, 德语). 其他任何语言的版本需由CEN成员负责翻译并且知悉中央秘书处的状态和官方版本一致. 以CEN 成员为国家标准主体的有, 澳大利亚, 比利时, 捷克, 丹麦, 芬兰, 法国, 德国, 希腊, 冰岛, 爱尔兰, 意大利, 卢森堡, 荷兰, 挪威, 葡萄牙, 西班牙, 瑞典, 瑞士和英国.

不锈钢管焊缝无损检测方法介绍

不锈钢管焊缝无损检测方法介绍 作者:不锈钢管来源:未知日期:2010/10/4 13:27:50 人气:2 标签:不锈钢管不锈钢管焊缝无损检 测 导读:(1)渗透探伤(PT)采用带有荧光染料(荧光法)或红色染料(着色法)的渗透剂的渗透作用,来显示焊接接头表面微小缺陷的无损检验法。检测时一要求被测表面平整光洁。此方… (1)渗透探伤(PT)采用带有荧光染料(荧光法)或红色染料(着色法)的渗透剂的渗透作用,来显示焊接接头表面微小缺陷的无损检验法。检测时一要求被测表面平整光洁。此方法分为荧光探伤和着色探伤,其中荧光探伤的测量精度较高,可达10μm。焊接构件表面检查常用着色法渗透探伤。 (2)磁粉探伤(MT)利用在强磁场中,铁磁材料表层缺陷产生的漏磁场吸附磁粉的现象而进行的无损检验方法。在有缺陷处,由于漏磁的作用会集中吸附撒上的铁粉。可根据吸附铁粉的形状、厚度和多少,来判断焊接缺陷的位置和大小。该方法不适用无磁性的奥氏体型不锈钢。 (3)射线探伤(RT)采用X射线或γ射线照射焊接接头检查其内部缺陷的一种无损检验方法。它能准确地显示出焊缝中焊接缺陷的种类、形状、尺寸、位置和分布情况。评定标准按《钢熔化焊对接接头射线照相法和质量分级》(GB3329-87)进行。该探伤方法长期操作,对操作者身体有一定的影响。 (4)超声波探伤(UT)借助于超声波探伤仪来检测焊缝内部缺陷的一种无损探伤方法。此法适用于探伤厚板,可确定5mm以内缺陷。探伤周期短、成木低、设备简单,对操作者身体无害,但不能准确判断缺陷的性质。 (5)涡流探伤(ET)涡流探伤是以电磁感应原理为基础,当钢管(指碳钢、合金钢和不锈钢)通过交流电的绕组时,钢管表面或近表面出现集肤效应,使其有缺陷部位的涡流发生变化,导致绕组的阻抗或感应电压产生变化,从而得到关于缺陷的信号。从信号的幅值及相位等可以对缺陷进行判别,能有效地识别钢管内外表面的不连续性缺陷,如裂纹、未焊透、夹渣、气孔、点腐蚀等,对开放性线性缺陷最为敏感。 无缝钢管的工艺流程概述 热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→坯管→矫直→水压试验(或探伤)→标记→入库。 冷拔(轧)无缝钢管:圆圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库。 无缝管和焊管的区别 1、两种钢管的用途不同 无缝钢管:GB/T8162-1999(结构用无缝钢管)。主要用于一般结构和机械结构。 焊接钢管:主要用于中低压的流体材料的输送,严禁用于结构件。

无缝钢管涡流探伤和漏磁探伤比较

种控制模式:温度模式下,系统根据设定或菜单下载的温度设定来自动控制水的流量;流量模式和手动模式,都必须输入相应的值才行。F T是流量变送器,它直接把MV1的实际值转化为模拟量输入到PLC进行处理。 5)换向阀(divert valve)EV1、次级阀(secondary valve)EV211-EV213:EV1用来控制冷却水流向水箱或泄流槽内。在自动模式下,系统根据HMD 信号,自动控制阀门的开与关。EV211-213次级阀主要是控制喷嘴的水流压力使之达到最大。在自动状态下(即在RA TIO状态),系统会根据各管路内的水压,自动有序地控制各次级阀的开或关。 6)泄压阀(flume press valve)MV2:位于换向阀的后面,用来控制水流换向到泄压槽内时的水箱回流压力。一般情况用自动模式(即RA TIO模式),此时系统能自动地根据水流的流量(平均压力/平均流量)来计算压力设定。 7)水清扫阀(water stripper valve)EV3及空气清扫阀(air stripper valve)EV4:EV3和EV4均位于水箱的出口端,它们的功能一是清除轧件从水箱出来时带出的水,二是清除轧件表面的氧化铁皮。当换向阀开启时,水清扫阀及空气清扫阀也会同时打开,而在换向阀关闭后它们会延时自动关闭。 3 结语 MOR G AN系统在高线投产以来,运行稳定、可靠,一般情况下吐丝温度能控制在±10℃的范围内,对高线产品的质量保证起到了至关重要的作用。但该系统也有不足之处,在温度模式下,控制不是很平稳,这主要是由冷却水压及空气压力的不平稳造成。而在流量模式和手动模式下,控制效果相当不错。 收稿日期:20050914 审稿:朱初标 编辑:魏海青  浙江冶金2006年2月 第一期 无缝钢管涡流探伤和漏磁探伤比较 姚舜刚 (浙江省特种设备检验中心 杭州 310020) 摘 要:阐述了无缝钢管在轧制过程中产生的表面和内部缺陷的两种探伤方法,即涡流探伤和漏磁探伤。 介绍了两种方法的基本原理,分析比较它们在无缝钢管探伤中的应用特点。 关键词:无缝钢管;涡流;漏磁;探伤 0 前言 随着国民经济的发展,各种无缝钢管被广泛应用于石油化工与锅炉制造等行业,尤其是高温、高压等恶劣工况,对无缝钢管的质量有更高的要求。无缝钢管一般经过冶炼、浇注、开坯、轧制和拉拔等工序制成,其缺陷除了铸坯上带来的各种冶金缺陷在成形过程中,成为沿管材轴向延伸的周向分层状缺陷外,在各阶段生产过程中还会因加工操作工艺不当、轧辊或拉拔模设计不当等原因而在钢管上造成裂纹、折迭、翘皮、划伤或拉伤等表面和内部缺陷。为了保证无缝钢管的质量,根据相关的产品技术标准,在无缝钢管生产线上须进行表面和内部无损探伤。目前无缝钢管无损探伤常采用涡流探伤和漏磁探伤两种技术,它们各有特点和适用范围,下面就两者的原理、探伤的特点和应用作一比较。 6

常用无损检测方法的特点及应用

检测方法优点缺点应用 射线检测 1.检测结果有直接记录——底片 2.可以获得缺陷的投影图像,缺陷 定性定量准确1.体积型缺陷检出率很 高,而面积型缺陷的检 出率受到多种因素影 响 2. 不适宜检验较厚工 作。 3. 检测角焊缝效果较 差,不适宜检测板材、 楱材、锻件。 4. 对缺陷在工作中厚 度方向的位置、尺寸 (高度)的确定比较困 难。 5. 射线对人体有伤害 1.焊缝透照。 2.平板对接焊 缝透照。 3.角形焊缝照 射。 4.管件对接焊 缝照射。 超声检测 1.面积型缺陷的检出率较高,而体积 型缺陷的检出率较低。 2.适宜检验厚度较大的工件,不适 宜检验较薄的工件。 3.应用范围广,可用于各种试件。 4.检测成本低、速度快,仪器体积 小、重量轻,现场使用较方便 5.对缺陷在工件厚度方向上的定位 较准确。1.无法得到缺陷直观图 像,定性困难,定量精 度不高。 2.检测结果无直接见 证记录。 3.材质、晶粒度对检测 有影响。 4.工件不规则的外形 和一些结构会影响检 测。 5.探头扫查面的平整 度和粗糙度对超声检 测有一定影响。 1.陶瓷气孔率 的检测。 2.陶瓷表面缺 陷检测。 3.钻孔灌注桩 的无损检测 磁粉检测 1.磁粉检测对工件中表面或近表面 的缺陷检测灵敏度最高。 2.对裂纹、折叠、夹层和未焊透等 缺陷较为灵敏,能直观地显示出缺 陷的大小、位置、形状和严重程度, 并可大致确定缺陷性质,检测结果 的重复性好。1.随着缺陷的埋藏深度 的增加,其检测灵敏度 迅速降低。因此,它被 广泛用于磁性材料表 面和近表面的缺陷 1.压力容器的 探伤。 2.锻件探伤。 3.疲劳缺陷探 伤。

相关文档
最新文档