换热器温度控制系统.doc

换热器温度控制系统.doc
换热器温度控制系统.doc

混合加热器设计

为确保混合加热器( E-0101B)中 MN(亚硝酸甲酯) ,CO(一氧化碳)的出口温度为408K,选用 ,408K 的加热蒸汽加热入口温度为294K的工艺介质。为保证生成物的产量,质量,及最

终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,

最后确定设计一个换热器的反馈控制方案。

换热器概述

换热器工作状态如何 , 可用几项工作指标加以衡量。常用的工作指标主要有漏损率、换热

效率和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。

换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、

动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷

却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上

流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流

体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的

主要设备之一。

换热器的分类

适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器

的具体分类如下:

一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触

式换热器,复式换热器

二按用途分类:加热器,预热器,过热器,蒸发器

三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等

此设计要求是将进料温度都为的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式( 又称列管式 ) 换热器。管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺

旋管,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其

行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。

换热器的用途

换热器又叫做热交换器( heat exchanger ),是化工、石油、动力、食品及其它许多工业

部门的通用设备,在生产中占有重要地位。进行换热的目的主要有下列四种:

. 使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;. 生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;. 某些工艺过程需要改变无聊的相态;④.回收热量。

由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变量是温度,

为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工

艺介质出口温度恒定。对于不同的工艺要求,被控变量也可以是流量、压力、液位等。

换热器的工作原理及工艺流程图

换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别通过换热器

的管程和壳程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,

通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换

热器的壳程。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。

图 1换热器温度控制系统工艺流程图

从传热过程的基本方程式可知,为了保证出口的温度平稳,满足工艺生产的要求,必须

对传热量进行调节,调节传热量有以下几条途径:

、调节载热体的流量。调节载热体流量大小,其实只是改变传热速率方程中的传热系数 K 和平均温差△ Tm,对于载热体在加热过程中不发生相变的情况,主要是改变传热速率方程的热系数 K;而对于载热体在传热过程中发生相变的情况,主要是改变传热方程中的△Tm。

、调节传热平均温差△Tm。这种控制方案滞后较小反应迅速,应用比较广泛。

、调节传热面积F。这种方案滞后较大,只有在某些必要的场合才采用。

④、将工艺介质分路。该方案是一部分工艺介质经换热, 另一部分走旁路。

在设计传热设备自动化控制方案时,要视具体传热设备的特点和工艺条件而定。而在某

些场合,当被加热工艺介质的出口温度较低,采用低压蒸汽作载热体,传热面积裕量又较大时,为了保证温度控制平稳及冷凝液排除畅通,往往以冷凝器流量作为操纵变量,调节传热

面积,以保持出口温度恒定。

2.控制系统

控制系统的选择

由于本次设计的任务控制换热器被加热物料出口温度,工艺过程主要就是冷热流体热交换,且外来干扰因素主要是载热体的流量变化,故选择单回路控制系统便可以达到预定的控

制精度。

工艺流程图和系统方框图

单回路控制系统又称为简单控制系统,是有一个被控对象、一个检测元件及变送器、一

个调节器和一个控制器所构成的闭合系统。单回路控制系统结构简单、易于分析设计,投资少、便于施工,并能满足一般的一般生产过程的控制要求,因此在生产过程中得到广泛的应用,其方框图如下图所示。

图 2、单回路控制系统方框图

其中,被控变量:被加热物料的出口温度;操纵变量:载热体的流量。

如图所示:测量元件及变送器对冷物料出口温度进行测量,得到测量值Ym并传送给调节器,调节器

把 Ym与内部给定值Ys 比较得到偏差信号 e 按一定的调节运算规律计算出控制信号,并将控制信u号传送给执行器,执行器接收到控制信号u,自动的改变阀门的开度,改变蒸汽的流量。

、被控对象特性研究

换热器是传热设备中较为简单的一种,也是最常见的一种。通常它两侧的介质( 工艺介质和载热体 ) 在换热过程中均无相变。换热器换热的目的是保证工艺介质加热 ( 或冷却 ) 到一定温度。为保证出口温度平稳,满足工艺要求,必须对传递的热量进行调节。

被控变量的选择

影响一个生产过程正常操作的因素很多, 但并非对所有影响因素都要进行控制. 被控参数是一个输出参数 , 应为独立变量 , 与输入量之间应有单值函数关系. 对于换热器过程控制系统, 人们最关心的是对换热器中介质即冷流体的温度和压力的自动控制与调节, 而在这两项当中 , 温度的自动调节又处于首位. 因为出口水温直接影响产品质量、产量、效率及安全性, 即本系统把换热器出口水温作为被控参数.

操纵变量的选择

在控制系统中,用来克服干扰对被控变量的影响,实现控制作用的变量就是操纵变量。

将出口温度维持在一定值,影响冷物料出口温度的有很多因素,比说冷物料的流量,载热体

的流量,载热体的温度等。冷物料是工艺所需要的,不能选用冷物料作为被控变量,而若选

载热体温度作为操纵变量,改变其温度还需改变其他工艺过程如锅炉的温度,考虑工艺合理

性,我选择对热流体流量进行控制,保证出口温度的稳定。

被控对象特性

换热器系统在连续生产中,其控制原理可通过热量平衡方程和传热速率方程来分析,这

个方案的控制流程图如图 3。

图 3

换热器的温度控制系统工艺流程图

为了处理方便,不考虑传热过程中的热损失,根据能量守恒定律,热流体失去的热量应

该等于冷流体吸收的热量,热量平衡方程为:

q=G 1c (1 T 1i - T 1o ) G 2c (2 T 2o - T 2 i )

式中, q 为传热速率(单位时间内传递的热量) ;G 为质量流量; c 为比热容; T 为温度。式中的下标处 1 为载热体; 2 为冷流体; i 为入口; o 为出口。

传热过程中的传热速率为:

q KF T

式中, K 为传热系数; F 为传热面积; T 为两流体间的平均温差。

其中,平均温差

T 对于逆流、单程的情况为对数平均值:

( - )- ( - )

T 1 T 2

T= T 1i

T 1o

T 2o T 2i

ln

T 1i

T

1o

ln T 1

T 2o T

2i

T 2

1

T 1i

T 1o

3 时,其误差在 5%以内,可采用算术平均值来代替,算术平均值表示为:

3

T

2o

T

2i

T

(T

1i

- T

1o

+(

T

2o

- T

2i

2

由于冷流体间的传热既符合热量平衡方程,又符合传热速率方程,因此有下列关系

G (

T 2 o

- )=

2

c 2

T

2i

KF T

整理后得

T

2 o

KF T

T 2i

G 2c 2

从上式可以看出, 在传热面积 F 、冷流体进口流量 G 2 、温度 T 2i 和比热容 c 2 一定的情况下,

影响冷流体出口温度的因素主要是传热系数

K 以及平均温差 T 。

调节器调节规律的选择

调节器的作用是对来自变送器的测量信号与给定值比较所产生的偏差

e(t) 进行比例 (P) 、

比例积分 (PI) 、比例微分 (PD) 或比例积分微分 (PID) 运算,并输出信号到执行器。选择调节器的控制规律是为了使调节器的特性与控制过程的特性能很好配合,使所设计的系统能满足生产工艺对控制质量指标的要求。

比例控制规律 (P) 是一种最基本的控制规律, 其适用范围很广。 在一般情况下控制质量较高,但最后有余差。对于过程控制通道容量较大,纯时延较小,负荷变化不大,工艺要求又不太高的场合,可选用比例控制作用。

比例控制规律 (P) 的微分方程数学模型为:

u(t )

k p e(t )

比例积分 (PI) 控制规律,结合了比例控制反应快,积分控制能消除余差。但是当过程控制通道的纯时延和容量时延都较大时,由于积分作用容易引起较大的超调,可能出现持续振荡,所以要尽可能避免用比例积分控制规律,不然会降低控制质量。通常对管道内的流量或压力控制,采用比例积分作用其效果甚好,所以应用较多。

比例积分 (PI) 控制规律的微分方程数学模型为:

u(t ) k p{ e(t) 1 t e(t )dt}

Ti 0

比例微分 (PD) 控制规律,由于引入微分,具有超前作用,对于被控过程具有较大容量时延的场合,会大大改善系统的控制质量。但是对于时延很小,扰动频繁的系统,由于微分作用会使系统产生振荡,严重时会使系统发生事故,所以应尽可能不用微分作用。

比例微分 (PD) 控制规律的微分方程数学模型为:

k p{ e(t ) de(t )

u(t )

T d dt }

比例积分微分 (PID) 作用是一种理想的控制作用,一般均能适应不同的过程特性。当要求控制质量较高时,可选用这种控制作用的调节器。

比例积分微分 (PID) 控制规律的微分方程数学模型为:

k p{ e(t ) 1 t de(t)

u(t ) Ti 0 e(t )dt

T d dt }

其中: u(t ) :为调节器的输出号

k p:放大倍数

T i:积分时间常数

T d:微分时间常数

e(t ) :设定值与测量值偏差信号

通过以上几种调节规律的分析及本系统是温度控制为被控参数,温度检测本身具有滞后性,为了弥补这个缺点,本系统选用比例积分微分(PID) 控制规律。

3、过程检测控制仪表的选用

测温元件及变送器

根据生产实践和现场使用条件以及仪表的性能,我们选用普通热电偶测温仪表。热电偶

温度仪表是基于热电效应原理制成的测温仪器,它由热电偶、电测仪表和连接导线组成,其

核心元件是热电偶。热电偶温度计有以下特点:

①测温精度高、性能稳定;

②结构简单,易于制造,产品互换性好;

③将温度信号转换为电信号,便于信号远传和实现多点切换测量;

④测温范围广,可达 -200~2000℃;

⑤形式多样,适用于多种测温条件;

被控温度在 500℃以下,由 [1] 表 3-5 选用铂热电阻温度计,为了提高检测精度,应采用

三线制接法,并配用 DDZ-Ⅲ型热电偶温度变送器。

DDZ-Ⅲ型热电偶温度变送器主要性能指标如下:

①测量范围最小量程 3mV,最大量程 60mV;零点迁移 -50~+50mV。

②基本误差0.5%

③温度特性环境温度每变化25℃,附加误差不超过千分之五。

④恒流性能当负载电阻在0~100Ω范围变化时,附加误差不超过千分之五。

⑤防爆指标结构为安全火花型;防爆等级为HⅢe;防爆额定电压为220V AC/DC。

其优点有以下几点:

①采用了低漂移、高增益的线性集成电路,提高了仪表的可靠性、稳定性和各项性能指标。

②在热电偶温度变送器中用线性化电路,使变送器输出信号与被测温度信号保持了线性关

系。

③线路中采取了安全火花防爆措施,兼有安全栅的功能。

执行器

根据生产工艺原则以及被控介质特点,选用电动执行器。电动执行器由执行机构和调节

机构(阀体)两部分组成。电动执行机构又可分为角行程(DKJ型)和直行程( DKZ型)两种,原理和电路原理完全相同,只是输出机械传动部分有所区别。按照特性不同,电动执行机构

可分为比例式和积分式。根据工艺条件及流体特性,我选用直行程( DKZ 型)比例式电动执行器,其输出直线位移与输入电流信号成正比。

DKZ 系列直行程电动执行器是由DKZ直行程电动执行机构与直通单座调节阀或直通双座

调节阀组装而成的,具有推力大、定位精度高、反应速度快、滞后时间少、能源消耗低、安

装方便、供电简便、在电源突然断电时能自动保持调节阀原来的位置等特点。

DKZ系列直行程电动执行器主要技术参数

输入信号0~、 4~

输入电阻200Ω(Ⅱ型)、 250Ω(Ⅲ型)

输入通道 3 个隔离通道

基本误差%

回差

死区3%( 1~3%可调)

纯滞后1s

电源电压、50Hz

环境温度执行机构-10~+55 ℃

使用环境条件

相对温度执行机构95%

型号规格表

机座号型号出轴推力(N)出行程(mm)全程时间(s)

108

DKZ-310C

400016

DKZ-310BC

Ⅰ25 20

DKZ-410C 40 32

6400

DKZ-410BC 60 48

DKZ-510C 60 37 Ⅱ1600

DKZ-510BC 100 62

流体流经阀体是的阻力损失为局部阻力损失,所以对不可压缩流体而言,流体流经调节阀时的阻力损失为

p v

2

p1 -p2 2g g

式中——调节阀的阻力系数;

——流过阀的流体平均流速;

p1——阀前压力;

p2——阀后压力;

阀体体积流量 q V,接管截面积为A,则q V

A

()

q V A A 2 p1 -p2

由该式可见,在调节阀口径一定,p/也不变的情况下,流量q V仅随阻力系数的变化

而变化。当移动阀芯使开度改变时,阻力系数也随之变化,从而改变了流量q V的大小,达到了调节流量的目的。

调节器

调节器又称控制器,是构成自动控制系统的核心仪表,其作用是将参数测量值和规定的

参数值相比较后,得出被调量的偏差,再根据一定的调节规律产生输出信号,从而推动执行

器工作,对生产过程进行自动调节。

目前在中国工业上广泛应用的 DDZ-Ⅲ型电动调节仪表具有良好的性能,且采取安全火花

型防爆措施,具有先进可靠的防爆结构。选用 DTZ-2100 型全刻度指示调节器

DTZ-2100 型全刻度指示调节器相关参数

输入信号1~

内给定信号1~

外给定信号4~

调节作用(比例 +积分 +微分)比例带: 2~500%

积分时间: ~分

微分时间: ~10 分(可切除)

输入、给定指示表指示范围: 0~100%,误差:1%

输出指示表指示范围: 0~100%,误差:25%

输出信号4~

负载电阻250~750Ω

工作条件环境温度: 0~45℃

工作振动:频率25Hz

、仪表型号清单列表

仪表型号清单

元件型号输入信号范围数量

热电偶温度变送器SBWR/Z3~60mV 1 执行器DKZ4~ 1

调节器DTZ-2100 1~ 1 4、系统方框图

根据换热器出口温度单回路控制方案图可得方块图如下:

换热器出口温度单回路控制图

5、调节控制参数,进行参数整定及系统仿真,分析系统性能

调节控制参数

1.变送测量环节可用一阶环节来近似表示:

式中,与测量仪表的量程有关;≥ 0 为流量测量环节的时间常数,单位为分 (min) 。在实际过程中这些参数基本不变。假设有 =10%/( T/hr )

2.假设执行器(调节阀)为近似线性阀,其动态滞后忽略不计,而且

3.对于该控制系统,假设控制通道与扰动通道的动态特性可表示为

调节器选定 PID 调节器,其传递函数为G(c s) =K p [1 1 T(D s)]

()

T1 s

[5]

式中 K p为比例系数; T1为积分时间; T D为微分时间。为使系统获得良好的控制品质,需要确定 PID 控制器的一些参数,而这些参数很难由计算获得,需要通过实验采用飞升曲线

确定该对象惯性时间和纯滞后时间。由传函的出各参数的关系如下式:

;;。

PID 参数整定及系统仿真

PID 参数整定方法就是确定调节器的比例系数Kp、积分时间 Ti 和微分时间 Td,改善系统的静态和动态特性,使系统过渡过程达到最为满意的质量指标要求。一般可以通过理论计

算确定,但误差太大。目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比

例带法和反应曲线法。

临界比例度法:首先求取在纯比例作用下的闭环系统为等幅振荡过程时的比例度和振荡

周期 T k ,然后根据经验公式计算出相应的调节器参数。通常将等幅振荡下的比例度和振荡周期分别称为临界比例度和临界周期。临界比例度法便于使用,而且在大多数控制回路中能得到较好的控制品质。

临界比例度法整定参数的具体步骤是:将调节器的积分作用和微分作用全部除去,在纯

比例的情况下,按比例增益 K C 从小到大的变化规律,对应于每一个 K C 做小幅度的设定值阶跃变化,直到获得等幅振荡过渡过程曲线,在 MATLAB 中的 Simulink 工具箱组件中进行系统的仿真

如下图:

根据仿真调试的结果出现等幅震荡时,

K C =100, 周期时间 T=,

根据临界比例度法整定参数取

K C =15, T i ==, T d ==,仿真图如下:

由图可知 系统性能分析

最大偏差 A :A=1085

超调量:

y(t p )- y( )

1085 - 408

y( )

165.9 408

衰减比 n :是过渡过程曲线上同方向的相邻两个波峰之比, n 1085/510=

④回复时间 ts ,也称过渡时间,是指被控变量从过渡状态回复到新的平衡状态的时间间

隔,即整个过渡过程所经历的时间,通常在被控变量进入新的稳态值得 5%的范围内不再超出

时,就认为被控变量已达到新的稳态值,所以ts=10s

⑤余差:是指过渡过程终了时,被控变量新的稳态值与设定值之差。即

即此反馈系统合理。

换热器温度控制系统简单控制系统方案

换热器温度控制系统简单控制系统方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 目录 (2) 1、题目................................................................................................................. 错误!未定义书签。 2、换热器概述..................................................................................................... 错误!未定义书签。 换热器的用途............................................................................................... 错误!未定义书签。 换热器的工作原理及工艺流程图............................................................... 错误!未定义书签。 3、控制系统 (3) 控制系统的选择 (3) 工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 被控变量的选择 (4) 操纵变量的选择 (4) 被控对象特性 (5) 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 测温元件及变送器 (7) 执行器 (10) 调节器 (12) 、仪表型号清单列表 (12) 6、系统方块图 (13) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (13) 调节控制参数 (13) PID参数整定及系统仿真 (14) 系统性能分析 (16) 8、参考文献 (17)

技能训练 换热器仿真实训

换热器仿真实训 一、工作原理简述 换热器的操作技术培训是很重要的基本单元操作训练。化工生产中所指的换热器,常指间壁式换热器,它利用金属壁将冷、热两种流体间隔开,热流体将热传到壁面的一侧(对流传热),通过间壁内的热传导,再由间壁的另一侧将热传给冷流体,从而使热物流被冷却,冷物流被加热,满足化工生产中对冷物流或热物流温度的控制要求。 本单元选用的是双程列管式换热器,冷物流被加热后有相变化。 在对流传热中,传递的热量除与传热推动力(温度差)有关外,还与传热面积和传热系数成正比。传热面积减少时,传热量减少;如果间壁上有气膜或垢层,都会降低传热系数,减少传热量。所以,开车时要排不凝气;发生管堵或严重结垢时,必须停车检修或清洗。 另外,考虑到金属的热胀冷缩特性,尽量减小温差应力和局部过热等问题,开车时应先进冷物料后进热物料;停车时则先停热物料后停冷物料。 二、工艺流程简介 冷物流(92℃)经阀VB01进入本单元,由泵P101A/B,经调节器FIC101控制流量送入换热器E101壳程,加热到气145℃(20%被汽化)后,经阀VD04出系统。热物流(225℃)由阀VB11进入系统,经泵P102A/B,由温度调节器TIC101分程控制主线调节阀TV101A和副线调节阀TV101B(两调节阀的分程动作如图2-23所示)使冷物料出口温度稳定;过主线阀TV101A的热物流经换热器E101管程后,与副线阀TV101B来的热物流混合(混合温度为(177±2)℃),由阀VD07出本单元,工艺流程如图2-24所示,。 图2-23调节阀TV101分程动作示意图

图2-24换热器仿真操作流程图 ●训练步骤 (一)冷态开车 1.启动冷物流进料泵P101A (1)确定所有手动阀已关闭,将所有调节器置于手动状态且输出值为0; (2)开换热器E101壳程排气阀VD03(开度约50%); (3)全开泵P101A前阀VB01; (4)启动泵P101A; (5)当泵P101A出口压力达到9.0atm(表)时,全开P101A后手阀VB03。 2.冷物流进料 (1)顺序全开调节阀FV101前后手阀VB04和VB05;再逐渐手动打开调节阀FV101; (2)待壳程排气标志块由红变绿时,说明壳程不凝气体排净,关闭VD03; (3)开冷物流出口阀VD04,开度为50%;同时,手动调节FV101,使FIC101指示值稳定到12000kg/h,FV101投自动(设定值为12000kg/h)。 3.启动热物流泵P102A (1)开管程排气阀VD06(开度约50%); (2)全开泵P102A前阀VB11; (3)启动泵P102A; (4)待泵P102A出口压力达到正常值10.0atm(表),全开泵P102A后手阀

板式换热器安装及使用说明书.docx

板式换热器安装与使用说明书 板式换热器安装与使用 1、拆箱 板式换热器一般情况下都是木质包装,在拆箱签一定要确认木箱是否在正确的位置。因为,设备在木箱内。固定挡板面市向下放置的,以使设备的重心在木箱的下方,所以,未拆 箱前搬动箱体时,不要使箱体侧倒或道里,以免因箱体重心不稳,砸伤人员、摔坏设备。 拆箱时,用工具先将顶部木板拆除,再依次将四周的木板拆除;木箱最下面的木板与换 热器是固定在一起的,需将固定铁片剪断,此时,装箱文件即可取下,请注意保存好。至此,拆箱工作结束。 2、吊运 吊运换热器前,一定要仔细阅读装箱文件中的使用手册,以保证正确的方式进行吊运工作。吊装时,须注意对换热器采取保护措施,避免碰撞和坠落事件的发生。 3、安装 板式换热器为整机出厂。出厂前,工厂对换热器性能的各项指标已经进行了检测。因此, 运抵安装现场的换热器,可直接安装使用。 ( 1)基础 制作换热器的安装基础,主要是为了换热器的水平安装和有利于连接配管以及方便日后对换热器的维修、保养,所以,基础的制作是依照现场情况来考虑的。板式换热器出厂时, 在换热器上配制了三个地脚,并在装箱时为用户准备了一份安装尺寸图,用户可根据实物和 安装尺寸图在基础中做预埋件,安装时拧紧地脚螺栓,以免启动时振动影响换热器性能和造 成损坏。安装时,不允许有外力加在换热器上,以免使换热器变形、影响正常运行。 ( 2)配管的连接 用户在连接配管时。首先要特别注意热侧和冷侧进、出口配管的连接位置,凡是在换热器设计选型时,设计参数表上注明‘流程为1’个接口方向D1为热介质进口,D2为热介质 出口, D3为冷介质进口,D4为冷介质出口。安装人员必须在确认了每个配管的功能之后, 方可进行连接配管的工作。配管连接前还需要仔细检查流道内有无硬杂物,以免运行时堵塞 流道或降低换热效率。泵的安装方式分为硬性联接安装和柔性联接安装。(由客户视具体情 况而定) ( 3)特别提示 根据我公司技术人员对可拆板式换热器的跟踪调查,发现,一些用户在使用过程中是

2020年换热器温度控制系统简单控制系统

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 目录 目录 (1) 1、题目........................................................ 错误!未定义书签。 2、换热器概述.................................................. 错误!未定义书签。 2.1换热器的用途............................................ 错误!未定义书签。 2.2换热器的工作原理及工艺流程图............................ 错误!未定义书签。 3、控制系统 (3) 3.1控制系统的选择 (3) 3.2工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 4.1 被控变量的选择 (4) 4.2 操纵变量的选择 (4) 4.3 被控对象特性 (5) 4.4 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 5.1 测温元件及变送器 (7) 5.2 执行器 (10) 5.3 调节器 (13) 5.4、仪表型号清单列表 (13) 6、系统方块图 (14) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (14) 7.1调节控制参数 (14)

7.2 PID参数整定及系统仿真 (15) 7.3 系统性能分析 (18) 8、参考文献 (19) 1、题目 热交换器出口温度的控制。 2、换热器概述 2.1 换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及 其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的目的主要有 下列四种: ①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行; ②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度 范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。 由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变 量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、 调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可 以是流量、压力、液位等。 2.2 换热器的工作原理及工艺流程图 换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别 通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。热流体

换热器安装施工方案

换热器安装施工方案集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

换热器安装施工方案 一、依据: 二、施工工艺程序: 三、方法 1、施工准备: 2、设备基础验收及处理: 3、垫铁的选用及安装要求: 4、设备及其附件检查; 5、设备安装: 四、安装质量控制点: 一、依据: 《石油化工换热器设备施工及验收规范》 SH3532-95 《中低压化工设备施工与验收规范》HGJ209-83 《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 《石油化工施工安全规程》SH3505-99 换热器设备装配图;业主提供的施工程序文件; 二、施工工艺程序: 三、方法: 1、施工准备: 1-1、施工现场的“三通一平”已具备,设备基础已中交合格; 1-2、施工方案已编制,并已审批; 1-3、施工所需的机具、人员已经到位; 1-4、所有用于测量的仪器已进行校核,并在使用合格周期内。 2、设备基础验收及处理:

2-1、设备安装前,应对基础进行检查,混凝土基础的外形尺寸、坐标位置及预埋件,应符合设计图样的要求; 2-2、混凝土基础的允许偏差,应符合下列要求: 2-3、预埋地脚螺栓的螺纹,应无损坏、锈蚀,且有保护措施; 2-4、滑动端预埋板上表面的标高、纵横向中心线及外形尺寸、地脚螺栓,应符合设计图样的要求; 2-5、预埋板表面应光滑平整,不得有挂渣、飞溅及油污。水平度偏差不得大于 2mm/m。基础抹面不应高出预埋板的上表面。 2-6、换热器安装后利用垫铁进行找正,因此在基础验收合格后,在放置垫铁的位置处凿出垫铁窝,其水平度允许偏差为2mm/m 3、垫铁的选用及安装要求: 3-1、当设备的负荷由垫铁组承受时,设备每个地脚螺栓近旁放置一组垫铁,垫铁组尽量靠近地脚螺栓。 3-2、垫铁组放置尽量放在设备底座的加强筋下,相邻两垫铁组的距离宜为500m。 3-3、每一组垫铁组的高度一般为30-70mm,且不超过5块,设备安装后垫铁露出设备支座底板边缘10-20mm。斜垫铁成对使用,斜面要相向使用,搭接长度不小于全长的3/4,偏斜角度不超过3度。 3-4、每组垫铁组面积,应根据负荷,按下式计算: A≥C(Q 1+Q 2 )*104/R

最新换热器温度控制系统简单控制系统

目录 目录 (1) 1、题目....................................................... 错误!未定义书签。 2、换热器概述................................................. 错误!未定义书签。 2.1换热器的用途........................................... 错误!未定义书签。 2.2换热器的工作原理及工艺流程图........................... 错误!未定义书签。 3、控制系统 (3) 3.1控制系统的选择 (3) 3.2工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 4.1 被控变量的选择 (4) 4.2 操纵变量的选择 (4) 4.3 被控对象特性 (5) 4.4 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 5.1 测温元件及变送器 (7) 5.2 执行器 (9) 5.3 调节器 (10) 5.4、仪表型号清单列表 (11) 6、系统方块图 (11) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (12) 7.1调节控制参数 (12) 7.2 PID参数整定及系统仿真 (13) 7.3 系统性能分析 (15) 8、参考文献 (16)

1、题目 热交换器出口温度的控制。 2、换热器概述 2.1 换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的目的主要有下列四种: ①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。 由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可以是流量、压力、液位等。 2.2 换热器的工作原理及工艺流程图 换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。 图2 换热器温度控制系统工艺流程图

板式换热器安装及操作规程

板式换热器安装及操作规程 换热器安装 1 、板式换热器的两块压紧板上有 4 个吊耳,供起吊时用,吊绳不得挂在接管、定位横梁或板片上。 2 、换热器周围要留有 1 米左右的空间,以便于检修。 3 、冷热介质进出口接管之安装,应严格按照出厂铭牌所规定方向连接,否则,换热器性能将受到影响。 4 、安装管路时,应在管路上配齐阀门、压力表、温度计,流量控制阀应装在换热器进口处,在出口处应装排气阀。 5 、设备管道里面要清理干净,防止砂石焊渣等杂物进入换热器,造成堵塞。 6 、当使用介质不干净,有较大颗粒或长纤维时,进口处应装有过滤器。 7 、换热器连接管道安装焊接时,应将电焊地线搭在焊接处,严禁将地线搭在远处,使电流回路通过换热器而造成损坏。 使用投产前准备

1 、设备使用前应检查夹紧螺栓是否松动,按照说明书应紧到尺寸 A 保证所有螺栓均匀一致。 2 、使用前按 1.25 倍的操作压力分到进行水压试验,保压二十分钟无泄漏方可投产。 3 、本设备使用前用清自来水进行 20 分钟左右清洗循环即可了。 4 、在管路系统中应设有放气阀开启后应排出设备中空气防止空气停留在设备中,降低传热效果。 5 、冷热介质进出口接管之安装,应严格按出厂铭牌所规定方向连接。否则,没能发挥设备最佳性能。 6 、本设备用于食品、制药投产前将每只螺栓松开,将每板片用棕刷清洗干净,应按照流程进行均匀组装完毕。 82 o - 90 o 热水进行 10 - 20 分钟循环消毒,立即起动物料泵,使冷却物料把板片内剩余水全部顶出,直至完全是物料即可生产了。 板式换热器操作规程 1 、开始运行操作时,如两种介质压力不一样,要先应缓慢打开低压侧阀门,然后开入高压侧阀门。 2 、停车运行时应缓慢切断高压侧流体,再切断低压流体,请注意这样做将大大有助于本设备之使用寿命。

仿真-热交换器

化工仿真技术实习报告 实习名称:热交换器 学院: 专业: 班级: 姓名:学号 指导教师: 日期:年月日

一、实习目的 1、熟习换热器的操作方法; 2、掌握换热器各个部件的表示方法及操作,加深对换热器性能的了解; 3、了解测定流量,温度的一些常用方法,仿真系统测试换热器的原理; 4、了解换热器的一些常见故障及排除方法和技巧。 二、实习内容 1、工艺流程简介 本热交换器为双程列管式结构,起冷却作用,管程走冷却水(冷流)。含量30%的磷酸钾溶液走壳程(热流)。 工艺要求:流量为18441 kg/h的冷却水,从20℃上升到30.8℃,将65℃流量为8849 kg/h的磷酸钾溶液冷却到32℃。管程压力0.3MPa,壳程压力 0.5MPa。 流程图画面“G1”中:阀门V4是高点排气阀。阀门V3和V7是低点排液阀。P2A为冷却水泵。P2B为冷却水备用泵。阀门V5和V6分别为泵P2A 和P2B的出口阀。P1A为磷酸钾溶液泵。P1B为磷酸钾溶液备用泵。阀门V1和V2分别为泵P1A和P1B的出口阀。 FIC-1 是磷酸钾溶液的流量定值控制。采用PID单回路调节。 TIC-1 是磷酸钾溶液壳程出口温度控制,控制手段为管程冷却水的用量(间接关系)。采用PID单回路调节。 检测及控制点正常工况值如下: TI-1 壳程热流入口温度为65℃ TI-2 管程冷流入口温度为20℃ TI-3 管程冷流出口口温度为30.8℃左右 TI-2 壳程热流入口温度为32℃ FR-1 冷却水流量18441kg/h FIC-1 磷酸钾流量8849kg/h 报警限说明(H为报警上限,L为报警下限): TIC-1>35.0℃ TIC-1<28.0℃ FIC-1>9500kg/h FIC-1<7000kg/h 2、工艺流程图

换热器温度控制系统

1. E-0101B混合加热器设计 为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K 的加热蒸汽加热入口温度为294K的工艺介质。为保证生成物的产量,质 量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此 实际情况,最后确定设计一个换热器的反馈控制方案。 1.1 换热器概述 换热器工作状态如何, 可用几项工作指标加以衡量。常用的工作指标主要有漏损率、换热效率 和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这 些指标,对于换热器的管理和改进都是必不可少的。 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、 动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷 却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上 流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流 体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的 主要设备之一。 1.2换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器 的具体分类如下: 一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触 式换热器,复式换热器 二按用途分类:加热器,预热器,过热器,蒸发器 三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等 此设计要求是将进料温度都为297.99K 的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出

换热器安装施工方案

换热器安装施工方案 Prepared on 22 November 2020

换热器安装施工方案 一、依据: 二、施工工艺程序: 三、方法 1、施工准备: 2、设备基础验收及处理: 3、垫铁的选用及安装要求: 4、设备及其附件检查; 5、设备安装: 四、安装质量控制点: 一、依据: 《石油化工换热器设备施工及验收规范》 SH3532-95 《中低压化工设备施工与验收规范》HGJ209-83 《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 《石油化工施工安全规程》SH3505-99 换热器设备装配图;业主提供的施工程序文件; 二、施工工艺程序: 三、方法: 1、施工准备: 1-1、施工现场的“三通一平”已具备,设备基础已中交合格; 1-2、施工方案已编制,并已审批; 1-3、施工所需的机具、人员已经到位;

1-4、所有用于测量的仪器已进行校核,并在使用合格周期内。 2、设备基础验收及处理: 2-1、设备安装前,应对基础进行检查,混凝土基础的外形尺寸、坐标位置及预埋件,应符合设计图样的要求; 2-2、混凝土基础的允许偏差,应符合下列要求: 2-3、预埋地脚螺栓的螺纹,应无损坏、锈蚀,且有保护措施; 2-4、滑动端预埋板上表面的标高、纵横向中心线及外形尺寸、地脚螺栓,应符合设计图样的要求; 2-5、预埋板表面应光滑平整,不得有挂渣、飞溅及油污。水平度偏差不得大于2mm/m。基础抹面不应高出预埋板的上表面。 2-6、换热器安装后利用垫铁进行找正,因此在基础验收合格后,在放置垫铁的位置处凿出垫铁窝,其水平度允许偏差为2mm/m 3、垫铁的选用及安装要求:

换热器仿真训练

换热器单元仿真训 化工二班、 1、工艺说明 本单元设计采用管壳式换热器。来自界外的92℃冷物流(沸点:198.25℃)由泵P101A/B送至换热器E101的壳程被流经管程的热物流加热至145℃,并有20%被汽化。冷物流流量由流量控制器FIC101控制,正常流量为12000kg/h。来自另一设备的225℃热物流经泵P102A/B送至换热器E101与注经壳程的冷物流进行热交换,热物流出口温度由TIC101控制(177℃)。 2 、设备名称预览 P101A/B:冷物流进料泵 P102A/B:热物流进料泵 E101:列管式换热器 3、开车操作流程

3.1 启动冷流进料泵P101A (1)开换热器壳程排气阀VD03。 (2)开P101A泵的前阀VB01。 (3)启动泵P101A。 (4)当进料压力指示表PI101指示达9.0atm以上,打开P101A泵的出口阀VB03。3.2 冷物流E101进料 (1)打开FIC101的前后阀VB04,VB05,手动逐渐开大调节阀FV101(FIC101)。 (2)观察壳程排气阀VD03的出口,当有液体溢出时(VD03旁边标志变绿),标志着壳 程已无不凝性气体,关闭壳程排气阀VD03,壳程排气完毕。 (3) 打开冷物流出口阀(VD04),将其开度置为50%,手动调节FV101,使FIC101 其达到12000kg/h,且较稳定时FIC101设定为12000kg/h,投自动。 3.3 启动热物流入口泵P102A (1)开管程放空阀VD06。 (2)开P102A泵的前阀VB11。 (3)启动P102A泵。 (4)当热物流进料压力表PI102指示大于10atm时,全开P102泵的出口阀VB10。3.4 热物流进料 (1)全开TV101A的前后阀VB06,VB07,TV101B的前后阀VB08,VB09。 (2)打开调节阀TV101A(默认即开)给E101管程注液,观察E101管程排汽阀VD06 的出口,当有液体溢出时(VD06旁边标志变绿),标志着管程已无不凝性气体,此时关管程排气阀VD06,E101管程排气完毕。 (3)打开E101热物流出口阀(VD07),将其开度置为50%,手动调节管程温度控制 阀TIC101,使其出口温度在177±2℃,且较稳定,TIC101设定在177℃,投自动。 4、正常工作操作参数 (1)冷物流流量为12000kg/h,出口温度为145℃,气化率20%。 (2)热物流流量为10000kg/h,出口温度为177℃。 5、停车操作流程 5.1 停热物流进料泵P102A (1)关闭P102泵的出口阀VB01。 (2)停P102A泵。

换热器温度控制系统范本

换热器温度控制系 统

1.E-0101B混合加热器设计 为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K 的工艺介质。为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。 1.1换热器概述 换热器工作状态如何,可用几项工作指标加以衡量。常见的工作指标主要有漏损率、换热效率和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。

1.2换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器 二按用途分类:加热器,预热器,过热器,蒸发器 三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等 此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO (一氧化碳)加热到出口温度为473K,因此我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。 1.3换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的

换热器温度控制系统简单控制系统

目录 目录?1 1、题目?2 2、换热器概述 (2) 2、1换热器得用途 (2) 2、2换热器得工作原理及工艺流程图........................................ 23、控制系统?3 3、1控制系统得选择?3 3、2工艺流程图与系统方框图 (3) 4、被控对象特性研究 (4) 4、1被控变量得选择?4 4、2 操纵变量得选择?4 4、3 被控对象特性 (5) 4、4 调节器得调节规律得选择?6 5、过程检测控制仪表得选用 (7) 5、1测温元件及变送器?7 5、2 执行器 (9) 5、3 调节器 (10) 1 5、4、仪表型号清单列表?1 6、系统方块图 (11) 1 7、调节控制参数,进行参数整定及系统仿真,分析系统性能?2 1 7、1调节控制参数?2 7、2 PID参数整定及系统仿真........................................... 13 7、3 系统性能分析 (15) 1 8、参考文献?6 1、题目 热交换器出口温度得控制。

2、换热器概述 2、1 换热器得用途 换热器又叫做热交换器(heat exchanger),就是化工、石油、动力、食品及其它许多工业部门得通用设备,在生产中占有重要地位。进行换热得目得主要有下列四种: ①、使工艺介质达到规定得温度,以使化学反应或其她工艺过程很好得进行;②、生产过程中加入吸收得热量或除去放出得热量,使工艺过程能在规定得温度范围内进行;③、某些工艺过程需要改变无聊得相态;④、回收热量。 由于换热目得得不同,其被控变量也不完全一样。在大多数情况下,被控变量就是温度,为了使被加热得工艺介质达到规定得温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。对于不同得工艺要求,被控变量也可以就是流量、压力、液位等。 2、2 换热器得工作原理及工艺流程图 换热器得温度控制系统换热器工作原理工艺流程如下:冷流体与热流体分别通过换热器得管程与壳程,通过热传导,从而使热流体得出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器得管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器得壳程。在换热器得冷热流体进口处均设置一个调节阀,可以调节冷热流体得大小。 图2 换热器温度控制系统工艺流程图 从传热过程得基本方程式可知,为了保证出口得温度平稳,满足工艺生产得要求,必须对传热量进行调节,调节传热量有以下几条途径: ①、调节载热体得流量。调节载热体流量大小,其实只就是改变传热速率方程中得传热系数K与平均温差△Tm,对于载热体在加热过程中不发生相变得情况,主要就是改变传热速率

液态氨冷却器控制系统

目录 1引言 (2) 2设计任务与方案分析 (2) 2.1控制系统的分析与选择 (2) 2.2选择控制系统的设计 (3) 3系统设计与实施 (4) 3.1正常调节器的设计 (4) 3.2取代调节器的设计 (4) 3.3选择器高低值型式的选择 (4) 3.4温度检测器 (6) 3.5液位变送器 (7) 4系统的仿真 (7) 4.1参数整定 (7) 4.2控制器的正反作用 (9) 4.3仿真 (9) 小结体会 (12) 参考文献 (13)

液态氨冷却器控制系统 1引言 液态氨蒸发冷却器是工业生产中用的很多的一种换热设备,它利用液氨的蒸发吸取大量的气化热,来冷却流经管内的被冷却物料。通常需要被冷却物料出口温度稳定。此时液氨液位在一定允许范围内。而在非正常工况下,液位高度是不超过给定的上限的,所以需要使用选择控制方法,通过对液位的检测,来判断液位高度是否工作在正常情况,在正常情况下,使用被冷物料出口温度回路控制系统,非正常情况下,使用液位单回路控制系统,二者的切换通过选择器自动根据工况实现。 2设计任务与方案分析 2.1 控制系统的分析与选择 工艺上要求被冷却物料的出口温度稳定为某一定值,所以将被冷却物料的出口温度作为被控变量,以液态氨的流量为操纵变量,构成正常工况下的单回路温度定值控制系统如图2-1(a)所示。从安全角度考虑,调节阀选用气开式,温度控制器选择正作用方式。当被冷却物料的出口温度升高时,控制器输出增大,调节阀门开度增大,液态氨流量增大,从而有更多的液态氨气化,使被冷却物料的出口温度下降。 这一控制方案实际上是基于改变换热器列管淹没在液态氨中的多少,以改变传热面积来达到控制温度的目的。所以液面的高度也就间接反映了传热面积的变化情况。在正常的工况下,操纵液氨流量使被冷却物料的出口温度得到控制,而液位在允许的一定范围内变化。如果突然出现非正常工况,假设有杂质油漏入被冷却物料管线,使导热系数下降,原来的传热面积不能带走同样多的热量,只有使液位升高,加大传热面积。如果当液位升高刀全部淹没换热器的所有列管时,传热面积以达到极限,出口温度任没有降下来,温度控制器会不断的开大调节阀门,使液位继续升高。这时就可能导致生产事故。这时因为气化氨要经过压缩机后,变成液态氨重复使用,如果液位太高,会导致氨中夹带液氨进入压缩

换热器安装调试说明书

2. 7 管壳式换热器安装、调试、运行、保养说明书 2.7.1 编制依据 ●SH 3535 石油化工换热器设备施工及验收规范 ●SH 3505 石油化工施工安全规程 ●GB 50236 现场设备、工业管道焊接工程施工及验收规范 2.7.2 安装前的检查要求 设备安装前,应对基础及设备进行相关检查: 1)混凝土基础外协尺寸、坐标位置及预埋件,应符合设计图样的要求。 2)预埋地脚螺栓的螺纹,应完好无锈蚀。 3)预埋板表面应光滑平整。水平度偏差不得大于2mm/m。混凝土基础抹面不应高出预埋板。 4)换热器外部检查:包括设备连接管、排出管、法兰密封面有无变形和缺陷。 5)设备接管法兰面与支座支撑面是否平行或垂直;法兰规格、型号、压力等级是否符合设计要求。 6)滑动支座上的开孔位置、形状尺寸应符合图纸设计要求。 2.7. 3. 设备安装就位及连接要求 1)按设计图样和设备管口方位、中心线和中心位置,确认无误后方可就位。设备的找正与找平应按基础上的安装基准线(中心标记、水平标记)对应设备上的基准测点进行调整。设备各支撑的地面标高应以基础上的标高基线为基准。

2)换热器设备的找平、找正: 换热器找正、找平的测定基准点应符合以下规定: A、设备中心线位置及管口方位,应以基础平面坐标及中心线为基准; B、设备的垂直度,应以设备表面上0度、90度、或180度、270度的母线为基准; C、设备的水平度,应以设备两侧的中心线为基准; D、设备的找平,应采用垫铁或其他调整件进行,严禁采用改变地脚螺栓紧固程度的方法。 E、卧式换热器安装时,应保持整体水平。测定水平度应以换热器顶层换热管的上表面为基准。换热器的安装坡度,应按设计图样要求。 3)安装换热器连接管时,严禁强力装配。液面计、安全排水排气阀、温度计等附件应检查、试调试合格。 4)换热器设备安装合格后应及时紧固地脚螺栓。 2.7.4 换热器调试与使用说明 1)换热器启动前应按下列要求放尽腔室内的空气,以提高传热效率。 A、松开人、冷介质端的排气阀,关闭介质排出阀。 B、缓慢打开热、冷介质的进水阀,是热、冷介质从放气口溢出为止,然后拧紧排气阀,关闭进水阀。 2)水温升高后,慢慢打开冷却介质的进水阀(注意:切忌快速打

蓄热式换热器的仿真模拟与研究

万方数据

万方数据

万方数据

蓄热式换热器的仿真模拟与研究 作者:崔中坚, 刘刚, 王海, 冯震, CUI Zhong-jian, LIU Gang, WANG Hai, FENG Zhen 作者单位:东华大学环境科学与工程学院 刊名: 建筑热能通风空调 英文刊名:BUILDING ENERGY & ENVIRONMENT 年,卷(期):2010,29(3) 参考文献(5条) 1.郝红;张于峰转轮除湿器的数学模型及性能研究[期刊论文]-暖通空调 2005(12) 2.杨世铭;陶文铨传热学 1998 3.若尾法昭;影片一朗填充床传热与传质过程 1986 4.林瑞泰多孔介质传热传质引论 1995 5.余驰;王磊太阳能低温水源热泵辅助供暖系统模拟研究[期刊论文]-制冷与空调 2006(01) 本文读者也读过(7条) 1.张海强.刘晓华.江亿.Zhong Haiqiang.Liu Xiaohua.Jiang Yi蓄热式换热器周期性换热过程的性能分析[期刊论文]-暖通空调2011,41(3) 2.王维刚.WANG Weigang蓄热式换热器的优化设计[期刊论文]-化工机械2010,37(4) 3.严亮新型高频换向陶瓷蓄热式换热器性能分析及实验研究[学位论文]2007 4.罗海兵.陈维汉蓄热式换热器传热过程的数值模拟[期刊论文]-化工装备技术2004,25(4) 5.冯震核电站汽机房通风方案的优化[学位论文]2010 6.朱铮.杨其才.刘刚.冯震.Zhu Zheng.Yang Qicai.Liu Gang.Feng Zhen电厂自然通风方式的选择[期刊论文]-制冷与空调(四川)2011,25(2) 7.吴志根.陶文铨多孔金属矩阵材料在相变蓄热中的强化换热数值分析[会议论文]-2011 本文链接:https://www.360docs.net/doc/c84689711.html,/Periodical_jzrntfkt201003002.aspx

换热器温度控制系统设计

换热器温度控制系统设计 1、换热设备概述 换热器又称热交换器,是进行热量交换的设备的统称。换热器广泛应用于化工、石化、炼油、轻工、制药、食品加工、动力以及原子能等工业。换热器应用于存在温度差的流体间的热交换设备,换热器中至少有两种流体,温度较高则放出热量,反之则吸收热量。换热器依据传热原理和实现热交换的方法一般分为间壁式、混合式、蓄热式三类。其中间壁式换热器应用最广。它又可分为管式换热器、板式换热器、翅片式换热器、热管换热器等。其中以管式(包括蛇管式、套管式、管壳式等)换热器应用最普遍。列管式和板式,各有优点,列管式是一种传统的换热器,广泛应用于化工、石油、能源等设备;板式则以其高效、紧凑的特点大量应用于工业当中。 2、控制方案的确定 实验控制对象位列管式换热器,主要的扰动是冷物料的流量Q。换热器温度控制系统包括换热器、控制冷流体的离心泵,传感器等设备。实验采用温度流量串级控制,以冷物料出口温度为主对象,以冷物料流量Q为副对象。 换热器控制图

3、系统硬件设计 或控制量 型号 参数 温度变送器 (Endress+Hauser ) TR13 热保护套管末端类型 直管型 工作温度范围 PT100 (薄膜式(TF) 50 °C...500 °C (58 °F...932 °F) PT100 (绕线式(WW)): -200 °C...600 °C (-328 °F...1,112 °F) PT100 (薄膜式(TF)): -50 °C...400 °C (58 °F...752 °F) 最大过程压力(静压) 20 °C 时:50 bar (725 psi) 流量变送器 (Endress+Hauser )73W 涡街 流量计 73W 参数: 标称口径 DN 15 (150) (1/2"…6") 测量范围 气体: 4…5 210 m3/h 过程温度 -200...+400°C (-328...+752°F) 最高可达 +450°C / 842°F (特殊选型) 输出信号 4…20 mA 电流输出 防爆认证 ATEX 、FM 、CSA 、TIIS 、NEPSI 、IEC 防护等级 IP 67 (NEMA 4x) X 主调节器 副调节器 换热器热水出口温 主回路干 给定值+ - 换热器热水出口温度和冷水流量串级控制框图 X - 调节阀 涡街流量 流量 换热器热水出口温 变频器干扰 水泵

板式换热器安装施工方案

第一章板式换热器安装施工方案 第二章施工准备和施工方法 第一节施工方法 依据施工图的技术要求、设备说明书要求,确定设备、管道和风道的位置及标高,划线安装,特殊要求与设计、甲方(或监理方)协商解决。 施工流向:先核对基准线,先定位,划线后安装。 第二节施工准备 施工图的审核交底 由公司主管经理组织技术人员、施工人员及设计人员对施工图进行审核,达到熟悉图纸,便于施工的目的。施工图中不清楚的地方请设计人员解释交底,互相交流,达到设计、施工和使用的目的。 设备、材料准备 依据施工图提供的设备、材料明细表及施工进度计划订购设备、材料,并要求生产厂按期供货。工程所需材料及配件按施工进度分批运到施工现场。

第三章工程施工监督检查、验收的要点 第一节制冷设备安装 水泥基座找平,划线后安装。 在设备底座地脚螺栓附近垫铁,用水平仪检查其纵向(筒体轴向)与横向的水平度,每米长度上其不平度不超过0.5毫米。设备安装方向正确中心线位移不超过 5 毫米。 用水泥浆浇灌底座及地脚螺栓。 水泥干固后再按第二条复查。 第二节冷却塔安装 冷却塔安装平衡牢固。 冷却塔的出水管口及喷嘴的方向和位置正确、布水均匀。 第三节泵类安装 在基座上划线后安装。 在泵座地脚螺栓附近垫铁,将底座垫高约20—40毫米,检查离心泵泵体水平度,每米不超过0.1毫米,水平联轴器应保持同轴度;轴向倾斜每米不超过0.8毫米;径向位移不超过0.1毫米。 用水泥浆浇灌泵座及地脚螺栓。 3—4天水泥于固后,再按第2项复查。 第四节箱罐安装 箱罐标高允许偏差土5毫米,水平度每米长度不超过10毫米,垂直度每米高度不超过10毫米,中心线位移不超过5毫米。 箱罐的支、吊、托架安装应平直牢固,位置正确。

热交换器温度控制系统课程设计

热交换器温度控制系统课程设计

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1能够看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案

根据控制系统的复杂程度,能够将其分为简单控制系统和复杂控制系统。其中在换热器上常见的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是经过对换热器过程控制系统的分析,确定合适的控制系统。 换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别经过换热器的壳程和管程,经过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,经过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体经过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,能够调节冷热流体的大小。在冷流体出口设置一个电功调节阀,能够根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到经过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是经过变频器调节的,因此,本系统中采用变频器作为执行器。

新板式换热器安装使用说明书.1

设备安装运行维护使用说明书 板式热交换器山东华昱压力容器有限公司

目录 一、板式热交换器概述 (1) 二、板式热交换器结构 (1) 三、板式热交换器型号表示方法 (2) 四、板式热交换器技术特点 (2) 五、板式热交换器的流程组合形式 (2) 六、板式热交换器的安装要求 (3) 七、板式热交换器的操作 (4) 八、板式热交换器的维修保养 (5)

一、板式热交换器概述 板式热交换器按NB/T47004-2009《板式热交换器》进行设计、制造和检验。 板式热交换器是以金属波纹板为传热元件的新型高效换热器。由于板片组装后形成特殊流体通道,在较低雷诺数下可以产生湍流,并且不易结垢,板片材料选用优质进口不锈钢板、钛板等材质板材,传热系数高,相邻板片波纹波峰相互支撑,形成网状触点,提高了板片的刚性,可以承受较大的压差,保证了使用的安全可靠。 板式热交换器所用板片是综合国内外先进技术而设计的高效换热板片,具有优越的传热性能、流通性能和耐压性能,流体分布均匀,不易结垢,以较小的压降取得最大的传热效果。 板式热交换器应用“热混合”设计原理,使板式换热器的换热量、流量和允许压力降完全匹配,从而实现板式换热器的性能和面积最佳化。 板片的密封垫片结构独特,设计合理,性能稳定可靠,耐压能力强,维护便捷。 应用计算机设计选型,使板式换热器能够高效运行。 板式热交换器的工作压力一般为 1.0MPa、1.6MPa,最高可以达到2.5MPa.工作温度一般低于160℃。板片材质一般为不锈钢、钛板、钛合金、SMO254、哈氏合金等,密封胶垫使用丁腈橡胶、三元乙丙橡胶、氟橡胶、硅橡胶、食品橡胶等,板片和密封胶垫也可根据用户具体工况要求选用其它材料制造。 二、板式热交换器结构 板式热交换器是由一组波纹金属板组成,板上有四个角孔,供传热的两种介质通过。金属板片安装在一个侧面有固定压紧板和活动压紧板的框架内,并用夹紧螺栓压紧。板片上装有密封垫片,将流体通道密封,并且引导流体交替地流至各自的通道内,形成热交换。流体的流量、物理性质、压力降和温度差决定了板片的数量和尺寸。波纹板不仅提高了湍流程度,并且形成许多支承点,足以承受介质间的压力差。

相关文档
最新文档