几种常见排序方法的比较

几种常见排序方法的比较
几种常见排序方法的比较

重庆邮电大学移通学院《计算机软件技术基础》

课程报告

题目几种常见排序方法的比较

姓名谢枞

学号0111100320

班级01111003

专业通信工程

2012年6 月4日

摘要

该程序是用C++语言实现的,在程序中随机生成N个数据,对这些数进行多种方法的排序,所用的这些排序方法都是在数据结构课中学习过的比如:插入排序、快速排序、冒泡排序等,而且还要对各个排序做出相应的比较。

该演示程序以用户和计算机的对话方式执行,每次测试完毕,列表显示各种比较指标值。

最后对结果作出了简单分析并将结果排序,包括对各组数据得出结果波动大小给予解析。

关键字:插入排序、冒泡排序、比较的个数、改变的个数、所用的时间。

目录

摘要 (Ⅰ)

目录 (Ⅱ)

1问题描述 (1)

题目内容 (1)

基本要求 (1)

测试数据 (1)

2需求分析 (2)

输入输出的形式和输入值的范围 (2)

程序所能达到的功能 (2)

3概要设计 (3)

程序所需的抽象数据类型 (3)

系统功能模块 (3)

外部功能模块图 (3)

主函数功能模块图 (3)

4详细设计 (4)

4.1 整个程序的流程图 (4)

4.2 插入排序及其主要代码 (5)

4.3 二路合并排序及其主要代码 (6)

4.4 冒泡排序及其主要代码 (7)

5 调试分析 (8)

5.1 调试分析结果 (9)

6 总结 (10)

1问题描述

1.1题目内容

本演示程序对以下几种常用的内部排序算法进行实测比较:起泡排序、直接插入排序、二路合并排序。

主要工作是设法在已知算法中的适当位置插入对关键字的比较次数和移动

次数的计数操作。程序还可以考虑几组数据的典型性,如:正序、逆序和不同程度的乱序。注意采用分块调试的方法。

1.2基本要求

1.待排序表的表长不小于100,其中数据要用的随机数产生程序产生,至少要用5组不同的输入数据体比较,比较的指标为:有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次的移动)。

2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”下,用户可由键盘输入待排序表的表长和不同的测试数据的数组,每次测试完毕,列表显示各种比较指标值。

3.最后对结果作出简单分析,包括对各组数据得出结果波动大小给予解析。

1.3 测试数据

由函数rand随机产生的数据。

2 需求分析

2.1输入输出的形式和输入值的范围

由于程序中所需的数据都是有函数随机生成的整形数,不需要用户自己输入,用户只需要对演示程序中的一些提示做一些必要的选择以便于程序的执行。

程序输出的是对五种排序做的一些比较,即输出五种排序各排序过程中所比较的数据的个数,交换的数据的次数,和排序完成所用的时间。六种排序依次在计算机终端上显示,便于用户观察。

输入值的范围等价于程序中随机生成的数据的个数,即待排序表的表长不小于100,至少要用5组不同的输入数据体比较,比较的指标为:有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次的移动),在该程序中,随机生成的数据个数被初始化为了10000,数据越大就越容易比较。

2.2程序所能达到的功能

输入N个随机整数,对这些数进行多种方法进行排序,并对这些排序做比较,在屏幕上输出每种排序方法所比较的次数,交换的次数,和用掉的时间。

任意性:系统首先生成10000个随机整数,然后分别用不同的排序方法对其进行升序排序,给出每种方法的比较次数或所用时间

友好性:界面要友好,输入有提示,尽量展示人性化

可读性:源程序代码清晰、有层次

健壮性:用户输入非法数据时,系统要及时给出警告信息

3 概要设计

3.1程序所需的抽象数据类型

typedef struct StudentData

{

int num; //存放关键字,如零时变量,还有哨兵

}Data;

typedef struct LinkList

{

int Length; //存放随机数的个数

Data Record[MAXSIZE];//用数组存放所有的随机数

}LinkList;

3.2系统功能模块

3.2.1 主函数功能模块图

图 3.2.2 主函数功能模块图

4.1整个程序的流程图

·4.2 插入排序及其主要代码

直接插入排序(Straight Insertion Sort)是一种最简单的排序方法,它的基本

操作是将一个纪录插入到已排好序的有序表中,从而得到一个新的、纪录数增1的有序表。

例如,已知待排序的一组纪录的初始排列如下所示:

R(49)、R(38)、R(65)、R(97)、R(76)、R(13)、R(27)、R(49)……(4-1)假设在排序过程中,前4个记录已按关键字递增的次序重新排列,构成一个含4个纪录的有序序列

{ R(38)、R(49)、R(65)、R(97) } (4-2)现要将式(4-1)中的第5个纪录插入上述序列,以得到一个新的含5个纪录的有序序列,则首先要在式(4-2)的序列中进行查找以确定R(76)、所应插入的位置,然后进行插入。假设从R(97)、起向左进行顺序查找,由于65<76<97,

则R(76)应插入在R(65)和R(97)之间,从而等到下列新的有序序列

{ R(38)、R(49)、R(65)、R(76)、R(97) } (4-3)称从式(4-2)到(4-3)的过程为一趟直接插入排序。一般情况下,第i趟直接插入排序的操作为:在含有i-1个纪录的有序子序列r[1...i-1]中插入一个记录r[i]后,变成含有i个记录的有序子序列r[1...i];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r[0]处设置监视哨。在自i-1起往前搜索的过程中,可以同时后移记录。整个排序过程为进行n-1趟插入,即:先将序列中的第1个记录看成是一个有序的子序列,然后从第2个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。代码如下:

void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum)

{

int k;

for (k=0; k

ShellInsert(L,dlta[k],CmpNum,ChgNum);

}

void ShellInsert(LinkList* L,int dk, int* CmpNum, int* ChgNum)

{

int i, j;

Data Temp;

for(i=dk; iLength;i++)

{

if( LT(L->Record[i].num, L->Record[i-dk].num, CmpNum) )

{

memcpy(&Temp,&L->Record[i],sizeof(Data));

for(j=i-dk; j>=0 && LT(Temp.num, L->Record[j].num, CmpNum) ; j-=dk)

{

(*ChgNum)++;

(*ChgNum)++;

memcpy(&L->Record[j+dk],&L->Record[j],sizeof(Data));

}

memcpy(&L->Record[j+dk],&Temp,sizeof(Data));

}

}

4.3二路合并排序及其主要代码

二路合并排序是另一类时间复杂度为O(n log2n)的排序方法,它的基本思想是:将有n个元素的序列看成是n个长度为1的有序子序列,然后两两合并子序列,得到【n/2】个长度为2或1的有序子序列;再两两合并,…,直到得到一个长度为n的有序子序列时结束,如图所示。

template

void Merge(T A[],int i1,int j1,int i2,int j2)

{ // i1,j1是子序列1的下、上界,i1,j2是子序列2的下、上界

T *Temp=new T[j2-i1+1]; //分配能存放两个子序列的临时数组

int i=i1,j=i2,k=0; //i,j是两个子序列的游动指针,k是Temp的游动指针

while (i<=j1&&j<=j2) //若两个子序列都不空,则循环

if (A[i]<=A[j]) Temp[k++]=A[i++]; //将A[i]和A[j]中较小的存入Temp[k] else Temp[k++]=A[j++];

while (i<=j1) Temp[k++]=A[i++]; //若第一个子序列中还有剩余的就存入Temp while (j<=j2) Temp[k++]=A[j++]; //若第二个子序列中还有剩余的就存入Temp for (i=0; i

delete [] Temp;

}

template

void MergeSort(T A[], int n)

{

int i1,j1,i2,j2; //i1,j1是子序列1的下、上界,i2,j2是子序列2的下、上界

int size=1; //子序列中元素个数,初始化为1。

while (size

i1=0;

while (i1+size

i2=i1+size; //确定子序列2的下界

j1=i2-1; //确定子序列1的上界

if (i2+size-1>n-1)

j2=n-1;//若第2个子序列中不足size个元素,则置子序列2的上界j2=n-1 else j2=i2+size-1; //否则有size个,置j2=i2+size-1

Merge(A,i1,j1,i2,j2); //合并相邻两个子序列

i1=j2+1; //确定下一次合并第一个子序列的下界

}

size*=2; //元素个数扩大一倍

}

}

程序只将A数组中相邻的两个子序列(A[i1],A[i1+1],.....,A[j1])和(A[i2],A[i2+1],...,A[j2])合并为一个子序列,其中i1、ji是子序列1在数组A中的下标,表示子序列的下、上界(i2

4.4 冒泡排序及其主要算法

冒泡排序(bubble sort)的过程很简单。首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换之,然后比较第二个记录和第三个记录的关键字。依次类推,直至第n-1个记录和第n个记录的关键字进行比较为止。上述过程称做第一趟冒泡排序,其结果使得关键字最大的记录被安置到最后一个记录的位置上。然后进行第二趟冒泡排序,对前n-1个记录进行同样操作,其结果是使关键字次大的记录被安置到第n-1个记录的位置上。一般地,第i趟冒泡排序是从L.r[1]到L.[n-i+1]依次比较相邻两个记录的关键字,并在“逆序”是交换相邻记录,其结果是这n-i+1个记录中关键字最大的纪录被交换到第n-i+1的位置上。整个冒泡排序过程需进行k(1<=k

void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum)

{

int i,j;

Data temp;

for (i=0; i

{

for(j=0; j

{

if(!LT(L->Record[j].num,L->Record[j+1].num,CmpNum))

{

(*ChgNum)++;

memcpy(&temp,&L->Record[j],sizeof(Data));

memcpy(&L->Record[j],&L->Record[j+1],sizeof(Data));

memcpy(&L->Record[j+1],&temp,sizeof(Data));

}

}

}

}

6 总结

这次课程设计运用到了c++语言和数据结构知识点,课设题目要求不仅要求对课本知识有较深刻的了解,同时要求程序设计者有较强的思维和动手能力。这次课设使我了解我编程思想和编程技巧,也认识了软件生命周期的各个环境,包括构思、设计、编写、调试、发布、文档化、维护和修订。编程的风格也很重要,同学只关心程序运行的结果,而对程序代码的结构的良好丝毫不在意。这是非常不可取的,如果我们希望将来从事编程工作,在这一点上该引起足够的重视。这是严谨的态度,很重要!

在写程序的过程中遇到的麻烦不是很多,由于课本上都把最基本的算法写的很清楚,我们只需要去理解,把分散的知识聚拢来,用学过的知识把一个一个的排序恰当的连接起来就能把程序的主要部分写好,再加一修改就可以了,而且在这一学期的学习生活中,我们已经把大多数的排序都写好了,所以这对于我们来说还是比较轻松的一件事,但是在写程序的过程中还是会遇到一些麻烦,那就需要我们的小心谨慎和积极探索的精神了,争取把程序写的更完美。

做课程设计不仅让我修补了以前学习的漏洞,也让我知道一个道理:编程需要兴趣和实际动手。这应该可以借鉴在老师的教学工作上。创新思维至关重要,这不仅能让我们写出精简的代码,也有助于开发出高效的程序。

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

C语言几种常见的排序方法

C语言几种常见的排序方法 2009-04-2219:55 插入排序是这样实现的: 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。 重复2号步骤,直至原数列为空。 插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。 冒泡排序 冒泡排序是这样实现的: 首先将所有待排序的数字放入工作列表中。 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。 重复2号步骤,直至再也不能交换。 冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。 选择排序 选择排序是这样实现的: 设数组内存放了n个待排数字,数组下标从1开始,到n结束。 i=1 从数组的第i个元素开始到第n个元素,寻找最小的元素。 将上一步找到的最小元素和第i位元素交换。 如果i=n-1算法结束,否则回到第3步 选择排序的平均时间复杂度也是O(n²)的。 快速排序 现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。 堆排序 堆排序与前面的算法都不同,它是这样的: 首先新建一个空列表,作用与插入排序中的"有序列表"相同。 找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。 重复2号步骤,直至原数列为空。 堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

C语言9种常用排序法

C语言9种常用排序法 1.冒泡排序 2.选择排序 3.插入排序 4.快速排序 5.希尔排序 6.归并排序 7.堆排序 8.带哨兵的直接插入排序 9.基数排序 例子:乱序输入n个数,输出从小到大排序后的结果1.冒泡排序 #include int main() { int i, j, n, a[100], temp; while(scanf("%d",&n)!=EOF) { for(i=0;i

for(i=0;ia[j+1]) //比较a[j]与a[j+1],使a[j+1]大于a[j] { temp = a[j+1]; a[j+1] = a[j]; a[j] = temp; } } } for(i=0;i int main() {

int i, j, n, a[100], t, temp; while(scanf("%d",&n)!=EOF) { for(i=0;ia[j]) t = j; } temp = a[i]; a[i] = a[t]; a[t] = temp; } for(i=0;i

数据结构各种排序方法的综合比较

数据结构各种排序方法的综合比较 结论: 排序方法平均时间最坏时间辅助存储 简单排序O(n2) O(n2) O(1) 快速排序O(nlogn)O(n2)O(logn) 堆排序O(nlogn)O(nlogn)O(1) 归并排序O(nlogn)O(nlogn)O(n) 基数排序O(d(n+rd))O(d(n+rd))O(rd) PS:直接插入排序、冒泡排序为简单排序,希尔排序、堆排序、快速排序为不稳定排序 一、时间性能 按平均的时间性能来分,有三类排序方法: 时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为 最好,特别是对那些对关键字近似有序的记录序列尤为如此; 时间复杂度为O(n)的排序方法只有,基数排序。 当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。 二、空间性能 指的是排序过程中所需的辅助空间大小。 1. 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1); 2. 快速排序为O(logn),为栈所需的辅助空间; 3. 归并排序所需辅助空间最多,其空间复杂度为O(n ); 4.链式基数排序需附设队列首尾指针,则空间复杂度为O(rd)。 三、排序方法的稳定性能 1. 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和经过排序之后,没有改变。 2. 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。 3. 对于不稳定的排序方法,只要能举出一个实例说明即可。 4. 快速排序和堆排序是不稳定的排序方法

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

排序算法时间复杂度比较

排序算法比较 主要容: 1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。 2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。 3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 程序的主要功能: 1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。 算法及时间复杂度 (一)各个排序是算法思想: (1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。 (2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的

关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。 (3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。 (4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。 时间复杂度分析

10000个数据的时间比较: 程序源代码: /********************************************************************************************** package test; public class SortArray { private static final int Min = 1;//生成随机数最小值 private static final int Max = 10000;//生成随机数最大值 private static final int Length = 10000;//生成随机数组长度(测试的朋友建议不要超过40000,不然你要等很久,如果你电脑配置绝对高的情况下你可以再加个0试试) public static void main(String[] args) { System.out.println("数组长度:"+Length+", Min:"+Min+", Max:"+Max); long begin; long end; int arr[] = getArray(Length);

实验 各种排序方法的比较

实验六各种排序方法的比较 一、实验目的 1.通过实验掌握排序的基本概念,对排序的稳定性及排序的时间复杂性有深刻的认识。 2.掌握各种排序方法的基本思想和算法实现。 3.能够灵活地选用某种排序方法解决问题。 二、实验要求 1.认真阅读和掌握本实验的参考程序。 2.保存程序的运行结果,并结合程序进行分析。 三、实验内容 编写一个程序,对所给的数据(程序中给出或通过键盘初始化均可)进行排序,要求尽可能多的选择不同的排序算法,并显示排序前和排序后的结果。 #include #include #define TRUE 1 #define FALSE 0 #define N 10 int a[10] = { 9,27,45,87,17,23,25,92,8,75 }; typedef struct { int key; int info; }RecordNode; typedef struct Sort { int n; //记录个数 RecordNode *record; }SortObject; /*直接插入排序*/ void insertSort(SortObject *pvector) { int i, j; RecordNode temp; for (i = 1; i < pvector->n; i++) { temp = pvector->record[i]; j = i - 1;

while ((temp.key < pvector->record[j].key) && (j >= 0)) { pvector->record[j + 1] = pvector->record[j]; j--; } if (j != (i - 1)) pvector->record[j + 1] = temp; } } /*二分法插入排序*/ void binSort(SortObject * pvector) { int i, j, left, mid, right; RecordNode temp; for (i = 1; i < pvector->n; i++) { temp = pvector->record[i]; left = 0; right = i - 1; while (left <= right) { mid = (left + right) / 2; if (temp.keyrecord[mid].key) right = mid - 1; else left = mid + 1; } for (j = i - 1; j >= left; j--) pvector->record[j + 1] = pvector->record[j]; if (left != i) pvector->record[left] = temp; } } struct Node; typedef struct Node ListNode; struct Node { int key; ListNode *next; }; typedef ListNode * LinkList; void listSort(LinkList * plist) { ListNode *now, *pre, *p, *q, *head; head = *plist; pre = head->next; if (pre == NULL) return;

各种排序法比较

各种排序法的比较 按平均时间将排序分为四类: (1)平方阶(O(n2))排序 一般称为简单排序,例如直接插入、直接选择和冒泡排序; (2)线性对数阶(O(nlgn))排序 如快速、堆和归并排序; (3)O(n1+£)阶排序 £是介于0和1之间的常数,即0<£<1,如希尔排序; (4)线性阶(O(n))排序 如桶、箱和基数排序。 各种排序方法比较: 简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。 影响排序效果的因素: 因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法 应综合考虑下列因素: ①待排序的记录数目n; ②记录的大小(规模); ③关键字的结构及其初始状态; ④对稳定性的要求; ⑤语言工具的条件; ⑥存储结构; ⑦时间和辅助空间复杂度等。 不同条件下,排序方法的选择 (1)若n较小(如n≤50),可采用直接插入或直接选择排序。 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。 (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜; (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。 快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。 若要求排序稳定,则可选用归并排序。从单个记录起进行两两归并,排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

五种排序的算法(包括主函数调用)

#include #define MAX 100 void Quicksort(int d[],int min,int max); void Shellsort(int r[],int n); void Bubblesort(int r[],int n); void StraInsSort(int R[],int n); void Selectsort(int r[],int n); //*************************主函数********************** void main() { int s,ch,n,x,i; int a[MAX]; int p; printf("请输入待排序列中数据的个数:"); scanf("%d",&n); printf("请输入排序前序列:"); for(s=1;s<=n;s++) scanf("%d",&a[s]); { printf("0 is exit,other is continue:"); scanf("%d",&x); while(x) { for(p=1;p<=5;p++) { for(i=1;i<20;i++) printf("%c ",p);printf("\n"); printf("please input your choice(1-5):"); printf("\n1.直接插入排序\t2.希尔排序\t3.冒泡排序\n4.快速排序\t5.直接选择排序\t6.堆排序\n"); for(i=1;i<20;i++) printf("%c ",p); printf("\n"); printf("请选择:"); scanf("%d",&ch); switch(ch) { case 1: printf("\n直接插入排序\n"); StraInsSort(a,n); break;

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

(word完整版)排列组合方法大全,推荐文档

排列组合方法归纳大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少 不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少

常见汉字排序

汉字的数量非常庞大,总数大约九万左右。但常用字才三千多个,即使是常用字,使用频率的差别也很悬殊。国家标准GB2312-80《信息交换用汉字编码字符集*基本集》就是根据这种事实制订的。一级字库为常用字,3755个,二级字库为不常用字,3008个,一、二级字库共有汉字6763个。一级字库的字,使用频率合计达99.7%。即在现代汉语材料中的每一万个汉字中,这些字就会出现9970次以上,其余的所有汉字也不足30次。而最常用的1000个汉字,使用频率在90%以上. 根据国家出版局抽样统计,汉字中最常用字560个,常用字807个,次常用字1033个。三者合计2400个,占一般书刊用字的99%,所以小学生如果认识2400个常用字就能阅读一般书刊。 我国古代的周兴嗣能在一夜之间将1000个不同的常用字编成四言的押韵体《千字文》,既表达了一定的意义,又通俗易懂,和辙押韵,成为历代的识字课本。 最常用的140个汉字(按使用频率从高到低的右序排列): 的一是了我不人在他有这个上们来到时大地为子中你说生国年着就那和要她出也得里后自以会家可下而过天去能对小多然于心学么之都好看起发当没成只如事把还用第样道想作种开美总从无情己面最女但现前些所同日手又行意动方期它头经长儿回位分爱老因很给名法间斯知世什两次使身者被高已亲其进此话常与活正感

(这140个汉字的使用频率之和为50%) 其中: 最常用的5个汉字: 的一是了我 (这5个汉字的使用频率之和为10%) 最常用的17个汉字: 的一是了我不人在他有这个上们来到时 (这17个汉字的使用频率之和为20%) 最常用的42个汉字: 的一是了我不人在他有这个上们来到时大地为子中你说生国年着就那和要她出也得里后自以会 (这42个汉字的使用频率之和为30%) 最常用的79个汉字: 的一是了我不人在他有这个上们来到时大地为子中你说生国年着就那和要她出也得里后自以会家可下而过天去能对小多然于心学么之都好看起发当没成只如事把还用第样道想作种开(这42个汉字的使用频率之和为30%) 使用频率排名141-232的汉字(这92个汉字的频率之和为10%)

数据排序的几种方法c语言实现

数据排序的几种方法(c语言实现) /* 功能:用以下几种方法实现c语言中的常用排序 选择排序 冒泡排序 插入排序 快速排序 堆排序 归并排序 基数排序 希尔排序 */ #include <stdio.h> void select_Sort1(int a[],int n); void select_Sort2(int a[],int n); void bubble_Sort(int a[],int n); void insert_Sort(int a[],int n); void quick_Sort(int a[],int low,int high); int findpos(int a[],int low,int high); int main() { int a[10]; int i; printf("please enter ten int number:\n"); for(i=0;i<10;i++) { scanf("%d",&a[i]); } //select_Sort2(a,10); //bubble_Sort(a,10); //insert_Sort(a,10); quick_Sort(a,0,9); printf("after sorted:\n"); for(i=0;i<10;i++) { printf("%5d",a[i]);

} return 0; } //===========================第一种方法:选择排序法======================================= //用一种较为容易理解的方法实现选择排序 void select_Sort1(int a[],int n) { int i,j,k; //外部循环从小到大,依次找出各位置上的值(最后一个位置上的值除外,因为在循环的过程中各个位置上的值逐渐确定下来,最后一个值自然就确定了) for(i=0;i<n-1;i++) { //内部循环从外部循环指针的下一个位置开始,将后续位置上取到的值逐渐与外部循环所对应的指针上的值进行比较 for(j=i+1;j<n;j++) { if(a[j]<a[i]) { // 找到比该位置上的值小的值就进行一次交换 k=a[i]; a[i]=a[j]; a[j]=k; } } } } //以下方法实现起来效率更高,之所以效率高是因为找到一个比外循环指针所对应值更小的值时没有马上交换而是把位置先记录下来,内循环结束后再交换 void select_Sort2(int a[],int n) { int i,j,k,t; //外部循环从小到大,依次找出各位置上的值(最后一个位置上的值除外,因为在循环的过程中各个位置上的值逐渐确定下来,最后一个值自然就确定了) for(i=0;i<n-1;i++) { //内部循环从外部循环指针的下一个位置开始,将后续位置上取到的值逐渐与外部循环所对应的指针上的值进行比较 k=i;//k的作用是记录内部指针一趟比较下来,哪个位置所对应的值比外指针所对应的值小,将该位置存放到k中,默认情况下k的值是外指针对应位置 for(j=i+1;j<n;j++) {

五种排序算法分析

深圳大学实验报告 课程名称:算法分析与复杂性理论 实验项目名称:实验一排序算法性能分析 学院:计算机与软件学院 专业:软件工程 指导教师:杨烜 报告人:赖辉学号:班级:软工学术型实验时间:2015-10-15 实验报告提交时间:2015-11-24 教务部制

一.实验目的 1.掌握选择排序、冒泡排序、合并排序、快速排序、插入排序算法原理 2.掌握不同排序算法时间效率的经验分析方法,验证理论分析与经验分析的一致性。二.实验步骤与结果 实验总体思路: 根据实验要求,需要用while循环控制用户选择相应算法(选择通过switch实现)或者选择输入0跳出while循环,退出程序。Switch中选择相应的算法后需要通过一个for(int j=0;j<5;j++)循环更改数组大小MAX的值(MAX *= 10),从而控制输入不同问题规模的耗时。再通过一个for(int i=0;i<20;i++)循环控制20组随机数组。为了使得程序输出更加直观,部分数据后面没有输出。相应结果和过程如下所示(代码和结果如下图所示)。 各排序算法的实现及实验结果: 1、随机数产生 代码1: srand((unsigned)time(NULL)); For i=0 to 19 randNum(MAX,array); 当问题规模较小时,生成随机函数randNum()在for循环下运行时间短,每次产生的随机数组都是一样的,将srand((unsigned)time(NULL))语句放在for循环外面,就产生了20组不同的随机数组。

图1、产生20组随机数组 2、选择排序 代码2: for i=0 to n-2 min=i for j= i+1 to n-1 if ele[min]>ele[j] min=j swap(ele[i],ele[min]) //交换元素 图2、选择排序在不同数据规模下排序所消耗的时间3、冒泡排序 代码3: for i= 0 to n-1 for j=0 to n-1-i if a[j]>a[j+1] swap(a[j],a[j+1]) //交换

数据结构中几种常见的排序算法之比较

几种常见的排序算法之比较 2010-06-20 14:04 数据结构课程 摘要: 排序的基本概念以及其算法的种类,介绍几种常见的排序算法的算法:冒泡排序、选择排序、插入排序、归并排序、快速排序、希尔排序的算法和分析它们各自的复杂度,然后以表格的形式,清晰直观的表现出它们的复杂度的不同。在研究学习了之前几种排序算法的基础上,讨论发现一种新的排序算法,并通过了进一步的探索,找到了新的排序算法较之前几种算法的优势与不足。 关键词:排序算法复杂度创新算法 一、引言 排序算法,是计算机编程中的一个常见问题。在日常的数据处理中,面对纷繁的数据,我们也许有成百上千种要求,因此只有当数据经过恰当的排序后,才能更符合用户的要求。因此,在过去的数十载里,程序员们为我们留下了几种经典的排序算法,他们都是智慧的结晶。本文将带领读者探索这些有趣的排序算法,其中包括介绍排序算法的某些基本概念以及几种常见算法,分析这些算法的时间复杂度,同时在最后将介绍我们独创的一种排序方法,以供读者参考评判。 二、几种常见算法的介绍及复杂度分析 1.基本概念 1.1稳定排序(stable sort)和非稳定排序 稳定排序是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,。反之,就是非稳定的排序。 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为 a1,a2,a4,a3,a5, 则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。 1.2内排序( internal sorting )和外排序( external sorting) 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

相关文档
最新文档