CORS系统高程拟合精度的探讨

CORS系统高程拟合精度的探讨
CORS系统高程拟合精度的探讨

CORS系统高程拟合精度的探讨

摘要:连续运行参考站(CORS)系统提供了全天候,高精度的定位服务。GPS高程精度一直难以评定,结合区域实例,利用水准测量限差和精度概念对CORS下的高程拟合精度进行了探讨。

关键词:CORS系统,高程拟合,五等水准

Abstract: Continuously Operating Reference Stations (CORS) system provides all-weather, high-precision positioning service. As GPS height accuracy has been difficult to assess, combining with regional examples, the elevation fitting accuracy of CORS is explored by using the leveling tolerance and the concept of accuracy.

Key words: CORS system; elevation fitting; five-leveling

GPS连续运行参考站系统(Continuously Operation Reference Stations System,简称CORS)是目前国际上主要的地面地理信息采集设施,它集成了卫星导航定位(GPS、GLONASS等)、数字通讯、有线及无线网络等技术,形成了一个不间断地面信息源采集系统,为测绘领域提供了全天候,高精度的定位服务。近几年国内省级CORS系统不断建立,有些加入了似大地水准面精化模型,有的则没有

SDCORS是“山东省基础测绘”、十一五‟规划”的重点项目,项目于2009年4月开始建设,2011年2月在济南正式通过验收;同日,由101个基准站组成的SDCORS正式启动,开始为山东省各相关行业提供服务。但是目前SDCORS系统并未加入大地水准面精化模型数据,高程数据通过高程拟合模型实现,本文在SDCORS下,在A城市进行了一定规模的数据采集,通过与五等水准高程成果比较,来探讨拟合高程的精度,看是否能够满足平原地区的大比例尺(1:1000)测图要求。

实验小组首先对A城市(平原地区)的5个C级GPS点进行观测求取了七参数,计算得到了高程拟合模型。然后在城市200km2的范围内,横纵均匀布设了140个固定图根点,并用RTK进行了测量,得到了高程坐标。最后对图根点全部施测五等水准[1],并与E级GPS点联测,得到了高程成果。

图一水准路线图

注:七参数:ΔX,ΔY,ΔZ,ωX,ωY,ωZ,m七个,其中(ΔX,ΔY,ΔZ)为坐标平移量,(ωX,ωY,ωZ)为坐标轴间的三个旋转角度(又称为欧拉角),m为尺度因子。

GPS水准高程拟合报告

GPS水准高程拟合报告 实验目的: 1掌握GPS水准高程拟合的基本原理,了解高精度GPS水准的研究意义; 2能够利用Matlab编程实现几何内插法拟合GPS水准高程; 实验内容: 利用Matlab编程实现几何内插法拟合GPS水准高程,并作内插结果分析 实验原理: 1大地水准面,参考椭球面,正高,大地高之间的几何关系 A 正高的定义是:由地面点沿通过该点的铅垂线到大地水准面的距离。一般用符号Hg表示。 B 大地高的定义是:由地面点沿通过该点的椭球面法线到椭球面的距离。也称为椭球高,一般用符号H表示。大地高是一个纯几何量,不具有物理意义。同一个点,在不同的基准下,具有不同的大地高。利用GPS,可以测定地面点的WGS-84中的大地高。 C 大地水准面差距:大地水准面到椭球面的距离,称为大地水准面差距,记为hg (或N)。 如上图可以看出大地高和正高之间的关系:H=Hg+ hg 2几何内插法原理 几何内插法是通过一些既进行了GPS观测又具有水准资料的点上的大地水准面差距,采用平面或曲面拟合,配置三次样条等内插方法,得到其他点上的大地水准面差距从而反算这些点上的正高。 3二多项式拟合 N=a0+a1*dB+a2*dL+a3*dB2+a4*dL2+a5*dL*dB 公式一

式中dB=B-B0;dL=L-L0;B0=1/n∑B;L0=1/n∑L,n为GPS观测点的数量。 利用其中一些具有水准观测资料的公共点上的的大地高和正高可以计算出这些点的大地水准面差距。利用这些公共点的观测资料求得公式一的参数,再利用求得的公式进行其他点的大地水准面差距内插,和正高的拟合; 实验步骤: 1输入已知点的GPS观测值和相应的正常高构成矩阵B,L,H,h,分别是纬度矩阵,经度矩阵,大地高矩阵,正高矩阵; 2计算dB=B-B0;dL=L-L0;B0=1/n∑B;L0=1/n∑L,构成矩阵矩阵dB,dL和大地水准面差距矩阵N=H-h; 3将以上计算得到的矩阵代入公式一经过间接平差求得相应的参数a i,这样就能构成一个确定的多项式二; 4输入未知待求点的GPS观测值构成矩阵BB,LL,HH,计算相应的dBB,dLL; 5将dBB,dLL矩阵代入多项式二,解算出对应点的大地水准面差距NN矩阵; 6反算各点的正高h=H-NN; 7对计算得到的正高,大地水准面差距做对比分析; 实验分析: 1本实验中可以选择两种差值公式算法 (1)N=a0+a1*dB+a2*dL+a3*dB2+a4*dL2+a5*dL*dB (2)N=a0+a1*B+a2*L+a3*B2+a4*L2+a5*L*B 采用公式(1)的插值结果如下: Δh(dB)散点图 注:Δh(dB)是插值点的水准资料与插值结果的差值 采用公式(2)的插值结果如下:

高程测量的精度研究.

高程测量的精度研究

摘要 由于其高效方便,得到了迅猛发展,成为了现在地形测量、变形监测、低等级高程控制测量的首选。近年来在理论和技术高速发展的带动下在平面测量精度和高程测量精度方面都得到了很大的提高。硬件方面,扼流圈天线使得的多路径效应得到了有效的消除;理论方面,各种对流层、电离层延迟改正模型的提出及其应用,以及许多研究表明有效的消除误差理论的应用,使得的诸多与卫星及接收机之间的误差得到了很好的改正,所以在平面位置和高程的测量精度也进一步提高。由于测量的大地高应用于实际时需要经过高程转换为正常高,中间转换过程中需要解算高程异常,一系列的计算使得在高程控制测量方面误差偏大,影响了高程控制测量在许多方面的应用。本文在双频观测的基础上,通过解算原始的观测数据,建立一种区域的电离层延迟改正模型,取代现在最常用的克罗布歇模型来消除电离层对测量的影响,更好的消除电离层延迟的影响,以提高的解算数据的精度。 本文在阐述高程系统和高程测量原理的基础上,首先分析并总结了影响测高的各种因素及大地高的测定精度;其次对现有的高程转换方法进行了全面分析,结合工程算例,深入探讨了各种拟合模型的适合范围及精度情况;同时针对高程测量中几何方法转换的不足,本文研究了基于人工神经元网络转换高程的新方法,通过实例分析证明了该方法转换高程的可行性与可靠,对神经网络模型转换高程的BP网络结构中隐层单元数量的确定、隐含层数的确定、学习速率的选择、初始权值的选择、训练样本对网络泛化能力的影响等问题进行了较为深入的探讨。为避免应用单一模型进行高程拟合方法的局限性,在吸收和学习己有研究成果的基础上,将不同的拟合模型进行迭加,提高高程异常的逼近精度和可靠性。 关键词:1、三角高程;2、测量精度;3、井下三角;4、GPS高程测量

GPS高程测量的精度分析

GPS高程测量的精度分析 介绍了GPS在市政工程高程测量中的应用,并揭示了造成实践应用不广泛的主要原因—测量精度。进而从GPS卫星、卫星信号的传播过程和地面接收设备以及地面高程的转化四个方面分析了GPS高程测量的精度问题。 标签:市政工程高程测量GPS信号接收机测量精度 一、引言 在工程测量中,高程测量的精度问题一直被测绘学界的工作者们广泛关注。水准测量的精度较高,但是测量工作量太大、测量速度较慢。相较于水准测量而言,GPS测量高程在效率上有很大的提高。理论与试验研究表明,如果在测量时加上一些特定的措施,GPS的高程测量精度可以达到三、四等水准测量的要求。近年来,随着RTK技术的广泛应用,尤其是多基站连续运行卫星定位服务综合系统在各城市的相继建立,高程测量方法得到了有效扩展,作业效率大大提高,但由于高程异常变化复杂,所以,GPS高程的精度普遍不高,分析影响GPS测量精度的影响因素,提高GPS的测量精度有重要的实践意义。 二、GPS高程测量的影响因素分析 1.与卫星相关的因素。卫星是GPS测量的信息发出点,卫星的分布、数量、稳定性对GPS测量结果的稳定性和精确度影响很大。 (1)卫星的个数及稳定程度。在解算整周模糊度时,至少需要有5颗公共卫星。星数越多,解算模糊度的速度越快、越可靠。当周围高层建筑物密集且有大树时,公共卫星数如果少于5颗,就很难得到固定解。当降低卫星的截止高度角时,公共卫星数将增加,但将使采集的数据含有较低的信噪比,使GPS接收机解算模糊度的时间延长,且观测精度较差,很难满足要求;当周围只是一侧或部分遮挡,此时的卫星个数需根据实际情况而定,如果卫星正好在遮挡物的一侧,此时,可能导致卫星数少于5颗,或者卫星数时而增加,时而减少。这样就会造成测回间的数据精度不稳定;当周围较空矿时,一般都能达5颗或者5颗以上,且卫星个数固定,此时采集的数据精度也比较稳定,但不排除个例。 (2)卫星分布情况。卫星分布用PDOP值(位置精度强弱度,为玮度、经度和高程等误差平方和的平方根)来衡量。PDOP值越小,说明卫星的分布越好,定位精度越高。一般规定,PDOP值应小于6。 2.与卫星信号传播相关的因素。卫星信号要经由大气空间传播到GPS数据接收器上来,在传播过程中,信号可能受到大气层的影响而发生波动,这就会对GPS接收到的数据造成影响,进而影响解算结果,影响测量的精度。 (1)对流层延迟。对流层延迟是指电磁波信号通过高度在50km以下的未

GPS高程拟合方法及其应用

GPS高程拟合方法及其应用 论文介绍了GPS高程拟合的原理。介绍了多种拟合模型的拟合原理、模型参数的优化选择,给出了利用地表拟合求解较高精度高程异常的方法,将各种模型进行应用对比。 标签:大地高GPS水准高程异常拟合模型 1 GPS高程异常 当前GPS技术在平面控制测量工作中已经得到了广泛的应用,但在高程控制测量中却未能得到广泛应用。原因是GPS高程测量得到的是建立在WGS-84坐标系上的大地高H,而我国测量工作中采用的是正常高H。GPS高程测量可以获得厘米级精度的大地高,但在GPS大地高转换为正常高过程中,由于未能获得同等精度的高程异常ζ,导致转换所得的GPS正常高达不到精度要求。 2高程拟合常用方法 拟合法是对GPS观测点进行几何水准联测,同一点的大地高减去正常高得到该点的高程异常,再把测区的似大地水准面假定为多项式曲面或者其他数学曲面去拟合已知高程异常的点,根据拟合的曲面内插其他GPS点的高程异常值。拟合法进行GPS高程转换的数学模型很多,如多项式曲线拟合、最小二乘平面拟合、二次多项式曲面拟合等,归纳起来可以分为线状拟合模型、平面拟合模型和曲面线状拟合模型三类。 3高程拟合实例分析 一测区,选取其中32个GPS水准高程点进行拟合,将32个水准点的X与Y值通过AutoCAD一个简短的VB加载程序展绘成图: 方案一:16个起算点均匀分布 选取点2,4,8,10,11,13,16,17,19,20,24,25,26,30,31,32十六个点均匀分布于分布已知水准点,经由GPS拟合程序拟合后,计算成果中得拟合高程与水准成果的互差中误差为11.820480毫米。 方案二:16个起算点分布在一侧(非均匀分布) 选取点位集中于右下侧,分别为1,2,3,5,9,10,11,14,18,21, 22,23,25,27,28,29十六个点。经由GPS拟合程序拟合后,计算成果中得拟合高程与水准成果的互差中误差为14.631518毫米。

谈全站仪的高程测量精度

谈全站仪的高程测量精度 本人在从事工程技术管理的工作中,经常听到有测量工程师抱怨说某某全站仪不好用,测高程测不准。于是我问他:测距离准不准?得到回答是,测距离没问题!于是我就奇怪了,为什么测距离准,测高程不准呢?全站仪工作时测得夹角a和距离L,如下图: s H L a H=L*sina S=L*cosa 既然S准确,相应的H也应该准确,因为他们的计算变量都是一样的。但经过本人实际操作,全站仪测高程精度确实比较差。到底是什么原因使得同样的参数,计算出来的结果一个精确,另一个却不精确呢?进过详细分析,本人发现其实并不是仪器的问题,而是误差给大家带来的麻烦:

90sinx cosx Y Y1 Y2 上图是正弦曲线和余弦曲线示意图,我们可以发现在全站仪镜头水平x=0°—竖直x=90°期间y值的变化,当我们在接近0°附近测量时f(x)=cosx相对于g(x)=sinx对x的增量来说不敏感,也就是说,当我们在仪器测量a角时,一个增量Δa引起的S的变化比H的变化小的多,而实际操作中,各位测量工程师也会发现,由于仪器的构造限制,很少有机会在测量的时候使全站仪仰俯超过45°,而真正当仰俯角超过45°,(例如在近距离测量盖梁或者墩顶高程)时,全站仪的高程测量精度并不比水平坐标的测量精度低。例如:sin10.1-sin10=0.00171855,cos10.1-cos10=-0.0003045,这表明在角度误差0.1°的情况下,瞄准接近100米的目标,高程会差17cm,而距离只差3cm,这就是为什么大家都抱怨全站仪测高程不精确的原因。 当然测量高程精度不准还与另外一些因素有关,如:1、仪器高不能准确测得,2、镜杆高度由于标杆底的磨损产生偏差,3、对站标时习惯性只左右对中,不上下对中等。这些原因都可能使全站仪的高

高程拟合

作业: 1.高程异常是如何产生的?请从实际角度谈谈如何有效地解决这一问题? 答:高程异常是由地下物质及其密度分布不均匀产生的重力异常导致的。 大地高与正常高之间的关系式:Hr= H84-ξ 其中ξ表示似大地水准面至椭球面间的高差,叫做高程异常。 地面点的正常高Hr是地面点沿铅垂线至似大地水准面的距离。 大地高是由地面点沿通过该点的椭球面法线到参考椭球面的距离,是一个几何量,不具有物理上的意义。 实际上,很难获得高精度的高程异常,而GPS单点定位误差又较大,一般测区内缺少高精度的GPS基准点,GPS网平差后,很难得到高精度的大地高H84。所以很难应用上式精确的计算各GPS点正常高Hr。 实际应用中解决高程异常问题,精确计算各GPS点的正常高Hr,目前主要有GPS水准高程,GPS重力高程,GPS三角高程等方法。 1 GPS水准高程 目前,国内外用于GPS水准计算的各种方法主要有:绘等值线图法;解析内插法(包括曲线内插法、样条函数法和Akima法);曲面拟和法(包括平面拟合法、多项式曲面拟合法、多面函数拟合法、曲面样条拟合法、非参数回归曲面拟和法和移动曲面法)。 1、绘等值线图法 这是最早的GPS水准方法。其原理是:设在某一测区,有m个GPS点,用几何水准联测其中n个点的正常高(联测水准的点称为已知点),根据GPS观测获得的点的大地高,可以求出n个已知点的高程异常。然后,选定适合的比例尺,按n个已知点的平面坐标(平面坐标经GPS网平差后获得),展绘在图纸上,并标注上相应的高程异常,再用1~5cm的等高距,绘出测区的等高异常图。在图上内插出未联测几何水准的(m-n)个点(未联测几何水准GPS 的称为待求点),从而求出这些待求点的正常高。 2、解析内插法 当GPS点布设成测线时,可应用曲线内插法,求定待求点的正常高。其原理是:根据测线上已知点的平面坐标和高程异常,用数值拟合的方法,拟合出测线方向的似大地水准面曲线,再内插出待求点的高程异常,从而求出点的正常高。

谈影响GPS高程拟合高程精度因素

谈影响GPS高程拟合高程精度的因素摘要:gps 定位技术以其精度高,全天候.成本低,效率高等特点被广泛应用于测绘及其它领域。目前在局部地区应用gps 测定的大地高精度进过高程拟合,已可以代替水准测量,将高程拟合成果直接应用到实际测量工作中,为各项工程节约大量时间和人力物力。但在一些实际工作中gps拟合高程代替水准高程又经常出现一些问题。本文将对gps解算原理经行简单介绍,重点对实际工作影响gps高程拟合高程精度的因素经行分析。 关键词:gps高程拟合高程;精度 abstract: gps technology to its high accuracy, all-weather. cost is low, the efficiency high characteristic is widely used in surveying and mapping and other fields. at present in the local area in the application of the earth were high precision gps in elevation fitting, already can take the place of the standard measurement elevation to synthetic fruit applied to practical measurement, for all the engineering save large amount of time and manpower. but in some practical work gps fitting elevation instead of standard and often have problems elevation. this paper simulates the principle of gps simple line introduces the influence to the practical work gps elevation fitting accuracy of elevation the line factor analysis.

RTK高程拟合

工程之星3.0 特色功能之一:控制点测量介绍 S730手簿蓝牙传输文件过程 RTK测量高程精度简析 2011-05-26 13:26:55| 分类:RTK测量资料| 标签:|字号大中小订阅 石家庄南方测绘导航产品部郭晓辉 使用RTK做地形图测量,既能快速的获得平面坐标又能快速的获得高程,大家都很容易接受,可是当谈论到使用RTK 是否可以做水准测量时,不少朋友都在心里打了一个问号。到底RTK 测得的高程和水准测量差多少呢?能不能满足工程的要求。其实这方面的问题已经被专家论证了多次,答案是在严格控制及选用合理的作业方法下,RTK 测量高程可以满足四等水准测量及等外的水准测量。毫无疑问,使用RTK 进行水准测量将会大大降低工作强度,同时提高作业效率。下面就介绍一下,如何使用RTK达到如上所述 的效果。 首先分析下GPS测得高程和水准测量求高程的区别,GPS 测量求得的原始坐标是WGS-84坐标(B,L,H)大地纬度,大地精度,大地高。而我国水准测量是采用1985国家高程基准,以似大地水准面为起算面,最后是以正常高作为使用的高程。因为测量原理不同,两种测量的起算面不同,所以两种高程值之间存在高程异常,即大地高= 正常高+高程异常。所以如果使用GPS要达到水准测量要求的正常高的值,必须要求提高得的大地高和高程异常值的精度。大地高的精度如南方灵锐S86RTK的精度指标垂直精度±2cm+1ppm ,静态,快速静态高程精度±5mm+1ppm,而精确的求出高程异常就是关键所在。 南方GPS,RTK 用高程拟合的方法精确求得高程异常,从而可以实时的得到控制范围内的正常 高。 GPS 水准高程拟合方法是: 在GPS 网中联测一些水准点, 利用这些点上的正常高和大地高求出它们的高程异常值, 再根据这些点上的高程异常值与坐标的关系,用最小二乘的方法拟合出测区的似大地水准面,利用拟合出的似大地水准面,内插出其他GPS 点的高程异常, 从而求出各个未知点的正常高。用于GPS 水准拟合的数学模型很多, 不同的数学模型对不同地形条件具有不同的拟合精度, 因此GPS 水准拟合模型拟合精度的探讨一直是GPS 应用研究领域的热点问题。其中多项式就是GPS 水准拟合模型的一 种,其模型可表述为 ζ= f ( x , y ) + ε 当GPS 点布设成网状时,一般采用曲面拟合的方法。 设测站点的高程异常ζ与坐标之间存在以下函数关系ζ i = f ( xi , y i ) + ε i其中, f ( xi , y i ) 为ζ的 趋势值, ε i 为误差。选用空间曲面函数 f ( x i , yi ) = a0 + a1x i + a2y i + a3x2i + a4x iyi + a5 y2i + a6 x3i + a7 x2iy i + a8x iy2i + a9y3i ( 4)进行拟合,式中ai 为待定参数。在已知点个数大于等于参数个数求出参数ai ,进而求出测区内任意点的高程异常。根据测区的不同情况,也可以选用不同的参数进行拟合。选用的参数不同,拟合出的曲面的形式也不 相同。 1多项式拟合模型分型

CORS系统高程拟合精度的探讨

CORS系统高程拟合精度的探讨 摘要:连续运行参考站(CORS)系统提供了全天候,高精度的定位服务。GPS高程精度一直难以评定,结合区域实例,利用水准测量限差和精度概念对CORS下的高程拟合精度进行了探讨。 关键词:CORS系统,高程拟合,五等水准 Abstract: Continuously Operating Reference Stations (CORS) system provides all-weather, high-precision positioning service. As GPS height accuracy has been difficult to assess, combining with regional examples, the elevation fitting accuracy of CORS is explored by using the leveling tolerance and the concept of accuracy. Key words: CORS system; elevation fitting; five-leveling GPS连续运行参考站系统(Continuously Operation Reference Stations System,简称CORS)是目前国际上主要的地面地理信息采集设施,它集成了卫星导航定位(GPS、GLONASS等)、数字通讯、有线及无线网络等技术,形成了一个不间断地面信息源采集系统,为测绘领域提供了全天候,高精度的定位服务。近几年国内省级CORS系统不断建立,有些加入了似大地水准面精化模型,有的则没有 SDCORS是“山东省基础测绘”、十一五‟规划”的重点项目,项目于2009年4月开始建设,2011年2月在济南正式通过验收;同日,由101个基准站组成的SDCORS正式启动,开始为山东省各相关行业提供服务。但是目前SDCORS系统并未加入大地水准面精化模型数据,高程数据通过高程拟合模型实现,本文在SDCORS下,在A城市进行了一定规模的数据采集,通过与五等水准高程成果比较,来探讨拟合高程的精度,看是否能够满足平原地区的大比例尺(1:1000)测图要求。 实验小组首先对A城市(平原地区)的5个C级GPS点进行观测求取了七参数,计算得到了高程拟合模型。然后在城市200km2的范围内,横纵均匀布设了140个固定图根点,并用RTK进行了测量,得到了高程坐标。最后对图根点全部施测五等水准[1],并与E级GPS点联测,得到了高程成果。 图一水准路线图 注:七参数:ΔX,ΔY,ΔZ,ωX,ωY,ωZ,m七个,其中(ΔX,ΔY,ΔZ)为坐标平移量,(ωX,ωY,ωZ)为坐标轴间的三个旋转角度(又称为欧拉角),m为尺度因子。

RTK测高试验与精度分析

马永来宋海松弓增喜(黄河水利委员会水文局郑州450004) 摘要:RTK技术是基于载波相位观测量的实时动态定位技术。为了解RTK技术的应用情况,在小浪底库区及花园口大堤做了RTK测高试验,并对实测资料进行了分析。分析结果表 明:RTK测高精度能够达到仪器标称精度,数据可靠;若选择VDOP<4、可用卫星为5颗以上的情况下进行观测,可提高观测精度;RTK测量高差通过布尔莎模型转化后,仍为大地高高差,经高程拟合消除高程异常后,所得正常高可以达到五等水准测量要求。 关键词:精度实时动态测量RTK快速静态测量高程拟合 GPS即全球定位系统,80年代主要是基于载波相位差分的静态测量,要得到可靠的解向量,通常需要观测一二个小时l至更长时间、随着GPS应用技术的发展,义出现了GPS快速定位技术(快速静态、动态、伪静态)、当基线长度小于15 km时,GPS快速定位技术可在较短的时间内达到厘米级的定位精度,具有。·短、平、快,,的优点、然而,观测时需要对己知数据点进行各种各样的初始化,对卫星凡何条件及卫星跟踪都有较高要求,而巨只能通过事后数据处理得到测量结果、为缩短观测时间,提高工作效率,在小范围测量中,义逐渐提出了一种新技术实时动态测量RTK(Real Time Kine matic技术)。 1.RTK技木简介 RTK技术是基于载波相位观测量的实时动态定位技术,一般中基准站、移动站、数据通讯链3部分组成、其工作原理是:基准站接收机~调制器~发射电台~转发器~接收电台~解调器~移动站接收机、基准站和移动站同时接收GPS卫星定位信息、通过差分数据链,移动站接收基准站发送的GPS数据,结合自月采集的GPS数据进行实时处理,在Is内以厘米级的精度给出移动站的点位信息、通过OTF(Oil The Fly)实时处理算法,移动站在动态环境下可进行初始化处理,无需在己知点上进行初始化、RTK测量必须有伪距和相位观测值(最好带双频P码,有利于实时快速解求模糊度)。 2.RTK测高试验与精度 2.1试验基本情况 RTK测量和解算是在WGS84坐标系中进行的,实时给出的高程为大地高、我国采用的高程为丁常高,在实际应用时还需将大地高转换为丁常高、因此,RTK的应用范围,RTK技术确定丁常高的精度和可靠性,以及将大地高转换为丁常高时采用的方法等都是人们十分关心的问题、为此我们在小浪底库区进行了RTK实地测量、为了解平原地区倩况,又在郑州郊区黄河花园口大堤选驭部分试验点,试验点高程范围为98 856-314053 m,移动站至基准站间距离为0-1049 km、试验点均经快速静态布网测量,井经过平差,得到了WGS84大地坐标和大地高成果、试验之前对所有试验点进行了四、五等水准测量、RTK试验所用仪器为Trimble4000SSE(OTF)、仪器实时动态(RTK)标称精度:水平10 mm+ZD。10‘,垂直20 mm+ZD。10‘;快速静态标称精度:水平10 mm+D。10‘,垂直10 mm+ZD。10‘、D表示测量基线的距离。

全站仪高程控制测量精度与误差分析

全站仪高程控制测量精度与误差分析 【摘要】水准测量操作简单,数据量相对较小,容易计算与处理,而且精度高。但是,由于位置差异,在一些特殊的地理位置采用全站仪进行高程控制测量更能提高效率。例如在一些山区、丘陵地带,应用几何水准测量效率就很会很低,在应用全站仪进行高程测量的时候,采用什么方法来进行数据处理也是非常重要的。为了提高计算精度与工作效率,更有利于设计最佳方案进行测量工作,那么我们将采用几种方法进行精度与误差分析比较。精度与误差也是我们最需要关注的。经过实践操作证明,使用全站仪进行山地水准测量能够达到三、四等要求。因此,采用全站仪进行高程控制测量能够达到精度要求,大大提高了工作效率。 【关键词】全站仪;高程;精度分析;误差分析 1.引言 随着测绘专业的不断发展,全站仪的应用越来越广泛,并以其操作简捷,电脑计算,大大提高工作效率,而被广大测绘人员所青睐。目前,人们对全站仪的研究也是越来越深入,希望能够将它应用到更多的工作中,而在山地高程控制测量中,使用水准仪的传统方式进行测量虽然精度高,但是工作量大,耗时长,效率太低;而采用三角高程控制测量虽不受地形限制,但是它受地球曲率、棱镜高和仪器高的因素的影响,精度与水准测量相比过低,误差相对较大。那么,使用全站仪绝对是一个很好的发展方向,这就可以摆脱传统的水准测量方式,减少了数据量,降低了工作难度,不受地区地形限制,影响测量精度因素较少。我们通过实践与研究,对全站仪高程测量精度与误差进行了分析。 2.全站仪高程测量原理与精度分析 (1)基本原理 全站仪高程测量的基本原理是把全站仪当作水准仪来使用,使棱镜高相同,达到抵消仪器高和棱镜高的目的,从而不必量取棱镜高和仪器高,这样既能在地形复杂地区进行快速的高程传递,又能确保足够的高程测量精度。如果在较短的距离内不考虑两差对高差测量的影响,那么观测计算得到的A,B两点高差只受垂直角测量和距离测量精度的影响。如果两点间高差较大或距离较远,仅安置一次仪器不能测出其高差时,就可以在两点间安置多次仪器,加设多个转点,然后再分段设站观测。图1中各符号所含意义如下:SCA为后视斜距;SCB为前视斜距;DCA为后视平距;DCB为前视平距;iA为后视点棱镜的高度;iB为前视点棱镜的高度;VC为全站仪的高度;hAC为后点A至测站点C的高差;hCB为测站点C至前点B的高差;h1为后视棱镜中心至全站仪横轴的高差;h2为全站仪横轴至前视棱镜中心的高差;hAB为后视点A至前视点B的地面高差;A1为全站仪观测后视棱镜中心点的竖直角(俯角或仰角);A2为全站仪对前视棱镜中心点的竖直角(俯角或仰角)。原理图如下:

GPS控制网高程拟合

GPS控制网高程拟合 【摘要】通过对沁河防汛工程D级GPS网的高程拟合精度分析,探讨GPS高程拟合成果的精度与起算点分布、起算成果精度、高程拟合数学模型、GPS数据处理软件的关系。 GPS network of Qinhe flood control projects D elevation fitting accuracy, explore the accuracy of the GPS elevation fitting the results with the starting point of distribution, the date the results of precision, the elevation fitting a mathematical model, the relationship of the GPS data processing software. 【关键词】GPS 高程异常值中误差曲面拟合EGM96大地水准面模型 前言 全球定位系统(Global Positioning System-GPS)是美国从本世纪70年代开始研制,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、高效率等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等测绘学科,给测绘领域带来一场深刻的技术革命。目前,大多数的城市首级控制网均采用GPS测量,而其中的高程控制主要采用传统的几何水准测量方法建立高精度的水准网。GPS高程测量却常常被忽视,认为其精度不太可靠。因此,为探讨GPS测量高程拟合成果的精度与起算点分布、起算成果精度、高程拟合数学模型、GPS数据处理软件的关系,我局结合沁河防汛工程D级测量GPS高程拟合的工作,对GPS拟合高程的精度进行了探讨,对于平坦地区以供测量GPS用户参考。 1 GPS网高程拟合的技术要求 1.1 GPS高程拟合成果外部检核 1.1.1 首先对D级GPS网中的所有点联测四等水准或三角高程,选用其中部分点作为GPS高程拟合的

GPS高程拟合精度分析

GPS高程拟合精度分析 李毅方明乐陈溪 广西第一测绘院,南宁市建政路5号530023 摘要:本文介绍了常用的GPS高程拟合方法和模型,通过实例对GPS高程拟合精度进行了分析探讨。 关键词:GPS高程测量高程拟合精度分析 1引言 GPS测量可以同时获得相对精度较高的三维坐标,即大地经度L、大地纬度B和大地高H。对于L、B可以采用严密的数学公式,将其转换成高斯平面坐标x、y,而大地高H是以WGS-84椭球面为基准的高程,是一个几何量,不具有物理意义。实际应用中的地面高程是以似大地水准面为起算面的正常高。本文将介绍将大地高这一几何量转换成具有物理量的正常高最常用的方法,并通过实例分析了影响GPS高程拟合精度的因素,以及提高GPS高程拟合精度的方法。 2GPS高程拟合方法 依据高程系统的理论,地面上任意一点的大地高H与正常高h之间的关系为: H=h+ζ(l)式(1)中ζ为高程异常,即似大地水准面与参考椭球面之间的差距。由式(1)可看出,若能求出GPS点的高程异常ζ,就可由各GPS点的大地高H求得各点的正常高h。因此,GPS高程转换的关键在于高程异常的精确求得。通常,高程异常是采用天文水准或天文重力水准的方法来测定的。但由于这些资料不易获得,无法满足工程建设的要求。为此我们可以在布设的GPS网中选择一定数量均匀分布的点,利用水准测量的方法直接联测高程(这些联测点称为公共点),然后根据式(1)求得各公共点上的高程异常ζ,然后由公共点的平面坐标和高程异常采用数学拟合计算方法,拟合区域的似大地水准面,即可求出其他GPS点的高程异常,从而求得各GPS点的正常高。 目前,国内外求取高程异常主要是采用纯几何的曲面拟合法,即根据区域内若干公共点上的高程异常值,构造某种曲面逼近似大地水准面。而多项式曲面拟合法是一种最常用的较简单、有效、实用的方法。 多项式曲面拟合法原理是:根据测区中公共点的平面坐标或大地坐标和高程异常ζ值,用数值拟合法,拟合出测区似大地水准面,再内插出待求点的高程异常值ζ,从而求出待求点的正常高。利用这种拟合方法求出的高程与直接水准测得的高程同属一个系统,不受起算点绝对坐标误差的影响。该方法的数学模型为: ζ+f(x i,y i)+εi(2)式(2)中,f(x i,y i)为ζ的拟合函数,εi为残差 实际应用中,采取二次曲面拟合法进行拟合,其表达式为: f(x i,y i)+a0+a1x i+a2y i+a3x i2+a4y i2+a5x i y i(3)

全站仪测量精度分析

武汉大学测绘学院 毕 业 论 文 专业班级:工程测量6班 姓名:刘亚鹏 学号:200853103671 题目:全站仪测量精度分析 指导教师:张朝玉

摘要 随着电子技术的发展,GPS与全站仪的普及越来越广,而测距精度已大大提高。三角高程测量作为高程控制测量的一种有效手段,已受到广大测绘工作者的青睐。全站仪测距精度高,使用十分方便,可以同时测定角度、距离和高差,具有精度高、速度快、使用十分方便、作业效率高的特点,特别是在许多用水准测量方法十分困难的地区,用电子测距三角测量方法能很方便地进行高程测量。通过实地地段分析和测量并且进行了计算,通过EXCEL软件对测量数据进行整理分析,应用数学方法的辅助分析,比较出其测量方法的精度。 [关键词] 全站仪三角高程对向观测法水准式观测法精度

Abstract With the development of electronic technology, GPS Total Station and the growing popularity of wide, and the location accuracy has been greatly enhanced. 1.30 elevation measurement as a measurement of height control an effective tool, has been mapping the broad masses of workers of all ages. Total Station range of high precision, easy to use, while in perspective, distance and height difference, with high precision, speed, the use of a convenient, efficient operating characteristics, especially the standard of measurement used in many ways very difficult , The electronic location triangulation method can be easily measured for height. Through field measurement and analysis and lots were calculated by measuring EXCEL software to collate data analysis, applied mathematical methods of supporting analysis, to compare the accuracy of its measurement methods. [Keywords] Total Station Trigonometric Leveling Method Reciprocal trigonometric levelling Standard trigonometric levelling Accuracy

GPS高程拟合方法的比较分析

GPS 高程拟合法的比较分析 (机械工业勘察设计研究院测量公司) 摘要:工程中需要把GPS 高程测量的大地高转换为正常高。通常的做法是采用拟合法建立研究区域的似大地水准面。本文介绍了两种不同的拟合方法:二次曲面拟合法、多面函数拟合法。并结合某区域一定数量已知GPS 高程异常点来内插和外推研究区域内的任一点的高程异常。通过比较发现多面函数拟合法拟合的精度要比二次曲面拟合的精度高。 关键词:高程转换;二次曲面拟合法;多面函数拟合法 The elevation of GPS fitting to the comparison and analysis (Machinery industry survey and design institute of measuring company ) Abstract: GPS height measurement of the earth should be converted to normal high in engineering. It is usually to establish the quasi-geoid of the research area by the fitting method. This article introduces two different fitting methods: quadratic surface fitting and multiple-surface function fitting. Combined with a certain number of a region known GPS elevation anomaly points to the interpolation and extrapolation of the height anomaly at any point within the study area. By comparison, the multiple-surface function fitting to the precision is higher than the quadratic surface fitting. Key words :Elevation conversion; Quadratic surface fitting; Multiple-surface function fitting 1.引言 传统的几何水准测量虽然精度高,但耗时长、耗费多、工作效率低。GPS 由于自身测量精度高、速度快、工作效率高等优点被广泛应用于高程测量。GPS 测量的高程坐标是在WGS-84坐标系下的大地高[1],大地高是地面一点沿参考椭球面的法线到参考椭球面的距离,用符号H 表示。实际应用中需要把GPS 测得的大地高转换为正常高,正常高是地面点到通过该点的铅垂线与似大地水准面的交点的距离,用符号r H 表示。似大地水准面到参考椭球面之间的距离称为高程异常,用符号ζ表示。因此大地高与正常高之间的关系为: r H H ζ=- (1) 由于我国采用的高程系统是相对于似大地水准面的正常高,因此如何进行GPS 高程转换成为当前研究的热点问题。拟合法是GPS 高程转换中比较常用的方法,主要的拟合模型

GPS高程拟合方法

GPS高程拟合方法 3.1等值线图示法 等值线图示法是最直接的求算高程异常的方法。这种方法的核心思想就是内插的思想,绘制高程异常的等值线图,然后采用内插法来确定未知点的高程异常值。具体操作十分的简单,在测区内制定分布均匀的GPS点,用水准测量的方法来测定这些点的水准高,根据公式ζ=H-Hr求出这些点的高程异常,选择适当的比例尺按照已知点的平面坐标展会在图纸内,对已知点标注出高程异常值,再确定等高距,绘制出高程异常值的等值线图。之后就可以内插出待测点的高程异常值,进而求出待测点的正常高。这种方法只适用地形相对平坦的地方,在此种测区内采用这种方法拟合的高程精度可达到厘米级。测区的地形相对复杂内插出的高程异常值就不准确,而且这种内插法的精度往往取决于两个方面,分别是测区内GPS点的分布密度和已知点大地高的精确度。首先GPS点的分布比较密集,那么内插精度就相对较高,如果比较稀疏这时候就要借助于此测区的重力测量资料,提高内插精度。且还要注意GPS点间高程异常的非线性变化。另外就是水准点的精度,联测时尽量选取高精度的正常高,尽可能使得出的高程异常值准确,进而才能内插出待测点高精度的高程异常值。这种方法虽然简单易操作,但是有其弱点,就是精度不高,只有当对拟合精度要求不高的时候才使用此种方法(注:等值线法不需构造数学模型)。 3.2狭长带状区域线性拟合 解析内插法作为拟合高程最常用的方法,主要思想是把似大地水准面用数学曲面近似拟合,建立所在测区内最为接近似大地水准面的数学模型,以此来计算测区内任意点的高程异常值,从而计算出正常高。这种方法计算出的高程异常值的精度是由所采用的数学模型和似大地水准面的拟合程度所决定的。 解析内插法在选择数学模型时,首先要考虑的就是GPS点的分布情况。GPS点的分布情况可分为带状分布和面状分布。若GPS点是呈线状布设,而且是以沿线似大地水准面为一条连续且光滑的曲线,这时就可以采用相对于狭长带状区域的解析内插法来内插出待定点的高程异常值,从而求出待定点的正常高。这种线状分布的内插原理是:测区

GPS高程测量误差分析

GPS高程测量的制约因素 3.1 高程基准面的制约因素 3.1.1 大地水准面模型方面的限制 利用GPS求得的是地面点在WGS一84坐标系中的大地高,而我国的《中华人民共和国大地测量法式(草案)》规定,我国高程采用正常高。要想使GPS高程在工程实际中得到应用,必须实现GPS大地高向我国正在使用的正常高的转化。 由上面GPS的测量原理可知,为了得到正常高H,,我们要知道高程异常值爹。对于长距离,GPS测量也能非常有效地得到大地高,但会遇到大地水准面和高程基准面方面的问题。由于大地水准面按经典的说法是:设想一个静止的海水面向陆地延伸而形成一个封闭的曲面,其中通过平均海水面的那个水准面称为大地水准面。但是,随着现代大地测量的发展、测量精度的提高和多方面的需要,再把它说成与平均海水面重合就不能认为是严格的了。因此,我国的黄海高程基准实际上是近似高程系统。 这样的一个大地水准面模型,其相对精度是很低的,从而也制约了GPS高程测量的精度。 3.1.2 高程基准方面的制约因素 由于我国高程基准面比较多,有大连高程基准、大沽高程基准、废黄河基准、吴淞基准、1956年黄海高程基准等等,每一个高程基准都由一高程原点推算,有时一个点的高程值由一个或几个高程基准面来决定。

如果这些高程面的海洋测量或水准测量有误,都将会使高程基准面的基准偏离真实的重力模型,都会影响GPS高程转换的精度。 3.2 GPS高程测f方面的制约因素 3.2.1 相位整周模糊度解算对GPS高程的制约 相位整周模糊度解算是否可靠,直接影响三维坐标的精度。在控制测量中,无论采用快速静态或实时动态测量技术,都必须精确解算得到相位整周数,然而相位整周数模糊度的解算常常会出现解算错误的可能性,从而会影响高程测量的精度。 3.2.2 多路径效应的制约因素 所谓多路径效应是指测站附近反射物反射来自卫星的信号与卫星直接发射的信号同时被接收机接受,这两种信号产生相互影响,使其观测值偏离其真值,产生多路径误差。多路径效应的影响分为直接的和间接的,并能对三维坐标产生分米级影响。 3.2.3 电离层延迟对高程刚量的影响 电离层对GPS测量的影响主要有:电离层群延(绝对测距误差);电离层载波相位超前(相对测距误差);电离层多普勒频移(距速误差);振幅闪烁信号衰减;磁暴、太阳耀斑等,这些电离层的变化都会延迟GPS信号的传播路线。从而影响GPS的高程测量的精度。 3.2.4 星历和参考坐标对高程的制约 卫星的星历是描述卫星运行轨道的信息,精确的轨道信息是GPS 定位的基础。另外,为测定某点的高程就必须获得该地区的一个理想的用WGS一84参考位置。卫星星历质量的好坏及用WGS一84参考位

高程拟合的方法和原理(二次曲面拟合代码)

高程拟合的方法和原理(二次曲面拟合代码) By Kiseigo kiseigo https://www.360docs.net/doc/c81251911.html,/lvyeqish 2011-01-06 22:37:14 '原理是用方程 h=b0+b1*x+b2*y+b3*x*x+b4*y*y+b5*x*y 来表达曲面,h指的是高程异常值,比如WGS84到bj54的高程差,然后根据6或者6个以上的公共点求出b0,b1……b5,然后如果要求某点的高程值,输入它的x,y就可以得到高程异常值h,然后利用WGS84的BLH中的H加上高程异常值就可以得到54的高程. '这个程序经过2011年01月上旬的实战精度比较高,不过存在一个弱点,就是如果北坐标比较大,如2333444.555,应该先人为的去掉最高位,这样矩阵运算才不会出异常。这是因为矩阵运算的算法不够完善。有空再解决它。 'Code By Kiseigo 2011.01.06 Option Explicit Private Sub cmdCalc_Click() Dim matA() As Double Dim matB() As Double ReDim matA(6, 5) As Double '7个已知点 ReDim matB(6, 0) As Double Call SetKnownValueAB(matA, matB) Dim arrPara() As Double 'b0,b1,b2……b6这6个参数 Call CalcB0toB6(matA, matB, arrPara) '计算b0,b1,b2……b6这6个参数

Dim Hout As Double Hout = calcHfit(11, 3, arrPara) '计算某位置的高程,这里刚好取已知点来验算 FrmMain.Caption = Format(Hout, "0.000") '结果得93.7,说明结果正确End Sub '求高程拟合(二次曲面拟合)的参数B0,B1,B2,B3,B4,B5,B6 By Kiseigo 2011.01.06 21:53 Helped by BluePan '输入matA(5,5) 最少6行,也就是最少6个已知高程点 '输入matB(5, 0) 最少6个点,这里是高程值,matB(0)是第一个点 '输出:B0toB6Out, 下标从0取起,一维数组,下标0-5 Public Function CalcB0toB6(matA() As Double, matB() As Double, B0toB6Out() As Double) '假设方程是 h=b0+b1*x+b2*y+b3*x*x+b4*y*y+b5*x*y; 方程由BluePan提供 Dim maxPt As Integer '公共点个数,要求>=6个.6表示6个点。 maxPt = UBound(matA, 1) + 1 '步骤1:加1空行,加1空列.因为矩阵运算是从1开始,麻烦 Call RedimMatrisAFrom1Nor0(matA) Call RedimMatrisAFrom1Nor0(matB) '步骤2:计算 AT * A 矩阵 Dim matAT() As Double 'A的转置矩阵 ReDim matAT(UBound(matA, 2), UBound(matA, 1)) Call MTrans(UBound(matAT, 1), UBound(matAT, 2), matA, matAT) '求A 的转置矩阵 Dim ATA() As Double 'A的转置*A ReDim ATA(UBound(matAT, 1), UBound(matA, 2)) '方阵 Call MMul(UBound(matAT, 1), UBound(matAT, 2), UBound(matA, 2), matAT, matA, ATA) '计算ATA(A的转置*A ) '步骤3:计算(A的转置*A) 的逆矩阵 Dim ATAinv() As Double 'A的转置*A 的逆矩阵 ReDim ATAinv(UBound(ATA, 1), UBound(ATA, 2)) Dim i As Integer Dim j As Integer For i = 0 To UBound(ATA, 1) For j = 0 To UBound(ATA, 2) ATAinv(i, j) = ATA(i, j) Next j

相关文档
最新文档