飞秒激光脉冲的发展及其应用

飞秒激光脉冲的发展及其应用
飞秒激光脉冲的发展及其应用

飞秒激光脉冲的发展及其应用

飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲时域宽度是如此的短,目前已经达到了4fs以内。1飞秒(fs) ,即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。飞秒激光完全是人类创造的奇迹。

近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。桑迪亚国家实验室的R.Trebino说:“过去10年中,(超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。”比如,著名的飞秒激光系统生产商美国Clark-MXR公司将产生高功率飞秒脉冲的所有部件全部集成到一个箱子里,采用掺铒光纤飞秒激光器作为种子源,加上无需调整(NO Tweak)的特殊设计,形成了世界上独一无二,超稳定、超紧凑的CPA2000系列钛宝石啁啾脉冲放大系统。这种商品化的系统不需要飞秒专家来操作,完全可以广泛应用于科研和工业上的许多领域里。

根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子点和纳米晶体)中的载流子动力学。在生物学方面,人们正在利用飞秒激光技术所提供的差异吸收光谱、泵浦/ 探测技术, 研究光合作用反应中心的传能、转能与电荷分离过程。超短脉冲激光还被应用于信息的传输、处理与存贮方面。

第一台利用啁啾脉冲放大技术实现的台式太瓦激光的成功运转始于1988年,这一成果标志着在实验室内飞秒超强及超高强光物理研究的开始。在这一领域研究中,由于超短激光场的作用已相当于或者大大超过原子中电子所受到的束缚场,微扰论已不能成立,新的理论处理有待于发展。在1020W/cm2的光强下,可以实现模拟天体物理现象的研究。

飞秒激光的另一个重要的应用就是微精细加工。通常,按激光脉冲标准来说,持续时间大于10皮秒(相当于热传导时间)的激光脉冲属于长脉冲,用它来加工材料,由于热效应使周围材料发生变化,从而影响加工精度。而脉冲宽度只有几千万亿分之一秒的飞秒激光脉冲则拥有独特的材料加工特性,如加工孔径的熔融区很小或者没有;可以实现多种材料,如金属、半导体、透明材料内部甚至生物组织等的微机械加工、雕刻;加工区域可以小于聚焦尺寸,突破衍射极限等等。一些汽车制造厂和重型设备加工厂目前正研究用飞秒激光加工更好的发动机喷油嘴。使用超短脉冲激光,可在金属上打出几百纳米宽的小孔。在最近于奥兰多举行的美国光学学会会议上,IBM公司的海特说,IBM已将一种飞秒激光系统

用于大规模集成电路芯片的光刻工艺中。用飞秒激光进行切割,几乎没有热传递。美国劳伦斯?利弗莫尔国家实验室的研究人员发现,这种激光束能安全地切割高爆炸药。该实验室的洛斯克说:“飞秒激光有希望作为一种冷处理工具,用于拆除退役的火箭、火炮炮弹及其他武器。”

飞秒激光能用于切割易碎的聚合物,而不改变其重要的生物化学特性。生物医学专家已将它作为超精密外科手术刀,用于视力矫正手术,既能减少组织损伤又不会留下手术后遗症,甚至可对单个细胞动精密手术或者用于基因疗法。目前人们还在研究如何将飞秒激光用于牙科治疗。有科学家发现,利用超短脉冲激光能去掉牙的一小块,而不影响周围的物质。美国Clark-MXR公司最近推出的UMW系列超快激光微加工工作台正是代表了这个领域里最前沿的商用飞秒激光

微加工系统,它包括了用超短脉冲激光进行微加工所需的一切设备与配件,可用于微加工任何材料,生成亚微米精细结构,而不会对周边材料造成损害,不会造成材料飞溅,加工结果极其精确并具有高度可重复性。

飞秒脉冲的直接用途就是时间分辨光谱学。用飞秒脉冲来观测物理,化学和生物等超快过程,飞秒脉冲可作共焦显微镜的光源,来作生物样品的三维图象。用飞秒脉冲作光源的光学相干断层扫描(optical coherence tomography,简称OCT)可观察活体细胞的三维图象,此时并不是利用飞秒脉冲的时间特性,而是利用飞秒光源的宽谱线,来产生类似白光的干涉,利用飞秒脉冲在半导体中激发的声子的反射可用来实时测量半导体薄膜的厚度,以监测半导体薄膜的生长,用飞秒脉冲来作微型加工,打出的孔光滑而没有毛刺,因为飞秒脉冲不是靠热效应先熔化再蒸发,而是靠强场直接蒸发材料,飞秒脉冲用作光通信的光源,可把现有的通信速度提高几百倍,高能量的飞秒脉冲激光与等离子体相互作用可产生高次谐波及X-射线,并有可能用于受控核聚变,人们还尝试用飞秒脉冲产生的兆兆赫兹辐射,来检测集成电路的包装质量,甚至肉类制品的脂肪含量。总之,飞秒脉冲的应用很多,问题是,什么是最有价值的应用?这里有两种可能的情形:

①在某些应用中,飞秒脉冲有其绝对的应用价值,即没有飞秒脉冲就不行,例如飞秒脉冲光谱学,超高速光通信等;

②另一方面,飞秒脉冲有其相对应用价值,即用飞秒脉冲可能做得更好,例如比现存的技术,核磁共振,X-射线,雷达,电子加速器等等,更简便易行,能源消耗更少,更小型化。

随着飞秒脉冲激光器的进一步发展和完善,一定能开辟出更多的应用前景。值得注意的是,每当研究发展到一定阶段,各国的研究人员中就有一批人从研究小组分离出来,把研究成果转化为产品,当然原有的激光器公司也注意吸收新的研究成果。例如当时还在罗彻斯特大学的巴窦(P.Bado)早在1985年就成立了自己的公司麦道克斯(Medox),生产高速光开关,后来随着飞秒脉冲放大技术的发展,他又与生产飞秒脉冲激光器的克拉克仪器(ClarkInstruments)公司联合成立了克拉克-麦道克斯(Clark-MXR)公司,专门生产飞秒脉冲固体,光纤激光器和放大器,及其周边仪器,华盛顿州立(Washington State)大学莫内恩与其丈夫卡普廷(H.Kapteyn)在创造了11-fs钛宝石激光器以后,虽然没有脱离大学(现均移往密西根大学任教),却成立了以他们夫妇名字命名的业余公司

“KM-Laboratory”,出售他们制造的10-fs激光器,维也纳工业大学的克劳斯小组中的施丁格尔(A.Stingl)等几个人也独立出来成立公司叫Femto Lasers,出售他们制造的使用色散反射镜的亚10-fs激光器,匈牙利固体物理研究所的采波奇也“停薪留职”,成立了Laser Optics公司,利用匈牙利固体物理研究所的设备,

生产飞秒脉冲激光器用的色散反射镜,用他自己的话说,是他在“养活”研究所里的其他人,另一对以飞秒脉冲研究出名的夫妇凯勒和维因咖顿(K.Weingarten)更有趣,一个仍在大学做教授,另一个退出了美国光波公司(Lightwave Electronics)而随妻凯勒来到瑞士创办了一个叫“时间带宽积”的公司

(Time-bandwidth Products),生产凯勒发明的用可饱和吸收镜启动锁模的飞秒脉冲激光器,两大激光器公司相干公司和光谱物理公司也当仁不让,倚仗它们雄厚的实力从泵浦激光器,飞秒脉冲振荡器,放大器到参量振荡器各个领域与群雄展开全面竞争。

在国家科技战略方面,美国的做法是支持几个重点大学和国家实验室,例如密西根大学的超快光学中心,加州大学圣迭哥分校的强场物理实验室,劳仑斯-利物莫实验室等。日本则是以通产省大型“产(产业)官(官厅,即国家实验室)学(大学)”研究项目的形式,于1996年开始了所谓“飞秒技术计划”,集中了日本几乎所有的知名大公司,国家实验室和大学,还拉上了美国的贝尔实验室,开展飞秒脉冲技术的研究,目标是在兆兆比特高速通信技术方面独占鳌头。

激光显示技术的发展现状

目录 摘要 (2) 1引言 (3) 2激光显示技术 (3) 2.1激光显示技术原理 (3) 2.2激光显示技术特征 (4) 2.3激光显示技术类型 (4) 3激光显示技术发展历史 (5) 3.1国内激光显示技术发展历史 (5) 3.2国外激光显示技术发展历史 (5) 4激光显示技术发展现状 (6) 4.1国内激光显示技术发展现状 (6) 4.2国际激光显示技术发展现状 (9) 5总结 (10) 6致谢 (10) 7参考文献 (11)

摘要 激光显示作为新一代显示技术,继承了数字显示技术所有优点,能够最完美的再现自然色彩。本文简要介绍了激光显示技术的原理、特征、类型,并对国内外激光显示技术的发展历史和现状作了介绍。 关键词:激光显示技术、三基色激光、激光三维显示、数字显示技术 Abstract As a new generation of display technology, laser display inherited all the advantages of digital display, and can perfectly reproduce the natural colors. In this thesis, the principle, characteristic and type of laser display technology are introduced briefly. In addition, the developmental history and present status of which laser display is in domestic and overseas area are introduced too. Key words :Laser display technology;Tricolor laser;Three dimension display of laser ;Digital display technology

飞秒,皮秒以及纳秒激光器切割固体

飞秒,皮秒以及纳秒激光器溶解固体 摘要:0.2—5000ps激光溶解固体 题目:蓝宝石激光脉冲的开发、模型以及其性质的展示。飞秒激光对精密材料进行加工的优势也进行了讨论和展示。 正文:高效的利用激光对精密材料进行加工离不开对于调解激光辐射与物质之间相互影响的重要规律的知识。为了实现这一目标,激光与物质之间相互影响的系统研究是必要的。由于现在激光系统的进步,尤其是那些基于啁啾脉冲扩展技术,这样系统的研究已经在非常广泛的激光领域成为可能。CPA系统能够使激光脉冲持续时间从大约100飞秒变至几十纳秒,而其他特性不改变。这就允许我们对多种不稳定的激光与物质之间相互影响的过程进行细致的分析。举些例子,最近的学术研究对于损伤阈值、分割阈值以及高强度激光溶解都有提及。这个系统的研究只是刚刚开始,更多的研究将会帮助我们了解和证实飞秒激光系统对于精密材料加工的潜质。 最近进行的一些关于飞秒和纳秒脉冲溶解固体的实验。飞秒激光的染色和受激分子激光系统对精密材料加工的优势已经体现无疑。在这一研究报告中,我们展示了激光溶解和打孔技术的商业用途,蓝宝石激光提供了一个780nm,能量为100mJ,持续时间可在0.2—5000ps进行变化的激光系统。实验处于一个低影响的体系中,在其中,只是很少量的超出蒸发阈值。这个体系对于溶解精密固体实验意义非凡,这样一来,固体内的能量沉积和热影响区域都会被降到最低。我们讨论和举例飞秒激光脉冲的优点,希望能刺激在这个领域新的研

究。第一部分中,我们将展示三种不同持续时间的脉冲在低影响条件下溶解金属的特点:飞秒,皮秒以及纳秒激光器这三种实验对象。关于实验的配置和结果,我们将在第二部分中给出。 1、理论知识背景 在低强度的短波激光脉冲作用于金属物时,由于反方向的韧制辐射,激光的能量会被自由电子吸收。然后,被吸收的激光能量需要在电子系统中热能化,将能量传输到晶格中,由于电子的热量传输给了溶解目标,导致能量流失。如果我们假定,在电子系统中的热能化是非常快而且其电子和晶格系统都以热量为表征( T&i T),那么能量 e 进入金属中的过程就可描述为一维下,以两个温度为变化量的扩散模型: 在上式中,z为与固体目标表面垂直的一个分量,Q(z)是热流量,S为激光加热源项,I(t)是激光光强,A=1-R和α分别是材料表面透射率和材料的吸收常数, C和i C分别是电子和晶格系统的单位 e 体积比热容,γ是电子-晶格耦合的特征参量, k是电子的热导率。 e 在上式中,忽略了晶格系统中的热导率。电子比热容远远低于晶格比热,因此电子会被加热到一个非常高的瞬时温度。当电子的温度(单位能量)残留小于费米能量时,电子比热容和非平衡态的电子比热容

飞秒激光的发展和应用

飞秒激光的发展和应用 (.) 摘要:随着激光技术的研究、开发和应用十分活跃。本文简要介绍了飞秒激光发展、特点及技术研究进展和发展趋势。 关键词:飞秒,激光技术,激光手术,激光武器,飞秒脉冲,飞秒激光 作者简介: 0 引言 20世纪以光科学与工程技术研究为基础所积累的丰硕成果,已在世界范围内对人类现代物质和精神文明做出了巨大的贡献。21世纪将是光子技术进一步大发展的时代,激光技术将成为世界各国竞争的焦点之一,以激光技术为核心的相关产业将成为知识经济时代和信息时代的重要驱动力量。 飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲是如此的短,目前已经达到了4 fs以内(可见光-近红外波段),1飞秒(fs,即10-15 s),仅仅是1千万亿分之一秒,如果将10 fs作为几何平均来衡量宇宙,其寿命仅不过1 min而已。飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到100太瓦(TW,即1012 W)甚至皮瓦(PW,即1015 W)量级,其可聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高[1]。飞秒激光完全是人类创造的奇迹。 1 飞秒激光的原理 众所周知,组成物质的分子和原子,每时每刻都在快速地运动,这是微观物质重要的基本属性。飞秒激光产生后,人类能够在原子和电子的层面上观察到它们超快运动的过程并加以利用。在高强度飞秒激光的作用下,气态、液态、固态物质会在瞬息间变成等离子体。高功率飞秒激光与电子束碰撞,能够产生X 射线飞秒激光、射线激光以及正负电子对。此外,利用飞秒激光能够有效地加速电子,使加速器的规模得到上千倍的压缩。高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火[2]。 通过对飞秒的研究,除了揭示自然科学的奥妙之外,还促进了新型“飞秒激光”技术的应用和发展。飞秒激光是一种周期可以用飞秒计算的超强超短脉冲激光。它的出现为人类提供了前所未有的全新实验手段与物理条件,有着十分广阔的应用前景。 2 飞秒激光的特点 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。 飞秒激光的特点:(1)持续时间极短,只有几个飞秒,是人类目前在实验条件下所能获得的最短的脉冲,所以飞秒激光是无穿透性的,对眼内组织无损伤。(2)具有极高瞬时功率,可达到百万亿瓦。近红外激光脉冲,在经过角膜组织表面时不被吸收,通过调节聚焦透镜和角膜表面相对位置。将脉冲聚焦在预定深度的一个小点上,当每次脉冲达到聚焦点时,触发一次称为激光诱导光衰变作用,多脉冲定位在同一个焦点深度,通过形成一层小直径的气泡来实现切割手术。(3)能聚焦到比头发丝直径还要小的空间区域。每个脉冲的连接的紧密性,决定了切割平面的光滑性。

激光脉冲测距实验报告讲解

激光脉冲测距

1 目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7) 2 一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2() 3

图二)测距仪的大致结构组成(3 时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、 振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4 (5)激光脉冲发射、接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12 位二进制数据输出,对应的时间范围为0~32.7?s。 二激光脉冲测距的应用领域 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。 激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。 由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 5

激光技术的发展与展望

激光技术的发展与展望 "激光"一词是"LASER"的意译。LASER原是Light amplification by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成"莱塞"、"光激射器"、"光受激辐射放大器"等。1964年,钱学森院士提议取名为"激光",既反映了"受激辐射"的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。 一、我国早期激光技术的发展 1957年,王大珩等在长春建立了我国第一所光学专业研究所--中国科学院(长春)光学精密仪器机械研究所(简称"光机所")。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。 同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 二、重点项目带动激光技术的发展 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所--中国科学院上海光学精密机械研究所(简称"上海光机所")成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的"6403"高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了"文革"十年浩劫,但借助于重点项目的支撑,

飞秒激光器的应用研究

飞秒激光器的应用研究 院系:信息科学与技术系 专业班:光信0801班 姓名:周紫雁 学号:20081182002 2012年5月

飞秒激光器的应用研究The Study of the Applications of Femtosecond Laser

摘要 飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段,它的独特优势使飞秒激光器在各领域的应用倍受关注,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用。通过研究其应用现状以及供需量,不但可以了解飞秒激光的基本特性与工业优势,并且可以给各企业的激光器开发提供参考。 首先,本文对飞秒激光的物理特性及主要用途进行了概述,阐述了飞秒激光的优势与特性。通过翻阅资料与数据,对飞秒激光器国际方面应用现状进行分析。虽然目前飞秒激光器在激光加工行业所占份额很小,但是它的应用前景不可估量。在数据分析之后,以实际考察以及案例分析的方法,对飞秒激光器在中国的应用现状进行了分析,由于飞秒激光微加工在国内运用少之又少,但是在屈光矫正方面应用广泛,并对此进行详细的考察。结论得出,飞秒激光目前处于供小于求的状态,若广泛引进可以达到很高的效益。 关键词:飞秒激光工业应用眼科应用

Abstract Currently, femtosecond laser is the shortest pulse technology which we can obtain in the laboratory conditions. Due to these advantages, the applications of the femtosecond laser in different fields raise folks’ attentions. Femtosecond lasers have a great applying prospect in high-speed optical communication, strong field science, Nano science, biology medicine. To study the market situation and the demands and supply, not only can we grasp the information of the major nature and industrial advantages of femtosecond laser, but also can give the departments of retailer and the manager a great reference to make the long-term strategic plan. Firstly,the physical characteristics and the use of femtosecond has been illustrated basically. It is illumined the unique advantages and nature of femtosecond laser. Then, I analyzed the international market of the femtosecond laser via the date and paging the information. Although the industry of femtosecond laser accounts for a small market share, it has a mega international market prospect. Through the investigation and case analysis, the Chinese market of femtosecond lasers is analyzed. Due to the little application of femtosecond laser in the domestic micro processing field and the wide use in LASIK, I laid more emphasis in the biology and medicine market and made the conclusion, that recently the supply of the femtosecond laser is less than the demands, if abundant equipment can be imported, it can bring large quantities of economic effects. Key words:Femtosecond laser industrial application ophthalmology application

激光脉冲测距实验报告

百度文库- 让每个人平等地提升自我 激光脉冲测距 组长:孙汉林(制作PPT) 组员:张莹(讲解) 吕富敏(制作报告)

目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7)

一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速 c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图 (2)激光脉冲测距仪光学原理结构

飞秒激光器的市场调查分析报告

飞秒激光器的市场调查分析报告 院系:信息科学与技术系 专业班:光信0801班 姓名:周紫雁 学号:20081182002 2012年5月

飞秒激光器的市场调查分析报告

摘要 从1980年后期起,超短光脉冲的产生及放大技术迅速发展。飞秒激光的特征是超高速和超高强度,正是由于飞秒激光器的这种优势使飞秒激光器及其在各领域的应用倍受关注。飞秒激光是人类目前在实验室条件下所能获得最短脉冲的技术手段。飞秒激光在瞬间发出的巨大功率比全世界发电总功率还大,科学家预测飞秒激光将为新能源的产生发挥重要作用。就目前来说,飞秒激光器在高速光通讯、强场科学、纳米科学、生物医学等领域具有广泛的应用和潜在的市场前景。 本文旨在研究其市场情况以及供需量,可以得出其投放入市场的适用量,从而可以对产品市场的销售商、生产的管理部门提高工参考依据以及为其做长期战略性规划提供参照。本文第一章主要对飞秒激光的物理特性及主要用途进行了概述,第二章通过翻阅资料和统计数据对飞秒激光器国际市场行情分析,第三章通过实际考察以及案例分析,对于飞秒激光器中国市场行情进行了分析。 关键词:飞秒激光市场分析调研

Abstract (Times New Roman字体,小二号加粗,居中) (空一行) The dissolution of labour contract by employer………………………………(小四号Times New Roman字体)……………………………………………………………… Key words(顶格四号Times New Roman字体,加粗):labor contract dissolute by employer dissolute right away(用小四号Times New Roman书写词条,各词条间用两个英文空格隔开,其它格式同中文摘要)

中国激光技术发展回顾与展望

中国激光技术发展回顾与展望 名称研制成功时间研制人 He-Ne激光器1963年7月邓锡铭等 掺钕玻璃激光器1963年6月干福熹等 GaAs同质结半导体激光器1963年12月王守武等 脉冲Ar+激光器1964年10月万重怡等 CO2分子激光器1965年9月王润文等 CH3I化学激光器1966年3月邓锡铭等 YAG激光器1966年7月屈乾华等 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所——中国科学院上海光学精密机械研究所(简称“上海光机所”)成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的“6403”高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了“文革”十年浩劫,但借助于重点项目的支撑,仍艰难地生存了下来并取得可贵的进展。 1、“6403”高能钕玻璃激光系统 1964年启动,最后从技术上判定热效应是根本性技术障碍,于1976年下马。这一项目对发展高能激光技术有历史贡献是不可忽视的,它使我国激光技术的水平上了一个台阶。其成果主要表现在:(1)建成了具有工程规模的大口径(120毫米)振荡—放大型激光系统,最大输出能量达32万焦耳;改善光束质量后达3万焦耳。(2)实现了系统技术集成,成功地进行了打靶实验,室内10米处击穿80毫米铝靶,室外2公里距离击穿0.2毫米铝耙,并系统地研究了强激光辐射的生物效应和材料破坏机理。(3)第一次揭示了强光对激光系统本身的光损伤现象和机制。(4 )第一次深入和理解激光光束质量的重要性和物理内涵,采用了一系列提高光束质量的创新性技术,如万焦耳级非稳腔激光器、片状激光器、振荡—扫瞄放大式激光系统、尖劈法光束质量诊断等。(5)激光元器件和支撑技术有了突破性提高,如低吸收高均匀性钕玻璃熔炼工艺、高能脉冲氙气、高强度介质膜、大口径(1.2米)光学精密加工等。(6)培养和造就了一批技术骨干队伍。 2、高功率激光系统和核聚变研究 1964年王淦昌独立提出激光聚变倡议,1965年立项开始研究。经几年努力,建成了输出功率10(上标10)瓦的纳秒级激光装置,并于1973年5月首次在低温固氘靶、常温氘化锂靶和氘化聚乙烯上打出中子。1974年研制成功我国第一台多程片状放大器,把激光输出功率提高了10倍,中子产额增加了一个量级。在国际上向心压缩原理解密后,积极跟踪并于1976年研制成六束激光系统,对充气玻壳靶照射,获得了近百倍的体压缩。这一系列的重大突破,使我国的激光聚变研究进入世界先进行列,也为以后长期的持续发展奠定了基础 3、军用激光研究 1966年12月,国防科委主持召开了军用激光规划会,48个单位130余人参加,会议制定了包括含15种激光整机、9种支撑配套技术的发展规划。虽未正式批准生效,但仍起了有益的推动作用。此后的几年内,这一领域涌现了一批重要成果。例如:(1)靶场激光距技术初试成功:采用重复频率为20赫兹的YAG调Q激光器,测距精度优于2米,最远测量距离达660公里,加在经纬仪上,可实现对飞行目标的单站定轨。这一成果为以后完成洲际导弹再入段轨迹测量创造了必要条件。(2)红宝石激光人造卫星测

激光脉冲测距实验报告

激光脉冲测距 组长:孙汉林(制作PPT) 组员:张莹(讲解) 吕富敏(制作报告)

目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7)

一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速 c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图 (2)激光脉冲测距仪光学原理结构

图二 (3)测距仪的大致结构组成 脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、门控电路、时钟脉冲振荡器以及计数显示电路组成 (4)主要的工作过程 其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停止工作。这样,根据计数器的输出即可计算出待测目标的距离。三实验装置实验装置包括“激光脉冲发射、接收电路”和“单片机开放板”。

激光技术的现状及发展前景论文

激光切割技术的现状与发展 班级:13光信1 姓名:邱丽芬学号:1311122107 {摘要}:介绍了我国国内激光切割设备的现状和激光切割技术的发展前景,简要介绍激光切割原理,提出了该技术的发展目标及需要解决的问题。 {关键词}:激光切割设备国内市场激光切割机现状发展前景 引言 近年来,激光切割加工技术发展很快,国际上每年都以20%~30%的速度增长。我国1985 年以来,更以每年25 %以上的速度增长。由于我国激光工业基础较差,激光加工技术的应用尚不普遍,激光加工整体水平与先进国家相比仍有较大差距,相信随着激光加工技术的不断进步,这些障碍和不足会得到解决。激光切割技术必将成为21 世纪不可缺少的重要的钣金加工手段。激光切割加工广阔的应用市场,加上现代科学技术的迅猛发展,使得国内外科技工作者对激光切割加工技术进行不断探入的研究,推动着激光切割加工技术不断地向前发展。 一.我国激光切割设备与现状 全球激光制造技术发展飞速,我国与国际激光技术水平的差距有所增大,高端的激光加工成套装备几乎全部依赖进口,致使国外激光制造装备在我国市场的占有率高达70%。预计未来10年内,我国对这些高性能激光切割系统的市场需求量将达到100亿元。如此迫切和巨大的市场需求反应出激光加工的手段已经覆盖到国民经济各个重要领域,同时也影响着国防、航空航天等关键技术的突破,我们不仅仅是解决目前国内该产品的空白,同时也旨在解决激光加工领域多层面技术核心问题,如激光数控、激光机床新型结构、高质量激光加工的技术瓶颈等。 从中小功率激光切割设备取代传统加工工艺的优势来分析,与传统刀具机床设备相比,激光设备采用无接触的热加工方式,具有极高的能量聚集性、光斑细小、热扩散区少、个性化加工、加工品质高、无“刀具”磨损等优势,激光切口光滑无飞边,一些柔性材料自动收口,无变形,加工图形可通过计算机随意设计和输出,无需繁杂的刀模设计和制作。

飞秒激光器

飞秒激光是过去20年间由激光科学发展起来的最强有力的新工具之一。飞秒脉冲时域宽度是如此的短,目前已经达到了4fs以内。1飞秒(fs),即10-15s ,仅仅是1千万亿分之一秒,如果将10fs作为几何平均来衡量宇宙,其寿命仅不过1min而已;飞秒脉冲又是如此之强,采用多级啁啾脉冲放大(CPA)技术获得的最大脉冲峰值功率可达到百太瓦(TW,即1012W)甚至拍瓦(PW,即1015W)量级,其聚焦强度比将太阳辐射到地球上的全部光聚焦成针尖般大小后的能量密度还要高。飞秒激光完全是人类创造的奇迹。 近二十年来,从染料激光器到克尔透镜锁模的钛宝石飞秒激光器,以及后来的二极管泵浦的全固态飞秒激光器和飞秒光纤激光器,虽然说脉冲宽度和能量的记录在不断刷新,但最大进展莫过于获得超飞秒脉冲变得轻而易举了。桑迪亚国家实验室的R.Trebino说:“过去1 0年中,(超快)技术已有显著改善, 钛蓝宝石激光器和现在的光纤激光器正在使这种(飞秒) 激光器的运转变得简洁和稳定。这种激光器现在人们已可买到, 而10年前, 你却必须自己建立。”比如,著名的飞秒激光系统生产商美国Clark-MXR公司将产生高功率飞秒脉冲的所有部件全部集成到一个箱子里,采用掺铒光纤飞秒激光器作为种子源,加上无需调整(NO Tweak)的特殊设计,形成了世界上独一无二,超稳定、超紧凑的CPA2000系列钛宝石啁啾脉冲放大系统。这种商品化的系统不需要飞秒专家来操作,完全可以广泛应用于科研和工业上的许多领域里。 根据飞秒激光超短和超强的特点,大体上可以将应用研究领域分成超快瞬态现象的研究和超强现象的研究。它们都是随着激光脉冲宽度的缩短和脉冲能量的增加而不断的得以深入和发展。飞秒脉冲激光的最直接应用是人们利用它作为光源, 形成多种时间分辨光谱技术和泵浦/探测技术。它的发展直接带动物理、化学、生物、材料与信息科学的研究进入微观超快过程领域, 并开创了一些全新的研究领域, 如飞秒化学、量子控制化学、半导体相干光谱等。飞秒脉冲激光与纳米显微术的结合, 使人们可以研究半导体的纳米结构(量子线、量子

自相关仪超快飞秒脉冲激光测量

超快飞秒脉冲激光测量 一、超快激光是什么? 我们所说的超快激光器,一般是指脉冲宽度达到 皮秒 量级的脉冲激光器。其具有一下特点: (1)具有极短的激光脉冲。脉冲持续时间只有几个皮 秒或飞秒。 (2)具有极高的峰值功率。其电场远远强于原子内库 仑场,具有极高的电场强度,足以使任何材料发生电 离。 近十几年来,由于啁啾脉冲放大(chirped pulse amplification, 简称CPA)技术的提出和应用,宽带 激光晶体材料(如掺钛蓝宝石)的出现,以及克尔透 镜锁模技术的发明,使超强超快激光技术得到迅猛发 展。小型化飞秒太瓦(1012瓦)甚至更高数量级的超 强超快激光系统已在各国实验室内建成并发挥重要作用。图1、100飞秒激光器时域分布最近,更短脉冲和更高功率的激光输出,如直接由激光振荡器产生的短于5飞秒的激光脉冲,小型化飞秒100太瓦级超强超快激光系统,以及 CPA技术应用到传统大型钕玻璃激光装置 上获得1拍瓦(1015瓦)级激光输出已有 报道,激光功率密度达到1019~1020瓦 / 厘米2的超强超快激光与物质相互作用研 究也已开始进行。 传统的激光放大采用直接的行波放大,而 对超短激光脉冲来说,随着能量的提高, 其峰值功率将很快增加,并出现各种非线 性效应及增益饱和效应,从而限制了能量的进一步放大。图2、脉冲序列分布 CPA技术的原理是,在维持光谱宽度不变的情况下通过色散元件将脉冲展宽好几个数量级,形成 所谓的啁啾脉冲。这样,在放大过程中,即使激光脉冲的 能量增加很快,其峰值功率也可以维持在较低水平,从而 避免出现非线性效应及增益饱和效应,保证激光脉冲能量 的稳定增长。当能量达到饱和放大可获得的能量之后,借 助与脉冲展宽时色散相反的元件将脉冲压缩到接近原来 的宽度,即可使峰值功率大大提高。 为了突破CPA技术的一些局限性,目前国际上正在积 极探索发展新一代超强超快激光的新原理与新方法,如啁 啾脉冲光学参量放大(OPCPA)原理,目标是创造更强更 快的强场超快极端物理条件,特别是 图3、钛蓝宝石超快激光器

激光脉冲测距实验报告

激光脉冲测距实验报告 一.实验目的 通过学习激光脉冲测距的工作原理,了解激光脉冲测距 系统的组成,搭建室模拟激光器系统进行正确测距,为今后 的工程设计奠定理论基础和工程实践基础。 二.实验原理 激光脉冲测距与雷达测距在原理上是完全相同的,如图2.1所示。 在测距点激光发射机发射激光脉冲,光脉冲经过光纤到达接收端,并被测距机上的探测系统接收。测出从激光发射时刻到被接收时刻之间的时间间隔t,根据已知光速,即可求出光纤的长度R为 R=/2 (2-1) 式中c为光速。真空中的光速是一个精确的物理常数 C1=299792458 m/s 光纤中的平均折射率n为 n=1.45(查阅得知) 故光纤中的光速为 C=299710000 可见,激光测距的任务就是准确地测定时间间隔t。当不考虑光纤中光速的微小变化时,测距精度⊿R主要是由测时精度⊿t确定的 ⊿R=C⊿t/2 (2-2) 实际脉冲激光测距机中是利用时钟晶体振荡器和脉冲计数器来测定时间间隔 t的。时钟晶体振荡器用于产生固定的频率的电脉冲振荡,脉冲计数器的作用是对晶体产生的电脉冲个数进行计数。设晶体振荡器产生的电脉冲频率为f,则脉冲间隔T=1/f。若从激光脉冲发出时刻脉冲计数器开始计数,到光脉冲被接收时刻停止计数。设这段时间脉冲计数器共计得脉冲个数为m,则可计算出被测光纤的长度为 R=cmT=cm/f=1.6m (2-3) 相应的测距精度为

⊿R =Ct=c/f (2-4) 可见,脉冲激光测距机的测距精度由晶振的频率决定。常用军用激光测距仪的晶振频率有15MHz、30MHz、75MHz和150MHz等,与其相对应的测距精度分别为正负10m、正负5m 、正负2m和正负1m。晶振的频率愈高,测距精度就愈高, 但随之而来的,不仅是计数器的技术难度增加,而且要求激光脉冲的宽度愈窄,激光器的难度也增加。 对脉冲测距系统,计数器的“开门”信号是由取出一小部分发射激光脉冲经光探测器转换成电信号形成的。这两个信号既可由同一探测器提供,也可以用两个探测器提供。 激光脉冲测距机由激光器、发射光学系统、接收及瞄准光学系统、取样及回波探测放大系统、技数及显示器和电源几部分组成,如图2.2所示 系统操作人员一旦下达发射激光命令,激光器发射一束窄激光脉冲,经发射光学系统扩束后射向接收系统,其中一小部分经取样后启动计数器开始计数。激光回波经测距机的接收和瞄准光学系统,聚焦到前面有窄带滤光片的光探测器上。由探测器将其转换成电信号,再经取样及回波探测放大系统处理后产生“关门”信号用于关闭计数器。由计数器计得的脉冲个数计算出光纤得电源计数及显示器激光器长度,再通过显示器显示出来。 三.实验装置 实验装置包括“激光脉冲发射/接收电路板”、电脑和“单片机开放板”。 1.激光脉冲发射/接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EMP 3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到分差信号转换芯片;T23为差分信号单短信号转换芯片;LD为半导体激光器;PD为光探测器。板子上端的EMP3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EMP 3032被编程为计数器,对125MHz 晶振计数器。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12位二进制数据输出,对应时间围为0~32.76us.

飞秒激光技术带来内存读取革命

飞秒激光技术带来内存读取革命 2012-08-16 09:15:33 文章来源:互联网 衡量企业级内存的重要性主要体现在高效率、高稳定性和较小的占用空间上。而内存计算目前已实现的应用就是对传统数据处理方式的加速。相对于磁盘来说,内存的读写速度要快很多倍。即便如此,现在内存的价格也在日渐便宜,而容量却要不断增加,以应对计算机的快速发展。 正因为如此,在服务器和企业级应用领域,集成度、稳定性以及纠错能力更高的内存产品一直是模组厂商的主要利润来源之一。但是内存计算简单停留在现有的技术层面是无法满足日益增长的要求的。于是更多的新兴技术被发现并利用起来。 图1 电子自旋 来自法国的研究人员,对于内存读写计算早已有了不少的研究。他们发现了一种“飞秒”激光的技术,可以使读/写过程加快10万倍。 这个技术的核心实现点是自旋电子学。说到自旋电子学,可能有很多网友会比较陌生。其实自旋电子学也叫做磁电子学。它利用电子的自旋和磁矩,使固体器件中除电荷输运外,还加入电子的自旋和磁矩。 虽然这是一门新兴的学科和技术,但是利用自旋电子学的原理,可以实现像是磁性随机内存、自旋场发射晶体管等,因此也是很多研究人员所感兴趣的原因。

图2 自旋电子学 新的技术有时必然会存在一些不能解决的问题,像是自旋电子学就存在一个很明显的问题,被用于检测数据位的磁传感器速度很慢。但是这个技术可以利用激光加速硬盘光碟的存储I/O的方法,通过该激光产生超快激光脉冲来改变电子自旋,加快读/写过程。 法国研究人员的这个加快内存读写的技术虽然在业界引起了不小的反响,并因此获得了诺贝尔物理学奖,但是有人却认为这是个纸上谈兵、无法应用于生活的“鸡肋”。 因为目前这项研究一直是在零下233度的实验环境下进行的。而室温才是生产可行处理器或内存设备的重要要求,室温的环境下,研究人员无法产生同等的效果。即便如此,不得不承认的是,虽然环境的问题暂时没有办法解决,但是至少研究人员已经知道如何增加通道中电子的自旋寿命。相信随着更深入的研究,这个技术能真正的应用于产品中。 利用半导体带来闪存读写的新革命 对于这个研究发现,IBM的研究人员认为,他们的技术突破为创造晶体管和非易失性存储打开了大门,这将大大降低现在NAND闪存技术的功率。并且他们也根据这个技术方向,自己得出了新的研究结果。 经过IBM研究院和瑞士苏黎世联邦理工学院的固态物理实验室共同研究发现,他们可以通过改变电子在其空间中的相对轴向(向上或向下),用它代表数据位。利用超短激光脉冲监测一小块地方内成千上万电子同时产生的自旋,将电子自旋周期延长30倍至1.1纳秒。 图3 脉冲改变自选周期

相关文档
最新文档