向量法证明正弦定理(完整版)

向量法证明正弦定理(完整版)
向量法证明正弦定理(完整版)

向量法证明正弦定理

向量法证明正弦定理

三级

记向量i,使i垂直于a于,△ab三边ab,b,接着得到正弦定理其他步骤

在锐角△ab中,证明asina=bsinb=sin=2r:

任意三角形ab,

4

过三角形ab的顶点a作b边上的高,垂足为d.当d落在边b上时,向量ab与向量ad的夹角为90°-b,向量a与向量ad的夹角为90°-,由于向量ab、向量a在向量ad方向上的射影相等,有数量积的几何意义可知向量ab*向量ad=向量a*向量ad即向量ab的绝对值*向量ad的绝对值*os=向量的a绝对值*向量ad的绝对值*os所以sinb=bsin即bsinb=sin当d落在b的延长线上时,同样可以证得第五篇:

用正弦定理证明三重向量积

用正弦定理证明三重向量积

作者:

光信1002班李立

内容:

通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——?a?b。

首先,根据叉乘的定义,a、b、a?b可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a与b是等价的,所以我们不妨把a、b、a?b放在一个空间直角坐标系中,让a与b处于ox面上,a?b与z轴同向。如草图所示:

其中,向量可以沿着z轴方向与平行于ox平面的方向分解,即:?z?x

将式子带入三重向量积的公式中,发现,化简得:

(a?b)?xab这两个式子等价

现在我们考虑?刚好被a与b反向夹住的情况,其他的角度情况以此类推。

由图易得,?与a、b共面,a与b不共线,不妨设??xa?b,

a,x

?,b,x

?,所以:

在三角形中使用正弦定理,得

a?b)?sin

?sin

?

?b,x?

又因为a?b)??absina,b

所以,解得k=ab,于是解得:

x= bxosb,xaxosa,x

?b?x a?x

由图示和假定的条件,?在a和b方向上的投影皆为负值,所以x,都取负值,

所以,

(a?b)?xab

其他的相对角度关系,以此类推,也能得到相同的答案,所以:?a?b,命题得证。

小结论:

当直观解答有困难时,可以通过分析转化的方法来轻松地解决。

向量法证明正弦定理

附送:

向量积分配律的证明

向量积分配律的证明

·sin.

分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。

下面给出代数方法。我们假定已经知道了:

1)外积的反对称性:

a×b=-b×a.

这由外积的定义是显然的。

2)内积的分配律:

a·=a·b+a·,

·=a·+b·.

这由内积的定义a·b=s|osθ,并揭示这个物理模型的实质,即:

力与位移的数量积。

其次,具体分析平面向量的夹角,向量的数量积、重要性质等概念,并巩固练习。再者,基本概念均简明有效的给出,为之后学生深入学习、探究提供了时间上的保证,从定义出发推导运算律也变得简单易行。随后,从特殊到一般,得出数量积的几何表示。在教师为主导、学生为主体的教学模式中,学习活动进展顺利,学生们都显得游刃有余。在教学过程中,学生对平面向量数量积的定义及运算律的理解有些难度,总的感觉是:

在核心问题上的处理不太容易把握,学生需要较多的时间去探究和体验。

结合多年教学发现学生对数量积的结果是数量重视不够,解题中往往忽略,

?学生容易忽略;书写中符号“?”学生容易省略不写,教学和作业中发现问题教师应时常提醒学生及时纠正,避免重复错误;运算律中消去律和结合律不能乱用,要给学生讲清楚一定不能与实数的运算律混淆,这些地方应反复给学生强调。

最后,在有效落实教学目标的同时,如何让学生的“学”更轻松些,让教师的“教”更顺畅些,使“数量积”的概念形成更具一般性,更能揭示“数量积”的本质内含就显得尤为重要。

四、教法及教学反思

教学过程中采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导

数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。这一切主要是通过课堂教学来实现的,因此,要精于课堂教学设计,并在实践中进行反思和再设计,形成一系列适合学生认知、发展的教学方案。同时,在教学中要注意引导学生不断增强自主性、探索性、合作性和思辨性,促使他们成为学习的主人。而贯彻数形结合思想是克服难点的有效举措.通过例题、练习的分析讲评和学生积极主动的解题实践,运用知识解决问题的能力将得到提高。由于课堂教学准备的较充分,基本能达到预定目标。

教学反思,是教师对自身教学工作的检查与评定,是整理教学中的反馈信息,适时总结经验教训、找出教学的成功与不足的重要过程。因此教学后适时的反思有利于促进教学,以上就是我对本节课的理解和反思。

第四篇:

用正弦定理证明三重向量积

用正弦定理证明三重向量积

作者:

光信1002班李立

内容:

通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——?a?b。

首先,根据叉乘的定义,a、b、a?b可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a与b是等价的,所以我们

不妨把a、b、a?b放在一个空间直角坐标系中,让a与b处于ox面上,a?b与z轴同向。如草图所示:

其中,向量可以沿着z轴方向与平行于ox平面的方向分解,即:?z?x

将式子带入三重向量积的公式中,发现,化简得:

(a?b)?xab这两个式子等价

现在我们考虑?刚好被a与b反向夹住的情况,其他的角度情况以此类推。

由图易得,?与a、b共面,a与b不共线,不妨设??xa?b,

a,x

?,b,x

?,所以:

在三角形中使用正弦定理,得

a?b)?sin

?sin

?

?b,x?

又因为a?b)??absina,b

所以,解得k=ab,于是解得:

x= bxosb,xaxosa,x

?b?x a?x

由图示和假定的条件,?在a和b方向上的投影皆为负值,所以x,都取负值,

所以,

(a?b)?xab

其他的相对角度关系,以此类推,也能得到相同的答案,所以:?a?b,命题得证。

小结论:

当直观解答有困难时,可以通过分析转化的方法来轻松地解决。

第五篇:

两个向量的数量积

8、《两个向量的数量积》说课稿

尊敬的各位评委老师:

大家好!

今天我说课的内容是《两个向量的数量积》。现代教育理论指出学生是教学的主体,教师的教应本着从学生的认知规律出发、以学生活动为主线、在原有认知结构基础上、建构新的知识体系。本节课的教学设计中,我将此理念贯穿于整个教学过程中。下面就从教材分析、教学目标分析、重难点分析、教法分析、学法分析、教学设计、板书设计及教学评价等方面进行说明。

一、教材分析

《两个向量的数量积》是现行人教版高中数学第二册下第九章第5节的内容。在本节之前,同学们已经学习了空间向量的一些知识,包括空间向量的坐标运算、共线向量和共面向量、空间向量基本定律,这些知识是学习本节的基础。

向量概念的引入是数学学习的一个捷径,同时也引入了一种新的解决数学问题的方法:

坐标法,同时也引入了一种新的数学思想:

数形结合的思想。同时,两个向量之间的位置关系可以通过数量积来表示。因此,研究两个向量的数量积是高中数学的一个重点知识。

二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1.基础知识目标:

掌握空间向量夹角和模的概念及表示方法,掌握两个向量数量积的概念、性质、计算方法及运算律;

2.能力训练目标:

掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题。

3.个性品质目标:

训练学生分析问题、解决问题的能力,了解数量积在实际问题中的初步应用。

4.创新素质目标:

培养学生数形结合的思想。

三、重难点分析

教学的重点是两个向量数量积的计算方法及其应用,在此基础上应该让学生理解两个向量数量积的几何意义,这也就是本节课的难点。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我将从教法和学法上进行讲解。

四、教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,采用采用引导式、讲练结合法进行讲解。

五、学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

联想法:

要求学生联想学过的向量知识,特别加深理解数学知识之间的相互渗透性。1

观察分析法:

让学生要学会观察问题,分析问题和解决问题新。

练习巩固法:

让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。

下面,我将具体谈谈这堂课的教学过程。

六、教学程序及设想

七、板书设计

板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编

排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)

以上就是我说课的内容,希望各位老师对本堂课的说课提出宝贵的意见。谢谢。

6

向量积分配律的证明

正弦定理证明

一、正弦定理的几种证明方法
1.利用三角形的高证明正弦定理
(1)当 ? ABC 是锐角三角形时,设边 AB 上的高是 CD,根据锐角三角函数的定义,
有CD ?asinB ,CD ? b sin A 。
C
由此,得
a sin A
b ? sinB
同理可得 ,
c sinC
?
b sin B

b
a
A
B
故有
a
b
sinA ? sinB
c ? sinC .从而这个结论在锐角三角形中成立.
D
(2)当 ? ABC 是钝角三角形时,过点 C 作 AB 边上的高,交 AB 的延长线于点 D, 根据锐角三角函数的定义,有CD ?asin?CBD ?asin?ABC ,CD ? b sin A 。由此,

a sin A
b ? sin?ABC
同理可得 ,
c sinC
b ? sin?ABC
C
故有
a
b
sinA ? sin?ABC
c ? sinC .
b
a
A
由(1)(2)可知,在
?
ABC
中,
a sin
A
?
b sin
B
c ? sinC
成立.
BD
从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即
a
b
c
sinA ? sinB ? sinC .
2.利用三角形面积证明正弦定理
已知△ ABC,设 BC=a, CA=b,AB=c,作 AD⊥BC,垂足为 D. 则 Rt△ ADB
中, sin B ? AD , ∴AD=AB·sinB=csinB.
A
AB
∴S△ ABC= 1 a ? AD ? 1 acsin B . 同理,可证 S△ ABC= 1 absin C ? 1 bcsin A.
2
2
2
2
∴ S△ ABC= 1 absin C ? 1 bcsin A ? 1 acsin B . ∴absinc=bcsinA=acsinB, C
2
2
2
D
B
在等式两端同除以 ABC,可得 sin C ? sin A ? sin B . 即 a ? b ? c .
c
a
b
sin A sin B sin C
3.向量法证明正弦定理
(1)△ ABC 为锐角三角形,过点 A 作单位向量 j 垂直于 AC ,则 j 与 AB 的夹角为
90°-A,j 与 CB 的夹角为 90°-C. 由向量的加法原则可得 AC ? CB ? AB ,
为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量
第1页共5页

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B =,同理可得 sin sin c b C B =, 故有 sin sin a b A B =sin c C =.从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 =∠sin sin a b A ABC , 同理可得 =∠sin sin c b C ABC 故有 =∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中,sin sin a b A B =sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C =. 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C === sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

正弦定理的四种证明方法

正弦定理的四种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

用向量法证明欧拉线问题

b sin A=a sin B, (b co s A)2+(b sin A)2=(c-a co s B)2+ (a sin B)2, ∴a co s B+b co s A=c(射影定理), a sin A = b sin B (正弦定理), b2=c2+a2-2ca co s B(余弦定理). 用向量法证明欧拉线问题 刘步松 (江苏省运河师范学校 221300) 设三角形A B C外心为O,重心为W,垂心为H,则O,W,H三点共线,且 OH = 3 OW ,这便是著名的欧拉线问题.但平面几何证法较麻烦,笔者用向量坐标法去证,感觉过程较为简洁. 证 以外心O为原点,过O平行于B C 的直线为x轴,B C的中垂线为y轴,建立直角坐标系.设A D是B C上的高,并设各点坐 图1 标如下:A(a,b),B (-c,d),C(c,d), H(a,y),则B H= (a+c,y-d),A C =(c-a,d-b),因 为B H⊥A C,有B H ?A C=0,即(a+ c)(c-a)+(y-d)(d-b)=0,解之得y= -a2+c2+bd-d2 -d+b .因为O是外心,所以 OA = OB = O C ,即a2+b2=(-c)2+ d2=c2+d2,从而a2-c2=d2-b2,代入y的表达式,求得y=b+2d,即H的坐标是(a,b+ 2d).从H及A,B,C的坐标可以发现,O H = OA+OB+O C.又由重心定理OW= 1 3 (OA+OB+O C),从而有H,W,O共线,并 有 O H =3 OW .证毕. 构造法解竞赛题初探 胡国生 (江苏省洪泽县中学 223100) 大多数竞赛试题设计新颖,构思巧妙,综 合性强,注重对学生的思维能力的考查,因此 难度较大,不少学生无从下手.本文在用构造 法解竞赛题方面做一些粗浅探讨,希望对数 学爱好者有所启迪. 1 构造特殊图形 例1 正数a,b,c,A,B,C满足a+A=b +B=c+C=k,求证:aB+bC+c A

数学正弦定理证明如何证明

数学正弦定理证明如何证明 正弦定理该怎么证明呢?关于它们的证明方法之怎样的呢?下面 就是给大家的正弦定理证明方法内容,希望大家喜欢。 用三角形外接圆 证明:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D.连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以 c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 ∴a/sinA=b/sinB=c/sinC=2R 用直角三角形 证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中(略)。 用三角形面积公式 证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得 b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可 以得到: 2RsinD=BC(R为三角形外接圆半径) 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 猜你感兴趣: 1.高中数学定理证明 2.承兑延期证明

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

用向量法证明正弦定理教学设计

用向量法证明正弦定理教学设计 一、 教学目标 1、知识与技能:掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。 2、过程与方法:让学生通过向量方法证明正弦定理,了解知识之间的联系,让学生在应用定理解决问题的过程中更深入地理解定理及其作用。 3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦。 二、教学重难点分析 重点:正弦定理的向量证明过程并运用正弦定理解决一些简单的三角形度量问 题。 难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形 时解的个数的判断。 三、教学过程 1.借助Rt △ABC ,中找出边角关系。 在Rt ?ABC 中,设BC=a, AC=b, AB=c, 根据锐角三角函数中正弦函数的定义, 有sin A= ,sinB= ,sinC= , 则在这三个式子中,能得到c= = = 从而在直角三角 形ABC 中,sin sin sin a b c A B C == 2.那么在任意三角形中这个结论是否成立?通过向量进行证明。 过点A 作单位向量j AC ⊥ , 由向量的加法可得 AB AC CB =+ 则 ()j AB j AC CB ?=?+ ∴j AB j AC j CB ?=?+? ()()00cos 900cos 90-=+- j AB A j CB C ∴sin sin =c A a C ,即sin sin = a c A C 同理,过点C 作⊥ j BC ,可得 s i n s i n =b c B C 从而 s i n s i n a b A B = sin c C = 从上面的研探过程,可得以下定理 3.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = 4.总结正弦定理适用范围 范围a :已知三角形的两边及其中一边的对角,求另外一边的对角 范围b :已知三角形两角一边求出另外一边 5.定理变形: a:b:c=sinA:sinB:sinC C A B

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

向量法证明不等式(完整版)

向量法证明不等式 向量法证明不等式 第一篇: 向量法证明不等式 向量法证明不等式 高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n= 2,3时的情况. 设a,b是欧氏空间的两向量,且a=。 因此,原不等式等价于证明a?b?a?b,其中a?b,向量 a和b不可能同向,不取等号。 二利用a?b?ab证明不等式 2222例2 、已知实数mnx满足m?n?a,x??b (a?b),求mx?n得最大值 ?解析: 构造向量a?0,求证: 4a0矛盾, 故a=0时,4a0, ∴存在m,当-1 第五篇: 不等式的证明.

3.在横线上填写恰当的符号 2x 2若x∈r,且x≠ 1,那么,1?x. 若0<a< 1,那么-a). 1413 若a>0,a≠ 1,那么loga_____loga. 当x≥1时,那么x5+x4+x32+x+ 1. 4.设p=a2b2+ 5,q=2ab-a2-4a,若p>q,则实数a,b满足的条件为________. 5.设a>0,b>0,则下面两式的大小关系为2lg_____lg+lg.提升你的能力!基础巩固题 1.设0<a< 2,下列不等式成立的是 1111?1?a2?1?a2?1?a21?a2?1?ab.1?a1?a a.1?a .1?a2?11111?a2?1?a21?a21?a1?a1?ad.1?a 2.若a<b<0,则下列不等式关系中不能成立的是 11?a.ab 11?b.a?ba .|a|>|b| d.a2>b2

正弦定理的几种证明方法

正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定 义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC , 同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C = . 1’用知识的最近生长点来证明: | 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD?AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == ` a b D A ( C A B ~ D b a

正弦定理的三种证明

A B C c b a C B A D a b c A B C D a b △ABC 中的三个内角∠A ,∠B ,∠C 的对边,分别用,,a b c 表示. 正弦定理:在三角形中,各边的长和它所对角的正弦的比相等,即 = = sin sin sin a b c A B C 证明:按照三角形的种类,分三种情形证明之. (1) 在R t A B C ?中,如图1-1 sin = a A c ,sin = b B c 因此, = =sin sin a b c A B 有因为sin =1C ,所以 = = sin sin sin a b c A B C (2)在锐角△ABC 中,如图1-2 作C D AB ⊥于点D ,有sin =C D A b ,sin = C D B a , 因此,sin =sin b A a B ,即=sin sin a b A B 同理可证: = sin sin a c A C ,故 = = sin sin sin a b c A B C . (3)在钝角△ABC 中,如图1-3 作C D AB ⊥,交A B 的延长线于点D ,则 sin = C D A b ,sin =sin = C D A B C C B D a ∠ 因此,sin =sin b A a B ,即= sin sin a b A B 同理可证: = sin sin b c B C 故==sin sin sin a b c A B C 综上所述,在任意的三角形中,正弦定理总是成立.

B A C B 证明:如图所示,圆O 是△ABC 的外接圆,半径为R 连接A O 并延长,交圆O 于点D ,连接C D , 易知,=90ACD ∠ ,=B D ∠∠ sin = =2A C b D A D R ,即sin = 2b B R 因此 =2sin b R B 同理,延长,BO CO , 可证= =2sin sin a c R A C 故===2sin sin sin a b c R A B C 证明:过点B 作单位向量j BC ⊥ ,那么就有 j A C j A B j B C =+ cos(90)cos(90)0b C c B ?+=++ sin b C ?-=-sin sin b c B C ? =, 同理有sin sin a b A B =。 故 = = sin sin sin a b c A B C 【小技巧】 根据几何图形确定向量夹角的方法: 如果两个向量所在之间直线相交,或通过平移一个向量而相交,那么 (1) 向量夹角为锐角,很容易判断; (2) 向量夹角为钝角时,可以先判断锐角,再取补角 例如: 确定向量j 与向量AB 的夹角时,由于是钝角, 先确定向量j 与向量BA 的夹角为90B - ,再求补角,即为90B + 确定向量j 与向量A C 的夹角时,先平移j ,同上可得,夹角为90C +

用正弦定理证明三重向量积

用正弦定理证明三重向量积 作者:光信1002班 李立 内容:通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——b )()b ()(a c a c c b a ?+?-=??。 首先,根据叉乘的定义,a 、b 、b a ?可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a 与b 是等价的,所以我们不妨把a 、b 、b a ?放在一个空间直角坐标系中,让a 与b 处于oxy 面上,b a ?与z 轴同向。如草图所示: 其中,向量c 可以沿着z 轴方向与平行于oxy 平面的方向分解,即: xy z c c c += 将式子带入三重向量积的公式中,发现,化简得: b ) c (a )(c b a xy xy ??+?-=??a b c xy )( 这两个式子等价 现在我们考虑c b a ??)(刚好被a 与b 反向夹住的情况,其他的角度情况以此类推。

由图易得,c b a ??)(与a 、b 共面,a 与b 不共线,不妨设yb xa c b a +=??)(,)2 ,0(,),,2(c ,π ππ??xy xy c b a ,所以: 在三角形中使用正弦定理,得 b a Sin c b a k c a Sin b y c b Sin a x xy xy ,c b a ]2 ,[],2[]b a,-Sin[c b a =??=-=-= ??)(又因为)(πππ 所以,解得k=c b a , 于是解得: xy xy xy c b c b Cos c ?=,b =x xy xy xy c a c a Cos c a y ?-=-=, 由图示和假定的条件,c b a ??)(在a 和b 方向上的投影皆为负值,所以x ,y 都取负值, 所以, b ) c (a )(c b a xy xy ??+?-=??a b c xy )( 其他的相对角度关系,以此类推,也能得到相同的答案,所以: b )()()(a c a b c c b a ?+?-=??,命题得证。 小结论:当直观解答有困难时,可以通过分析转化的方法来轻松地解决。

《正弦定理的发现与证明教学方案设计

《正弦定理的发现与证明》微课教学设计 教学背景: 本节课是人教版必修5第二章解三角形的第一节课的内容.“正弦定理”是初中“解直角三角形”内容的直接延伸,进一步揭示了任意三角形的边与角之间的客观规律,是三角函数知识和平面向量知识在三角形中的交汇运用,也是解决实际生活中三角形问题的重要工具,具有广泛的应用价值.对于定理的学习,在以往的教学中发现大部分学生只关注定理的内容和应用,而根本不知道定理是如何证明的.本节课分两课时,本次微课是第一课时,主要任务是引入并证明正弦定理,而定理的应用放到下一节课. 学情分析: 学生学习本节课以前,已经掌握了如何解直角三角形,并学习了平面几何、三角函数、三角恒等变换、向量等知识,有一定的观察分析、解决问题的能力.但学生对前后知识间的联系、理解、以及综合应用所学知识上还有所欠缺,思维也不够缜密.尤其向量、三角函数知识学过的时间较长,学生不容易把三角和向量自然的连接在一起. 教学目标: 知识与技能:通过对三角形边长和角度关系的探索,发现并证明正弦定理. 过程与方法:经历完整的正弦定理的发现和获得过程,让学生体会分类讨论、化归、类比、猜想以及由特殊到一般等数学思想方法,提高解决问题的能力. 情感态度与价值观:通过利用向量证明正弦定理,了解向量的工具性,体会知识的内在联系,体会事物之间相互联系与辩证统一. 教学重点:正弦定理的形成和获得过程; 教学难点:正弦定理的证明方法. 教学方法: 采用探究式教学模式,在教师的启发引导下,以“正弦定理的发现”为基本探究内容,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化.借助多媒体和几何画板,激发学生学习的兴趣,设计符合学生知识水平和学习心理的教学,鼓励学生大胆猜想,积极探索. 学法分析: 指导学生掌握“观察——猜想——证明——应用”这一思维方法,将自己所学知识应用于对任意三角形性质的探究.增强学生由特殊到一般的数学思维能力,形成实事求是的科学态度. 教学过程: 一、展示图片,引出课题:

正弦定理的证明

正弦定理的证明 (方法一)可分为锐角三角形和钝角三角形两种情况:当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B = 同理可得sin sin c b C B = 从而 sin sin a b A B = sin c C = 思考:是否可以用其它方法证明这一等式?由于涉及边长问题, 从而可以考虑用向量来研究这个问题。 (方法二)利用向量证明 如图,在?ABC 中,过点A 作一个单位向量j ,使j AC ⊥ 。 当BAC ∠为钝角或直角时,同理可证上述结论。 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin a b A B = sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;

(2) sin sin a b A B = sin c C = 等价于 sin sin a b A B = , sin sin c b C B = , sin a A = sin c C 下面还介绍几种证明的方法,供感兴趣同学探索。 (方法三)利用复数证明 如图,如图2,建立平面直角坐标系.在复平面内,过点A 作BC 的平行线,过点C 作AB 的平行线,交于点D . 根据复数相等的定义,实部等于实部,虚部等于虚部.可以得出 (方法四)利用?ABC 的外接圆证明Ⅰ 如图,O Θ是?ABC 的外接圆,设半径为R ,分 别连结OA 、 OB 、OC ,过点 O 作,OD BC ⊥垂足为D 。 证明: (方法五)利用?ABC 的外接圆证明Ⅱ 如图,O Θ是?ABC 的外接圆,设半径为R ,连结BO 并延长,交 O 于点D ,连结AD 。

正弦定理的5种证明方法

正弦定理的5种证明方法 在⊿ABC 中,角A 、B 、C 的对边分别为,则这就是正弦定a b c 、、,sin sin sin a b c A B C ==理. 在这个定理的证明过程中蕴涵着丰富的几何意义.为了简单,仅以锐角三角形为例作简要说明.直角三角形的情形非常简单, 钝角三角形的情形与锐角三角形类似.证法一 三角形高法 是⊿ABC 的边上的高; sin ,sin a B b A c 是⊿ABC 的边上的高; sin ,sin a C c A b 是⊿ABC 的边上的高. sin ,sin b C c B a 根据这个几何意义,定理证明如下: 作锐角三角形ABC 的高CD ,则CD=. sin sin a B b A =所以 ,同理.sin sin a b A B =sin sin b c B C =因此.sin sin sin a b c A B C == 证法二 三角形外接圆法 是⊿ABC 的外接圆直径. 根据这个几何意义,定理证明如下:,,sin sin sin a b c A B C 作锐角三角形ABC 的外接圆直径CD ,连结DB .根据同弧 所对的圆周角相等及直径所对的圆周角是直角得, ∠A=∠D, ∠DBC=90°,(为⊿ABC 的外接圆半2CD R =R 径). 所以,所以.sin sin 2CB a A D CD R == =2sin a R A =同理.2,sin b R B =2sin c R C =因此.2sin sin sin a b c R A B C ===

证法三 三角形面积法 是三角形ABC 的面积.1sin ,2ab C 1sin ,2bc A 1sin 2 ac B 根据这个几何意义,定理证明如下: 作锐角三角形ABC 的高CD ,则CD=. sin a B 所以三角形ABC 的面积.11sin 22 S AB CD ac B = = 同理 所以 1sin ,2S ab C =1sin ,2S bc A =1sin 2bc A =1sin 2ac B 1sin ,2 ab C =同除以,再取倒数有.12abc sin sin sin a b c A B C ==证法四 向量的数量积法 把变形为.sin ,sin a B b A cos(),cos()2 2a B b A ππ --则在锐角三角形ABC 中,作高CD,则分别是向量cos(),cos()22a CD B b CD A ππ-- 与向量的数量积.,CB CA CD 利用这个几何意义,定理证明如下: 作锐角三角形ABC 的高CD .因为=,所以0==(), AB CB CA - AB ?CD CB CA - ?CD 所以,所以,CB CD CA CD ?=? cos()cos()22 a CD B b CD A ππ-=- 即sin sin . a B b A =所以 ,同理.sin sin a b A B =sin sin b c B C =因此.sin sin sin a b c A B C ==证法五 如果想避开分类讨论,可以把三角形放在平面直角坐标系中, 利用坐标法.  证明如下:  以C 为原点,以射线CA 为轴的正半轴建立平面直角坐标系, x )

向量证明正弦定理

向量证明正弦定理 向量证明正弦定理表述:设三面角∠P-ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。 目录 1证明2全向量证明 证明 过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。另外,Sin∠CPA=AN/AP,Sin ∠APB=AM/AP。则Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。 全向量证明 如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C 由图1,AC+CB=AB(向量符号打不出) 在向量等式两边同乘向量j,得· j·AC+CB=j·AB ∴│j││AC│cos90°+│j││CB│cos(90°-C) =│j││AB│cos(90°-A)

∴asinC=csinA ∴a/sinA=c/sinC 同理,过点C作与向量CB垂直的单位向量j,可得 c/sinC=b/sinB ∴a/sinA=b/sinB=c/sinC 2步骤1 记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c) =i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A) =-asinC+csinA=0 接着得到正弦定理 其他 步骤2. 在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin C D b A =。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin C D b A = 。由此, 得 = ∠sin sin a b A ABC , 同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos A D c A = sin sin cos sin tan sin cos B D c A c A C D C C C C C = = = sin cos (sin cos sin cos ) sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ = = a b D A B C A B C D b a

《用向量证明正余弦定理教学设计》

用向量证明正余弦定理教学设计 一、学习目标 1、握余弦定理及推论,并会初步运用余弦定理及推论解三角形。 2、通过对三角形边角关系的探究,能证明余弦定理,了解用向量方法证明余弦定理。 3、在发现和证明余弦定理中,通过联想、类比、转化等思想方法比较证明余弦定理的不同方法,从而培养发散思维。 4、能用余弦定理解决生活中的实际问题,可以培养学习数学的兴趣,进一步认识到数学是有用的。 二、教学分析 为了将学生从繁琐的计算中解脱出来,将精力放在对定理的证明和运用上,所以本节中复杂的计算借助计算器来完成。当使用计算器时,约定当计算器所得的三角函数值是准确数时用等号,当取其近似值时,相应的运算采用约等号。但一般的代数运算结果按通常的运算规则,是近似值时用约等号。 三、教学过程设计 1、教学基本流程: ①从一道生活中的实际问题的解决引入问题,如何用已知的两条边及其所夹的角来表示第三条边。 ②余弦定理的证明:启发学生从不同的角度得到余弦定理的证明,或引导学生自己探索获得定理的证明。 ③应用余弦定理解斜三角形。 2、教学情景: ①创设情境,提出问题 问题1:现有卷尺和测角仪两种工具,请你设计合理的方案,来测量岛边界上两点的最大距离(【设计意图】:来源于生活中的问题能激发学生的学习兴趣,提高学习积极性。让学生进一步体会到数学来源于生活,数学服务于生活。 师生活动:教师可以采取小组合作的形式,让学生设计方案尝试解决。 【设计意图】给学生足够的空间和展示的平台,充分发挥学生的主体地位。 ②求异探新,证明定理 问题2:在△ABC中,∠C = 90°,则用勾股定理就可以得到c2=a2+b2。 【设计意图】:引导学生从最简单入手,从而通过添加辅助线构造直角三角形。 师生活动:引导学生从特殊入手,用已有的初中所学的平面几何的有关知识来研究这一问题,从而寻找出这些量之间存在的某种定量关系。 【设计意图】:首先肯定学生成果,进一步的追问以上思路是否完整,可以使学生的思维更加严密。

正弦定理证明

正弦定理的证明 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b = sin c = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == 推论: sin sin b c B C = a b D A B C A B C D b a

相关文档
最新文档