第五章 时变电磁场

第五章 时变电磁场
第五章 时变电磁场

(完整版)电磁场复习题

《电磁场与电磁波基础》复习题 一、 填空题: (第一章)(第二章)(第三章)(第四章)(第五章)(第六章) (第一章) 1、直角坐标系下,微分线元表达式 z e y e x e l z y x d d d d 面积元表达式 2、圆柱坐标系下,微分线元表达式z e e e l z d d d d , 面积元表达式z e l l e S z d d d d d z e l l e S z d d d d d d d d d d z z z e l l e S 3、圆柱坐标系中, e 、e r 随变量 的变化关系分别是 e e , e -e 4、矢量的通量物理含义是 矢量穿过曲面的矢量线的总和; 散度的物理意义是 矢量场中任意一点处通量对体积的变化率; 散度与通量的关系是 散度一个单位体积内通过的通量。 5、散度在直角坐标系 F z F y F x F V S d F F div Z Y X S V 0lim 散度在圆柱坐标系 z F F F F div Z 1)(1 6、矢量微分算符(哈密顿算符) 在直角坐标系的表达式为 z z y y x x e e e 圆柱坐标系 z e z e e 球坐标系分别 sin e e r e r r r 7、高斯散度定理数学表达式 V s S d F dV F ,本课程主要应用的两个方面分别是 静电场的散度 、 恒定磁场的散度 ;

8、矢量函数的环量定义 C l z y x F d ),,(;旋度的定义MAX l S S l d F F rot lim 0; 二者的关系 ? ? C S l d F S d F )(;旋度的物理意义:描述矢量场中某一点漩涡源密度。 9、旋度在直角坐标系下的表达式F =)()()(y F x F e x F z F e z F y F e z y z z x y y Z x 10、旋度的重要恒等式,其物理意义是旋涡源密度矢量; 11、斯托克斯定理数学表达式 ? ? C S l d F S d F )(,本课程主要应用的两个方面分别是 静电场的旋度 、 恒定磁场的旋度 ; 12、梯度的物理意义 描述标量场在某点的最大变化率及其变化最大的方向;等值面、方向导数与梯度的关系是 空间某一点的梯度垂直过该点的等值面;梯度在某方向上的投影即为方向导数; 13、用方向余弦cos ,cos ,cos 写出直角坐标系中单位矢量l e r 的表达式 cos cos cos e l z y x e e e ; 14、直角坐标系下方向导数的数学表达式l M u M u M )()(lim |l u 00l 0, 梯度的表达式; 15、梯度的一个重要恒等式u u grad ,其主要应用是求出任意方向的方向导数 ; 16、亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是 要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 17、描述一个矢量场的矢量函数能够用一个标量函数来描述的必要条件是 旋度 处处为零 ,这是因为恒等式 0u F 。

电磁场与电磁波(第四版)谢处方 第五章习题解答.

电磁场与电磁波(第四版)谢处方 第五章习题解答 5.1 真空中直线长电流I 的磁场中有一等边三角形回路,如题5.1图所示,求三角形回路内的磁通。 解 根据安培环路定理,得到长直导线的电流I 产生的磁场 02I r φ μπ=B e 穿过三角形回路面积的磁通为 d S ψ==?B S 0 00 2[d ]d d 2d d z d d I I z z x x x x μμππ= ? 由题5.1 图可知,()tan 6z x d π=-=,故得到 d d d x d x x ψ-== 0[)]22I b d μπ+ 5.2 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题5.2图所 示。计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。 解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。 由安培环路定律 d C I μ?=?B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电 I 题 5.1 图 题5.2图

流产生的磁场为 0 2 0222 b b b b b b r b b r b r J r B J r μμ???? 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为 2 0222a a a a a a r a a r a r J r B J r μμ?-??? 这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。 将a B 和b B 叠加,可得到空间各区域的磁场为 圆柱外:22 222b a b a b a r r B J r r μ??=?- ??? ()b r b > 圆柱内的空腔外:2 022b a a a r B J r r μ??=?- ?? ? (,)b a r b r a <> 空腔内: ()0022 b a B J r r J d μμ=?-=? ()a r a < 式中d 是点和b o 到点a o 的位置矢量。由此可见,空腔内的磁场是均匀的。 5.3 下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。 (1) 0,r ar H e B H μ== (圆柱坐标) (2) 0(),x y ay ax H e e B H μ=-+= (3) 0,x y ax ay H e e B H μ=-= (4) 0,ar H e B H φμ==(球坐标系) 解 根据恒定磁场的基本性质,满足0B ??=的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。若是磁场的场矢量,则可由J H =??求出源分布。 (1)在圆柱坐标中 211()()20r rB ar a r r r r B ????===≠?? 该矢量不是磁场的场矢量。 (2) ()()0ay ax x y B ?? ??= -+=?? 该矢量是磁场的矢量,其源分布为 20 x y z z a x y z a y a x e e e J H e ???=??==???- (3) ()()0ax ay x y B ?? ??=+-=??

电磁场与电磁波5答案

第5章时变电磁场 5.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 5.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 00 ()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 5.3 平行双线传输线与一矩形回路共面,如题 6.3图所示。 设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=?,求回路中的感应电动势。

时变电磁场

第五章 时变电磁场 1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。 2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。2)电场和磁场共存,不可分割。3)电力线和磁力线相互垂直环绕。 3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。第八章介绍了电磁波的产生-天线。 4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。2)基本方法:复矢量 §时变电磁场方程及边界条件 1 1)因为 t ?? 不为零,电场和磁场相互耦合,不能分开研究。其基本方程就是Maxwell 方程。 微分形式:?? ??? ????????????-=??=??=????-=????+=??t J B D t B E t D J H ρρρρ ρ ρ ρρ ρρ0 积分形式??????? ??????????-=?=?=????-=????+=??????????s V s s V c s c s dV t s d J s d B dV s d D s d t B l d E s d t D J l d H ρρρρρρρρρρρρρρρρρ0)( 2)物质(本构)方程: 在线性、各向同性媒质中 H B E D ρρρρμε== 其它媒质有:非线性,各向异性,双各向异性,负相对电导率、负相对磁导率媒质等人工媒质。这些媒质在微波、光学、隐身、伪装方面有很多应用。 3)上面的电流J ρ包括传导电流E J c ρρσ=和运移电流v J v ρ ρρ= 2 边界条件: § 时变电磁场的唯一性定理 1 如果1)一个区域内0=t 时,每一点的电场强度和磁场强度的初始值已知,2)区域边界

第五章时变电磁场题解

第五章 时变电磁场 5-1 如图5-1所示,一个宽为a 、长为b 的矩形导体框,放置在磁场中,磁感应强度为 B e =B t y 0sin ω。 导体框静止时其法线方向e n 与y e 呈α角。求导体框静止时或以角速度ω绕x 轴旋转(假定t =0时刻,α=0)时的感应电动势。 解 由于 y t B e B ωsin 0=,据 ?? ???-=s t e s B d , 导体框静止时,t B ab ab t B e ωωααcos cos cos 0-=???-= 导体框旋转时, ()()t abB t ab B t ab t B t t ab B t t e ωωωωωωω2cos 2cos 22 1 cos sin cos d 000s -=??-=??? -=???-=???- =??s B 5-2 设图5-2中随时间变化的磁场只有z 轴分量,并沿y 轴按 B B y t B t ky z ==-(,)cos()m ω的规律分布。现有一匝数为N 的线圈平行于xoy 平面,以速度v 沿y 轴方向移动(假定t =0时刻,线圈几何中心处y =0)。求线圈中的感应电动势。 解 据 ()???=l e l B v d 设 2 , 221a vt y a vt y + =-=,则有 ()()[]()kvt vB Nb a vt k a vt k vB Nb y B y B v Nb e m m sin 2cos 2cos 2211?-=????? ???? ?? ++??? ??-?=+?= 5-3 一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速 度ω旋转,其轴线与磁场平行。在轴与圆盘边缘上分别接有一对电刷,如图5-3所示。这一装置称为法拉第发电机。试证明 两电刷之间的电压为2 2B a ω。 解 由于t d d α ω= ,αωd d =t ,t ωα=,ωr v = 则有 ()??=?=??=a l Ba r B r e 02 2d d ωωl B v 5-4 设平板电容器极板间的距离为d ,介质的介电常数为ε0,极板间接交流电源,电压为 u U t =m sin ω。求极板间任意点的位移电流密度。 解 对于平板电容器,极间电场为均匀场, 则有 t d U E m ωsin =,t d U E D m ωεεsin 0==,t d U e D J m D ωωεcos 0=??= 5-5 一同轴圆柱形电容器,其内、外半径分别为cm 11=r 、cm 42=r ,长度m 5.0=l ,极板间介

第三章 电磁场边值问题的求解(2)....

3.4静态场边值问题解法 静态场问题分为两大类: 1、分布型问题:由已知场源分布,直接从场的积分公式求 空间各点的场分布。 2、边值型问题:由已知场量在场域边界上的值,求场域内 的场分布。 边值问题的解分为解析法和数值法。 1

2 图有 有边限 限界差 元法量 解元 保 分电镜离轴换 像法角 变法量变 解析法 法数值202??ρε???=?????=??? 拉氏方程泊松方程

本讲内容 1 静电场的唯一性定理 2 镜像法 点电荷与导体球、点电荷与无限大导体平面、点电荷与无限大的介质平面 3 分离变量法 直角坐标系、圆柱坐标系 3

4 数学物理方程是描述物理量随空间和时间的变化规律。对于某一特定的区域和时刻,方程的解取决于物理量的初始值与边界值,这些初始值和边界值分别称为初始条件和边界条件,两者又统称为该方程的定解条件。静电场的场量与时间无关,因此电位所满足的泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界条件求解空间任一点的电位就是静电场的边值问题。 通常给定的边界条件有三种类型: 第一类边界条件给定的是边界上的物理量,这种边值问题又称为狄利克雷问题。第二类边界条件是给定边界上物理量的法向导数值,这种边值问题又称为诺依曼问题。第三类边界条件是给定一部分边界上的物理量及另一部分边界上物理量的法向导数值,这种边界条件又称为混合边界条件。 静电场的唯一性定理

对于任何数学物理方程需要研究解的存在、稳定及惟一性问题。 解的存在是指在给定的定解条件下,方程是否有解。 解的稳定性是指当定解条件发生微小变化时,所求得的解是否会发生很大的变化。 解的惟一性是指在给定的定解条件下所求得的解是否惟一。 静电场是客观存在的,因此电位微分方程解的存在确信无疑。 由于实际中定解条件是由实验得到的,不可能取得精确的真值, 因此,解的稳定性具有重要的实际意义。 泊松方程及拉普拉斯方程解的稳定性在数学中已经得到证明。可 以证明电位微分方程解也是惟一的。 5

第二章静电场题解

第二章 静电场 (注意:以下各题中凡是未标明电介质和导体的空间,按真空考虑) 2-1 在边长为a 的正方形四角顶点上放置电荷量为q 的点电荷,在正方形几何中 心处放置电荷量为Q 的点电荷。问Q 为何值时四个顶点上的电荷受力均为零。 解 如图建立坐标系,可得 x x x x a Q a a q E e e e 2/12242122142 22 ? ? +??? ? ? ??+= πεπε y y y y a Q a a q E e e e 2 /12 2421 221420 22 0? ? +??? ? ? ??+= πεπε 据题设条件,令 022421=?? ? ??+???? ? ?+Q q , 解得 ()2214 +-=q Q 2-2 有一长为2l ,电荷线密度为τ的直线电荷。 1)求直线延长线上到线电荷中心距离为2l 处的电场强度和电位; 2)求线电荷中垂线上到线电荷中心距离为2l 处的电场强度和电位。 解 1)如图(a )建立坐标系,题设线电荷位于x 轴上l ~l 3之间,则x 处的电荷微元在坐标原点产生的电场强度和电位分别为 ()x x x e E -= 2 04d d πετ,x x 04d d πετ? = 由此可得线电荷在坐标原点产生的电场强度和电位分别为 ()()()x l l x l l l x x e e E E -= -= = ??032 0364d d 0πετ πετ ()3ln 44d d 00 303l πε τ πετ??= = = ? ? l l l x x 2)如图(b )建立坐标系,题设线电荷位于y 轴 上l -~l 之间,则y 处的电荷微元在点()l 2,0处产生的电场强度和电位分别为 ()r r y e E -= 2 04d d πετ,r y 04d d πετ? = 式中,θ θ2 cos d 2d l y =,θ cos 2l r = ,5 14sin 2 2 = += l l l α,分别代入上两式,并 考虑对称性,可知电场强度仅为x 方向,因此可得所求的电场强度和电位分别为 ()l l l r y l x x x x 000 00 2 00 54sin 4d cos 4cos 4d 2d 20,2πεταπετθθπετθπετα α αe e e e E E = = = ==? ? ?

第六章 时变电磁场典型例题

第六章 时变电磁场 6.1 在3z m =的平面内,长度0.5l m =的导线沿x 轴方向排列。当该导线以 速度24x y m v e e s =+ 在磁感应强度2 2363x y z B e x z e e xz T =+- 的磁场中移动时,求 感应电动势。 解:给定的磁场为恒定磁场,故导线中的感应电动势只能是导线在恒定磁场中移动时由洛仑兹力产生的。有 ()in v B d l ε=??? 根据已知条件,得 2 233()|(24)(363)|z x y x y z z v B e e e x z e e xz ==?=+?+- 210854(1236)x y z e x e x e x =-++- x d l e dx = 故感应电动势为 0.5 2 [10854(1236)]13.5in x y z x e x e x e x e dx V ε= -++-?=-? 6.2 长度为l 的细导体棒位于xy 平面内,其一端固定在坐标原点。当其在恒 定磁场0z B e B = 中以角速度ω旋转时,求导体棒中的感应电动势。 解:导体中的感应电动势是由洛仑兹力产生的,即 ()in v b dl ε= ??? 根据已知条件,导体棒上任意半径r 处的速度为 v e r ωΦ= r dl e dr = 故感应电动势为 2 0000001()()2 l l L in z r v b dl e r e B e dr B rdr B l V εωωωΦ=??=??==??? 6.3 试推出在线性、无耗、各向同性的非均匀媒质中的麦克斯韦方程。 解:考察麦克斯韦方程中的参量,利用它们与电场强度E 和磁感应强度B 的关系,

电磁场与电磁波课后习题解答(第五章)

习题及参考答案 5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功? 解:用镜像法计算。导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为 2 )2(042x Q F επ-= 静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力 2 ) 2(0 42 x Q f επ= 在移动过程中,外力f 所作的功为 d Q d dx d x Q dx f 0 16220162 επεπ=?∞?∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为d q 8/2επ。 也可以用静电能计算。在移动以前,系统的静电能等于两个点电荷之间的相互作用能: d Q d Q Q d Q Q q q W 0 82)2(04)(21)2(04212 2211121επεπεπ??-=-+-=+= 移动点电荷Q 到无穷远处以后,系统的静电能为零。因此,在这

个过程中,外力作功等于系统静电能的增量,即外力作功为d q 8/2 επ。 5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷 的位置和大小。 解:需要加三个镜像电荷代替 导体面上的感应电荷。在(-a ,d ) 处,镜像电荷为-q ,在(错误!链接无效。 镜像电荷为q ,在(a ,-d )处,镜 像电荷为-q 。5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为 ]2) 22(2[0 4R D DRq D D q R Q q F --+= ε π 其中D 是q 到球心的距离(D >R )。 证明:使用镜像法分析。由于导体球不接地,本身又带电Q ,必须在导体球内加上两个镜像电荷来等效导体球对球外的影响。在距离球心b=R 2/D 处,镜像电荷为q '= -Rq/D ;在球心处,镜像电荷为 D Rq Q q Q q /2 +='-=。点电荷 q 受导体球的作用力就等于球内两个镜 像电荷对q 的作用力,即 ]2 )2(2[04]2)(22[04D R D D q R D D q R Q q b D q D q q F --++ =-'+=επεπ ]2)22(2[0 4R D DRq D D q R Q q --+=επ 5.4 两个点电荷+Q 和-Q 位于一个半径为a 的接地导体球的直径的延

时变电磁场.

第五章 时变电磁场 5.1 为什么电容器通交流阻直流?位移电流在含有电容的电路中起怎样的作用? 解答:当电容器外加直流电压时,由于电容器两端电压不变,由可知极板上的电荷量不随时间变化,因而连接电容器的导线上没有电流,即电容器阻直流;当电容器外加交流电压时,由可知极板上的电荷量也随时间交变,如正电荷在一个极板上增加时,另一个极板的负电荷量也随之增加,多余的正电荷增量便沿导线传导形成电流,因而电容器通交流。 CU Q =CU Q =电容器极板上的带电量决定了两极板间的电场强度及电位移矢量,极板上电荷量的变化导致另一极板上感应电荷量随之变化,使得两极板间的电位移也随时间同步变化,此变化率称为位移电流(密度)。可见自由电荷的变化形成位移电流并导致传导电流,电容器中的位移电流起到了连接两点(电极)之间真实电流的桥梁作用。 5.2 对于时变场,理想导体表面电场和磁场有何特点?怎样解释? 解答:理想导体表面电场切向为零,只有法向分量;磁场法向为零,只有切向分量。在理想导体中,由222E J σ=,∞→2σ可知,必有02=E ,否则会出现电流无穷大,即电源能量无穷大,这是不可能的。由电场切向连续的边界条件可知,。另外,由0t 1=E 022=??- =??t B E 0可知,对于时变场,2=B 。由磁感应法向连续的边界条件可知。 01n =B 5.3 在时变场中为什么电容器会存在分布电感?电感线圈会存在分布电容? 解答:对于外加交变电压的电容器,两极之间的电场也是交变的,由 t ??=??E H ε可知,交变的电场在两极之间会产生磁场分布,即电容器中储存有磁场能量,因此电容器具有分布电感。类似的,线圈中的磁场是交变的,由t ??-=??H E μ可知,交变的磁场在线圈中会产生涡旋电场,即线圈中会储存有电场能量,因此电感线圈具有分布电容。 5.4 在交变电路中,能量是在导线中传递吗? 解答:不是。能量在导线中只有损耗。能量的传递是在导线外进行的,导线起着引导能量传递方向的作用。以同轴传输线为例,内外导体之间的电场分布沿径向方向,磁场分布绕轴沿?角方向,按照坡印廷定理,能流矢量)()()(t t t H E S ?=,方向正是传输线的轴线方向。对平行双线传输线,也有相同的结果。 5.5 用复数表示正弦场有何方便之处?场量的实部和虚部有何关系?

电磁场理论习题解读

思考与练习一 1.证明矢量3?2??z y x e e e -+=A 和z y x e e e ???++=B 相互垂直。 2. 已知矢量 1.55.8z y e ?e ?+=A 和4936z y e ?.e ?+-=B ,求两矢量的夹角。 3. 如果0=++z z y y x x B A B A B A ,证明矢量A 和B 处处垂直。 4. 导出正交曲线坐标系中相邻两点弧长的一般表达式。 5.根据算符?的与矢量性,推导下列公式: ()()()()B A B A A B A B B A ??+???+??+???=??)( ()()A A A A A 2??-?=???2 1 []H E E H H E ???-???=??? 6.设u 是空间坐标z ,y ,x 的函数,证明: u du df u f ?=?)(, ()du d u u A A ??=??, ()du d u u A A ??=??,()[]0=????z ,y ,x A 。 7.设222)()()(z z y y x x R '-+'-+'-='-=r r 为源点x '到场点x 的距离,R 的方向规定为从源点指向场点。证明下列结果, R R R R =?'-=?, 311R R R R -=?'-=?,03=??R R ,033=??'-=??R R R R )0(≠R (最后一式在0=R 点不成立)。 8. 求[])sin(0r k E ???及[])sin(0r k E ???,其中0E a ,为常矢量。 9. 应用高斯定理证明 ???=??v s d dV f s f ,应用斯克斯(Stokes )定理证明??=??s L dl dS ??。 10.证明Gauss 积分公式[]??????+???=??s V dv d ψφψφψφ2s 。 11.导出在任意正交曲线坐标系中()321q ,q ,q F ??、()[]321q ,q ,q F ???、()3212q ,q ,q f ?的表达式。 12. 从梯度、散度和旋度的定义出发,简述它们的意义,比较它们的差别,导出它们在正交曲线坐标系中的表达式。

重庆大学电磁场习题答案习题(第5章)

第五章习题答案 5-1解: 穿过速度v 运动的矩形线框的磁链为: ()??? ?????? ??+--??? ? ?+= ? =?=++-vt ka vt ka k b NB bdy ky B N d N m vt a vt a m S m 2sin 2sin cos 22 S B ψ 所以,线框的感应电动势为: () kvt ka bv NB dt vt ka vt ka k b NB d dt d m m m sin 2sin 22sin 2sin ?? ? ??-=??? ???????????? ??+--??? ??+=- =/ψε 5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。在轴与圆盘边缘上分别接有一对电刷。这一装置称为法拉第发电机。试 证明两电刷之间的电压为2 2ω Ba 。 证明:,选圆柱坐标, ρφe vB e B e v B v E z ind =?=?= 其中 φρωe v = 2 2 ω ρρωρερ ρa B d B e d e v B l d E a a l ind === =?? ???∴ 证毕 5-3解: 平板电容器极板间的电场强度为:t d U d u E m ωsin == 则位移电流密度为:t d U t E t D J m D ωωεεcos 00=??=??= 5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V 100sin 26000t u π=。求 s t 0.1=时极板间任意点的位移电流密度。 解法一:因电源频率较低,f=50Hz 为缓变电磁场,可用求静电场方法求解。忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为 题图5-2 z v ρ

相关文档
最新文档