PTC热敏电阻和NTC热敏电阻应用及特点

PTC热敏电阻和NTC热敏电阻应用及特点
PTC热敏电阻和NTC热敏电阻应用及特点

PTC热敏电阻和NTC热敏电阻

MZ12A型PTC热敏电阻器主要用于电子镇流器(节能灯、电子变压器、万用表、智能电度表)等的过流过热保护

PTC热敏电阻:有下面几个性能!

灯丝预热用PTC热敏电阻器

1.应用范围:

用于各种荧光灯电子镇流器、电子节能灯中,不必改动线路,将适当的热敏电阻器直接中跨接在灯管的谐振电容器两端,可以变电子镇流器、电子节能灯的硬启动为预热启动,使灯丝的预热时间达0.4~2秒可延长灯管寿命三倍以上。

2.特点:

利用材料PTC特性制作而成,产品体积小、耐电压高、寿命长、正常工作时功耗小。

3.应用原理:

应用PTC热敏电阻器实现预热启动原理如右图所示:刚接通开关时,R t处于常温态,其阻值远远低于C2阻值,电流通过C1,R t自热温度超过居里点温度T c跃入高阻态,其阻值远远高于C2阻值,电流通过C1、C2形成回路导致LC谐振,产生高压点亮灯管。

保险丝型PTC热敏电阻器

1.应用范围:

MZ12A型PTC热敏电阻器主要用于电子镇流器(节能灯、电子变压器、万用表、智能电度表)等的过流过热保护,直接串联在负载电路中,在线路出现异常状况时,能够自动限制过电流或阻断电流,当故障排除后又恢复原态,俗称“万次保险丝”。

2.特点:

·无触点的电路及元器件保护·自动限制过电流

·故障排除后自动恢复·工作时无噪音无火花

·工作可靠、使用方便

3.应用原理:

将PTC热敏电阻器串联在电源回路中,当电路处于正常状态时,流过PTC的电流小于额定电流,PTC处于常态,阻值很小,不会影响电子镇流器(节能灯、变压器、万用表)

等被保护电路的正常工作。当电路电流大大超过额定电流时,PTC陡然发热,阻值骤增至高阻态,从而限制或阻断电流,保护电路不受损坏。电流电流回复正常后,PTC亦自动回复至低阻态,电路恢复正常工作。

在电子镇流器(节能灯、变压器、万用表)等过流保护应用领域,南京时恒凭借其科研和工艺等方面的优势,率先推出了以高耐压(V≥300VAC)为特色的MZ12型产品。

零功耗的预热启动

1.应用范围:

MZ11B系列PTC热敏电阻器主要用于高性能镇流器和节能灯零温升、零功耗的预热启动。

2.应用原理:

MZ11B系列PTC热敏电阻器实际上是一种PTC热敏电阻Rt串联压敏电阻Rv的复合元件。通电时,电压高于Rv压敏电压,Rv处于导通状态,其预热启动过程基本上是由Rt 来独立完成的。灯管启动点亮处于正常工作状态后,电压迅速降低到Rv压敏电压下,Rv 则处于断开状态,使零功耗、零温升得以实现。

MZ11B系列之选型与MZ11A系列基本类似,所不同的是Rv压敏电压应略高于灯管电压。

功率型NTC热敏电阻器

1.产品简介

为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NT C热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型N TC热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。

2.应用范围

适用于转换电源、开关电源、UPS电源、各类电加热器、电子节能灯、电子镇流器、各种电子装置电源电路的保护以及彩色显示像管、白炽灯及其它照明灯具的灯丝保护。

3.特点:

·体积小,功率大,抑制浪涌电流能力强

·反应速度快

·材料常数(B值)大,残余电阻小

·寿命长,可靠性高

·系列全,工作范围宽

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

热敏电阻_热敏电阻工作原理

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值(Ω) 指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

ntc热敏电阻作用 7个常见例子

ntc热敏电阻作用7个常见例子 负温度NTC热敏电阻利用其特性,在N多种场合、N多种产品中发挥重要的作用。随温度的增大、阻值变小;温度下降,阻值变大~ NTC热敏电阻在体温探头的作用 体温探头其温度精度达到±0.1℃。这对NTC热敏电阻的要求是:体积小,高精度,高可靠,良好的耐热循环能力. 档监护仪采用双道体温测量电路,用于重症病人监护方面.它要求一个体温探头能同时提供双道测量温度,以配合监护仪的双道测量电路. 传统的做法,是将两粒NTC热敏电阻并联起来,制作成一个体温探头。但因受其尺寸限制,这种做法不能适应其小型化要求。 一是测量精度更准确,因其两粒芯片所测温度可以作对比,可以更能准确的测量出实际温度。二是可靠性更强,在工作中,即使其中一粒芯片突然失效,另一粒芯片仍可继续工作。 NTC热敏电阻医用植入式传感器 植入式传感器应当体积小,重量轻,并且和身体兼容,同时还要求其功率非常小。更重要的是,它们不能随着时间的推移而衰变。由于这类传感器属于第Ⅲ类医疗器械,因此需要有食品及药物管理局(FDA)的批准才能使用。一般来讲,这类传感器价格非常昂贵,而且需要专家做外科手术进行移植。 NTC热敏电阻和体液相接触的外用传感器 有几类一次性传感器是附在体外使用的,但是它们却是和体液相接触的。比如一次性血压传感器(DSP),(见图5)。这类传感器用于外科手术和重症监护,以便持续地监控病人的血压情况。这是在给病人进行静脉输液(IV)的同时测量

其血压的最理想方式。这类传感器需要每24个小时更换一次,以保证传感器的清洁卫生。这类传感器被连到一个监控器上,以便记录下所有的信息。还有其它几类与药物或是体液相接触的传感器。 NTC热敏电阻 "临时性"插入传感器 这类传感器要求能够通过切口插入体内(典型的方式是通过导管插入)。和植入式传感器相比,这种传感器的危险性不高。这种传感器的应用也很敏感,同样需要食品及药物管理局的批准才能使用。根据外科手术的不同,这些传感器可能会发挥几分钟到几个小时的功效。在理想情况下,这些传感器不需要外部动力进行驱动,但是如果必要的话,也可以通过外部途径进行驱动。 NTC热敏电阻太阳能热水器水温水位传感器 传感器就是一种能够感受水温水位,并且将感受到的水温水位转变成变化的电信号的仪器。在太阳热水器的发展史上,水温水位传感器一直起着举足轻重的作用,热水器的智能化、人性化都与水温水位传感器密不可分,水温水位测控仪更是离不开水温水位传感器,水温水位传感器工作稳定是对整个热水器智能控制的保障。 NTC热敏电阻在电源电路中的作用 NTC电阻串联在交流电路中主要是起"电流保险"作用. 压敏电阻并联在交流侧 电路中主要是起"限制电压超高"作用. 采用NTC抑制开机浪涌的电源设备,不能够频繁的开关机.需要等NTC冷却,恢复至其冷态阻值后,才能再次开机.要不,安装NTC的意义就没有了 NTC热敏电阻在医疗电子体温计中的应用 现在,很多大型医院都采用电子式体温计,这种温度传感器测量时间短、测量精度高、读数方便,并且还具有记忆功能,在临床上使用方面,性能突出。它通常由感温探头、信号处理单元、显示屏、电源四部分构成。感温探头是敏感部件,一般选用一个或几个高精度快速反应的热敏电阻,它直接关系到输出温度的准确性和响应速度;信号处理单元内部有加热和预测两种算法。

家用空调热敏电阻工作原理

家用空调热敏电阻工作原理 深圳威敏通电子科技有限公司 (1).膨胀式温度传感器 膨胀式温度传感器是根据物体热胀冷缩原理制成的。根据膨胀物质的形态又分为固体膨胀 式和液体膨胀式两大类水银温度计是利用水银液体的热胀冷缩性质来测温的,属于液体膨胀式温度计双金属温度计属于固体膨胀式温度计双金属温度计的测温元件是用线膨胀系数相差较大的两种不同金属材料叠焊在一起制成的。由于两个金属片的线膨帐系数不—样当温度升高时,双金属片将向膨胀系数小的一侧弯曲,温升越高,弯曲就越大。图2.1所示为双金属温度计原理图,它是利用双金属片形变位移的大小与温度变化成正比的关系,通过杠杆放大机构带动指针,指小出温度值。同时通过杠杆带动记录指针(笔),在匀速前进的记录纸上自动汜录出所测温度。双金属温度汁结构简单,机械强度大,价格低廉,但其精度低, 量程和使用范围有限。 (2)压力式温度传感器 利用感温物质的压力随温度的变化而变化的性质来测量温度,是压力式温度传感器的基本测温原理。 (3)热电阻式温度传感器 热电阻式温度传感器分为金属热电阻和半导体热敏电阻两类。大多数金属热电阻的阻值随其温度增高而增大,称具有正的温度系数;而半导体热敏电阻的阻值一般随温度升高而减小称具有负的温度系数。由于导体和半导体的电阻阻值随温度变化,因此,测量它们的电阻值,便可测出相应的温度铜热电阻的特点是它的电阻值与温度的关系足线性的,电阻温度系数也比较大,而且材料 容易提纯,价格比较便宜:但它的电阻率低,精度不高,高温时易氧化,化学稳定性差; 所以在温度不高、对传感器体积没有特殊限制时,可以使用铜热电阻。用半导体热敏电阻作温度传感器日趋广泛,半导体热敏电阻分度号有两种:NTC(负温度系

NTC热敏电阻抑制浪涌电流

抑制浪涌电流用NTC热敏电阻器 产品概述 在有电容器,加热器和马达的电子电路中,在电流接通的瞬间,必将产生一个很大的电流,这种浪涌电流作用的时间虽短,但其峰值却很大。在转换电源,开关电源,UPS电源中,这种浪涌电流甚至超过工作电流的100倍以上。因此,必须有效的抑制这种浪涌电流。当电流直接加在功率型NTC热敏电阻器上时,其电阻值就会随着电阻体发热而迅速下降。由于功率型NTC热敏电阻器有一个规定的零功率电阻值,当其串联在电源回路中时,就可以有效地抑制开机浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响。所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌电流,以保护电子设备免遭破坏的最为简便而有效的措施。 主要参数 额定零功率电阻R25(Ω) 最大稳态电流I(A) 最大电流时近似电阻值R(Ω) 时间常数(S) 耗散系数(mW/℃ ) 工作温度范围: -55 ~ +200℃ 抑制浪涌电流用NTC热敏电阻器应用前后对比 负荷--温度特性曲线

应用实例:

温度测量、控制用NTC热敏电阻器 产品概述 NTC热敏电阻器给许多温度测量与控制设备提供实用的,低成本的解决方案,适用于-55 ℃到+300 ℃的温度范围内。 MF58型玻壳精密型 MF58型热敏电阻器采用陶瓷工艺与半导体工艺相结合的工艺技术制作而成,为两端轴向引出线玻璃封装结构。 MF52 E型珠状精密型 MF52 E型热敏电阻器是采用新材料、新工艺生产的小体积的环氧树脂包封型NTC热敏电阻器,具有高精度和快速反应等优点。 主要参数额定零功率电阻值R25 (Ω) R25允许偏差(%) B值(25/50 ℃)/(K) B值允许偏差(%) 耗散系数≥2.0mW/ ℃ 热时间常数≤7S 额定功率≤50mW 工作温度范围: -55 ~+300 ℃ 应用原理及实例 温度测量(惠斯登电桥电路) 温度控制

热敏电阻及其原理应用

热敏电阻及其原理应用 热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。 1简介 热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。[1] 利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为: 因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理. 热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR)。 2特点 ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; ②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃; ③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择; ⑤易加工成复杂的形状,可大批量生产; ⑥稳定性好、过载能力强。 3工作原理 热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用 于丽丽1,王剑华2,殳伟群2 (1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092) 摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。 关键词:热敏电阻器;高精度温度测量;校准 中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03 Application of NTC thermistor in high accurate temperature measurement Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2 (1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China; 2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China) Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors. K ey w ords:thermistor;high2accurate tem perature measurement;calibration 0 引 言 NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。 针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61 2 电阻测量仪表相配合,最后,得到了期待的精度[1]。 1 高精度温度测量系统的研究 1.1 数学模型 热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程 收稿日期:2004-06-27 R=exp(A+ B T +C T2 +D T3 ),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。 1.2 影响测量精度的因素 为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑: (1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建 57  2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

压敏电阻和热敏电阻的作用

压敏电阻和热敏电阻的原理与用途 问题1: NTC电阻串联在交流电路中主要是起什么作用!它是怎样工作!请大侠指点!谢谢! 问题2: 压敏电阻并联在交流侧电路中主要是起什么作用!它是怎样工作!如果 没有以上两个元器件!会造成什么影响!谢谢!! 以下是一些网友针对这个问题的讨论,删除了一些水贴,以及我认为是错误的观点。 -------------------------------------------- NTC电阻串联在交流电路中主要是起“电流保险”作用. 压敏电阻并联在交流侧电路中主要是起“限制电压超高”作用. 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施。 压敏电阻的工作原理:比如一个“标称300V”的压敏电阻在220V的工作中,突然220V上升到310V!这时压敏电阻被击穿,通过很大的电流,熔断了保险丝后,就保护了后面的电路,然后压敏电阻又恢复了原来的状态. 我的故事讲完了. 老人家:^_^按照你说的意思是压敏电阻设计时最好是放在保险管后面咯,那样压敏电阻导通时不会对电网有什么危害吗?而保险管一般都是慢断的! 是NTC没错. 没通电时,NTC的阻值高,一通电霎那,阻值仍高,限制了涌流,随着NTC有电流流过,温度增加,阻值下降到很低,可以忽略. 明白了,但是这样的话,正常工作时,电流小,阻值就小,那么突然来一个浪涌电流,或者电路那段路使得电流增大,那就起不了保护作用了吧,也就是说只能拿来防通电时的浪涌了吗?

热电阻热电偶热敏电阻工作原理

热电阻热电偶热敏电阻工作原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 热电阻材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻种类 (1)精密型热电阻:工业常用热电阻感温元件(电阻体)的结构及特点。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制。 (2)铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点: ①体积小,内部无空气隙,热惯性上,测量滞后小; ②机械性能好、耐振,抗冲击; ③能弯曲,便于安装; ④使用寿命长。 (3)端面热电阻:端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型热电阻:隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 工业上常用金属热电阻 从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系

NTC热敏电阻工作原理

NTC热敏电阻工作原理、参数解释 作者:时间:2010-3-14 5:09:12 ntc负温度系数热敏电阻工作原理 ntc是negative temperature coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓ntc热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。ntc热敏电阻器在室温下的变化范围在10o~1000000欧姆,温度系数-2%~-6.5%。ntc热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 ntc负温度系数热敏电阻专业术语 零功率电阻值 rt(ω) rt指在规定温度 t 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: rt = rn expb(1/t – 1/tn) rt :在温度 t ( k )时的 ntc 热敏电阻阻值。 rn :在额定温度 tn ( k )时的 ntc 热敏电阻阻值。 t :规定温度( k )。 b : nt c 热敏电阻的材料常数,又叫热敏指数。 exp:以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 tn 或额定电阻阻值 rn 的有限范围内才具有一定的精确度,因为材料常数b 本身也是温度 t 的函数。 额定零功率电阻值 r25 (ω) 根据国标规定,额定零功率电阻值是 ntc 热敏电阻在基准温度25 ℃ 时测得的电阻值 r25,这个电阻值就是ntc 热敏电阻的标称电阻值。通常所说 ntc 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) b 值( k )

PTC热敏电阻工作原理

PTC热敏电阻工作原理 PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的增高.PTC热敏电阻本体温度的变化可以由流过PTC热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得. 陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基,掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性.通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的:在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子. 对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻.这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动.而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地增高,呈现出强烈的PTC效应. PTC是一种半导体发热陶瓷,当外界温度降低,PTC的电阻值随之减小,发热量反而会相应增加。 PTC 的工作原理PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度)时,它的电阻值随着温度的升高几乎是呈阶跃式的增高.PTC热敏电阻本体温度的变化可以由流过PTC热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得.陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基,掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性.通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的:在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子.对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的,在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去,因此而产生高的电阻.这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动.而这种效应在高温时,介电常数和极化强度大幅度地降低,导致势垒及电阻大幅度地增高,呈现出强烈的PTC效应. PTC热敏电阻是开发早、种类多、发展较成熟的敏感元器件.PTC 热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(nμn+pμp)因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.PTC热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于- 55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强. PTC热敏电阻 PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或 SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系

怎样应用NTC热敏电阻

NTC元件是负温度系数的热敏电阻 电阻,物质对电流的阻碍作用就叫该物质的电阻。电阻小的物质称为电导体,简称导体。电阻大的物质称为电绝缘体,简称绝缘体。[全文] ,在业余无线电制作中应用较多。下面主要介绍三方面的应用: 1)仪表电路中的温度补偿 在仪表电路中,有很多像线绕电阻 线绕电阻是用镍铬线或锰铜线、康铜线绕在瓷管上制成的,分固定式和可调试两种。线绕电阻的特点是阻值精度极高,工作时噪声小、稳定可靠,能承受高温,在环境温度170℃下仍能正常工作。但它体积大、阻值较低,大多在100KΩ以下。另外,由于结构上的原因,其分布电容和电感系数都比较大,不能再高频电路中使用。这类电阻通常在大功率电路中作降压或负载等用。[全文] 一样用金属丝做的元件。金属丝一般都具有正温度系数,采用负温度系数的NTC热敏电阻 进行补偿,就能抵消由于温度变化所产生的误差。图1是一种温度补偿电路。是将NTC热敏电阻 与电阻 温度系数非常小的锰铜丝电阻并联后再与被补偿的元件串联,达到温度补偿的作用。 图1 NTC热敏电阻 热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。 在仪表温度补偿中的应用 2)TC用在晶体管 晶体管是由三层杂质半导体构成的器件,有三个电极,所以又称为半导体三极管,晶体三极管等,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。[全文] 电路中稳定工作点 图2是三种NTC热敏电阻稳定晶体管工作点的电路。 图2(a)所示为一个简单晶体管电流放大器,在基极回路中接大了一个NTC热"敏电阻RT。在环境温度变化时,线路输出电流也会有变化,加大了NTC后就可自动调整这一级晶体管的集电极直流电流,稳定晶体管的输出增益。 图2用NTC稳定晶体管工作点

最新NTC热敏电阻原理及应用86865

N T C热敏电阻原理及应用86865

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近 理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计 的测量功率测得的电阻值。 仅供学习与交流,如有侵权请联系网站删除谢谢13

电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K ) B 值被定义为: RT1 :温度 T1 ( K )时的零功率电阻值。 仅供学习与交流,如有侵权请联系网站删除谢谢13

热敏电阻的工作原理

热敏电阻的工作原理 热敏电阻是一种敏感元件,根据温度系数的不同可分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。热敏电阻的典型特征是温度敏感性,在不同温度下电阻值不同。正温系数热敏电阻器(PTC)在较高温度下阻值较高,负温系数热敏电阻器在较高温度下阻值较低。它们属于半导体器件。 但需要指出的是,热敏电阻不属于进出口关税项目85.41中的半导体器件。 热敏电阻的主要特点是: 热敏电阻 热敏电阻 ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; ②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~-55℃; ③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度; ④使用方便,电阻值可在0.1~100kΩ间任意选择; ⑤易加工成复杂的形状,可大批量生产; ⑥稳定性好、过载能力强。 2工作原理

热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。 1、ptc效应是一种材料具有ptc(positive temperature coefficient)效应,即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有ptc效应。在这些材料中,ptc效应表现为电阻随温度增加而线性增加,这就是通常所说的线性ptc效应。 2、非线性ptc效应经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性ptc效应,相当多种类型的导电聚合体会呈现出这种效应,如高分子ptc热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。 3、高分子ptc热敏电阻用于过流保护高分子ptc热敏电阻又经常被人们称为自恢复保险丝(下面简称为热敏电阻),由于具有独特的正温度系数电阻特性,因而极为适合用作过流保护器件。热敏电阻的使用方法象普通保险丝一样,是串联在电路中使用。 当电路正常工作时,热敏电阻温度与室温相近、电阻很小,串联在电路中不会阻碍电流通过;而当电路因故障而出现过电流时,热敏电阻由于发热功率增加导致温度上升,当温度超过开关温度(ts,见图1)时,电阻瞬间会剧增,回路中的电流迅速减小到安全值.为热敏电阻对交流电路保护过程中电流的变化示意图。热敏电阻动作后,电路中

NTC热敏电阻、温度传感器产品选型方法与应用.

NTC热敏电阻/温度传感器产品选型方法与应用 NTC是Negative Temperature Coefficient的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以过渡金属氧化物为主要原材料,采用先进陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在100~1000000欧姆,温度系数-2%~-6.5%。禾用这些特性,NTC热敏电阻器/温度传感器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 其阻值随温度变化的特性下: [A]、非线性的温度特性[B]、丫轴为对数坐标时非常接近实际的温度特性正:面方下以虑考要需器感传度/温阻电敏热CTN型选确 、首先明确产品应用功能: 1. 温度测量

2. 温度补偿 3. 浪涌电流抑制 点击了解更多:温度测量、控制用NTC 热敏电阻器/温度传感器―― 工作原理和应用电路温度补偿NTC 热敏电阻器/温度传感器―― 工作原理和应用电路浪涌电流抑制NTC 热敏电阻器/温度传感器―― 工作原理和应用电路 二.按产品应用场合分类: 1. 汽车:VT 系列——汽车温度传感器用热敏电阻 DTV 系列——汽车温度传感器用NTC 热敏芯片 VTS 系列——交通工具温度传感器/温度开关 2. 医疗:MT 系列——医疗设备温度传感器用NTC 热敏电阻 DTM 系列——医疗温度传感器用NTC 热敏芯片 IT 系列——电子温度计NTC 温度传感器 3. 家电:TS 系列——NTC 温度传感器 BT系列一一绝缘引线型NTC温度传感器 4. 通讯:CT 系列——片式负温度系数热敏电阻 AT系列一一非绝缘引线插件NTC热敏电阻 5. 计算机及办公自动化设备: OT 系列——办公自动化NTC 热敏电阻/温度传感器 GT系列一一玻璃封装NTC热敏电阻

热敏电阻的工作原理

热敏电阻的工作原理 热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。 热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能热敏电阻动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。 1、ptc效应是一种材料具有ptc(positive temperature coefficient)效应,即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有ptc效应。在这些材料中,ptc效应表现为电阻随温度增加而线性增加,这就是通常所说的线性ptc效应。 2、非线性ptc效应经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性ptc效应,相当多种类型的导电聚合体会呈现出这种效应,如高分子ptc热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。 3、高分子ptc热敏电阻用于过流保护高分子ptc热敏电阻又经常被人们称为自恢复保险丝(下面简称为热敏电阻),由于具有独特的正温度系数电阻特性,因而极为适合用作过流保护器件。热敏电阻的使用方法象普通保险丝一样,是串联在电路中使用。 4、当电路正常工作时,热敏电阻温度与室温相近、电阻很小,串联在电路中不会阻碍电流通过;而当电路因故障而出现过电流时,热敏电阻由于发热功率增加导致温度上升,当温度超过开关温度(ts,见图1)时,电阻瞬间会剧增,回路中的电流迅速减小到安全值.为热敏电阻对交流电路保护过程中电流的变化示意图。热敏电阻动作后,电路中电流有了大幅度的降低,图中t为热敏电阻的动作时间。由于高分子ptc热敏电阻的可设计性好,可通过改变自身的开关温度(ts)来调节其对温度的敏感程度,因而可同时起到过温保护和过流保护两种作

相关文档
最新文档