2014高考导数压轴题终极解答60930

2014高考导数压轴题终极解答60930
2014高考导数压轴题终极解答60930

导数解答题专项

目录

一、导数单调性、极值、最值的直接应用(3)

二、交点及根的分布(7)

三、不等式证明(8)

(一)作差证明不等式

(二)变形构造函数证明不等式

(三)替换构造不等式证明不等式

四、不等式恒成立求字母范围(13)

(一)恒成立之最值的直接应用

(二)恒成立之分离常数

(三)恒成立之讨论字母范围

五、函数及导数性质的综合运用(16)

六、导数应用题(20)

七、导数结合三角函数(21)

书中常用结论:

⑴sin ,(0,)x x x π<∈,变形即为sin 1x

x

<, 其几何意义为sin ,(0,)y x x π=∈上的的点及原点连线斜率小于1.

⑵1x e x >+ ⑶ln(1)x x >+

⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用

1. (切线)设函数a x x f -=2)(.

(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;

(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 及x 轴交于点)0,(2x A 求证:a x x >>21.

2. (2009天津理20,极值比较讨论)

已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2

3

a ≠时,求函数()f x 的单调区间及极值.

3. 已知函数2

21()2,()3ln .2

f x x ax

g x a x b =

+=+ ⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值;

⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值范围。

4. (最值,按区间端点讨论)

已知函数f (x )=ln x -a x

. (1)当a>0时,判断f (x )在定义域上的单调性;

(2)若f (x )在[1,e ]上的最小值为3

2

,求a 的值.

5. (最值直接应用)

已知函数)1ln(2

1)(2

x ax x x f +--

=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;

(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.

6. (2010北京理数18)

已知函数()f x =ln (1+x )-x +2

2

x x (k ≥0). (Ⅰ)当k =2时,求曲线y =()f x 在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间.

7. (2010山东文21,单调性)

已知函数1()ln 1()a

f x x ax a R x

-=-+

-∈ ⑴当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;

⑵当1

2

a ≤时,讨论()f x 的单调性

8. (是一道设计巧妙的好题,同时用到e 底指、对数,需要构造函数,证存在且唯一时结合零

点存在性定理不好想,⑴⑵联系紧密) 已知函数()ln ,().x

f x x

g x e == ⑴若函数φ (x ) = f (x )-

1

1

x x ,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 及曲线y =g (x )相切.

9. (最值应用,转换变量)

设函数221

()(2)ln (0)ax f x a x a x

+=-+<.

(1)讨论函数()f x 在定义域内的单调性;

(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.

10. (最值应用)

已知二次函数()g x 对x R ?∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设函数

19

()()ln 28

f x

g x m x =+++(m R ∈,0x >).

(Ⅰ)求()g x 的表达式;

(Ⅱ)若x R +?∈,使()0f x ≤成立,求实数m 的取值范围;

(Ⅲ)设1m e <≤,()()(1)H x f x m x =-+,求证:对于12[1,]x x m ?∈,,恒有

12|()()|1H x H x -<.

11. 设3x =是函数()()

()23,x

f x x ax b e x R -=++∈的一个极值点.

(1)求a 及b 的关系式(用a 表示b ),并求()f x 的单调区间;

(2)设()2

250,4x

a g x a e ??>=+

???

,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.

12. 2()()()x

f x x ax b e x R =++∈. (1)若2,2a b ==-,求函数()f x 的极值;

(2)若1x =是函数()f x 的一个极值点,试求出a 关于b 的关系式(用a 表示b ),并确

定()f x 的单调区间;

(3)在(2)的条件下,设0a >,函数24()(14)x g x a e +=+.若存在]4,0[,21∈λλ使得

1|)()(|21<-λλf f 成立,求a 的取值范围.

.

13. (2010山东,两边分求,最小值及最大值) 已知函数1()ln 1a

f x x ax x

-=-+-()a ∈R . ⑴当1

2

a ≤

时,讨论()f x 的单调性; ⑵设2()2 4.g x x bx =-+当1

4

a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,

求实数b 取值范围.

.

14. 设函数11ln )(--+

-=x

a

ax x x f . (Ⅰ)当1=a 时,过原点的直线及函数)(x f 的图象相切于点P ,求点P 的坐标; (Ⅱ)当时,求函数)(x f 的单调区间;

(Ⅲ)当时,设函数,若对于e x ,01(∈

?],∈?2x [0,1] 使)(1x f ≥)(2x g 成立,求实数b 的取值范围.(e 是自然对数的底,13+<

e )

15. (2010山东,两边分求,最小值及最大值) 已知函数2()ln ,()3f x x x g x x ax ==-+-. ⑴求()f x 在[,2](0)t t t +>上的最小值;

⑵若存在1,x e e ??∈????

(e 是常数,e =2.71828???)使不等式2()()f x g x ≥成立,求实数a 的取

值范围;

⑶证明对一切(0,),x ∈+∞都有12

ln x x e ex

>-成立.

16. (最值应用) 设函数()2ln q f x px x x =-

-,且()2p

f e qe e

=--,其中e 是自然对数的底数. ⑴求p 及q 的关系;

⑵若()f x 在其定义域内为单调函数,求p 的取值范围;

⑶设2()e

g x x

=

,若在[]1,e 上至少存在一点0x ,使得0()f x >0()g x 成立,求实数p 的取值范围.

17. (2011湖南文,第2问难,单调性及极值,好题) 设函数1

()ln ().f x x a x a R x =-

-∈

⑴讨论函数()f x 的单调性;

⑵若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.

18. (构造函数,好,较难) 已知函数2

1()ln (1)(0)2

f x x ax a x a R a =-

+-∈≠,. ⑴求函数()f x 的单调增区间;

⑵记函数()F x 的图象为曲线C ,设点1122(,)(,)A x y B x y 、是曲线C 上两个不同点,如果曲线C 上存在点00(,)M x y ,使得:

①;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在中值相依切线,请说明理由.

19. (2011天津理19,综合应用)

已知0a >,函数()2

ln f x x ax =-,0x >.(()f x 的图象连续)

⑴求()f x 的单调区间;

⑵若存在属于区间[]1,3的,αβ,且1βα-≥,使()()f

f αβ=,证明:

ln 3ln 2ln 2

53

a -≤≤.

20. (恒成立,直接利用最值)

已知函数2()ln(1), 0f x ax x ax a =++->,

⑴若2

1

=

x 是函数)(x f 的一个极值点,求a ; ⑵讨论函数)(x f 的单调区间;

⑶若对于任意的[1,2]a ∈,不等式()f x m ≤在1[,1]2

上恒成立,求m 的取值范围.

21. (最值及图象特征应用)

设R a ∈,函数e a ax e x f x

)(1(2

)(2++=-为自然对数的底数).

⑴判断)(x f 的单调性;

⑵若]2,1[1

)(2∈>x e

x f 在上恒成立,求a 的取值范围.

22. (单调性)

已知()f x =ln(x +2)-x 2+bx +c ⑴若函数()f x 在点(1,y )处的切线及直线3x +7y +2=0垂直,且f (-1)=0,求函数()f x 在区间[0,3]上的最小值;

⑵若()f x 在区间[0,m ]上单调,求b 的取值范围.

23. (单调性,用到二阶导数的技巧) 已知函数x x f ln )(= ⑴若)()()(R a x

a

x f x F ∈+=,求)(x F 的极大值;

⑵若kx x f x G -=2)]([)(在定义域内单调递减,求满足此条件的实数k 的取值范围.

二、交点及根的分布

24. (2008四川22,交点个数及根的分布)

已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点. ⑴求a ;

⑵求函数()f x 的单调区间;

⑶若直线y b =及函数()y f x =的图像有3个交点,求b 的取值范围.

25. 已知函数()3

2

f x x ax bx c =-+++在(),0-∞上是减函数,在()0,1上是增函数,函数

()f x 在R 上有三个零点. (1)求b 的值;

(2)若1是其中一个零点,求()2f 的取值范围; (3)若()()'

213ln a g x f x x x ==++,,试问过点(2,5)可作多少条直线及曲线y=g(x )

相切?请说明理由.

26. (交点个数及根的分布)

已知函数2()8,()6ln .

f x x x

g x x m =-+=+

⑴求()f x 在区间[],1t t +上的最大值();h t

⑵是否存在实数,m 使得()y f x =的图像及()y g x =的图像有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。

27. (交点个数及根的分布) 已知函数.2

3)32ln()(2x x x f -+=

⑴求f (x )在[0,1]上的极值;

⑵若对任意0]3)(ln[|ln |],3

1,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;

⑶若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围.

28. (2009宁夏,利用根的分布)

已知函数32()(3)x f x x x ax b e -=+++ ⑴如3a b ==-,求()f x 的单调区间;

⑵若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明:βα-<6. 6.a <-于是 6.

βα->29. (2009天津文,利用根的分布讨论)

设函数()()()3

22113

f x x x m x x =-

++-∈R ,其中0m > ⑴当1m =时,求曲线()y f x =在点()()1,1f 处的切线的斜率

⑵求函数()f x 的单调区间及极值

⑶已知函数()f x 有三个互不相同的零点120x x 、、,且12x x <,若对任意的

[]()()12,,1x x x f x f ∈>恒成立,求m 的取值范围.

30. (2007全国II 理22,转换变量后为根的分布) 已知函数3()f x x x =-.

(1)求曲线()y f x =在点(())M t f t ,处的切线方程;

(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<< .

31. 已知函数()()3

2

3,f x ax bx x a b R =+-∈在点()()

1,1f 处的切线方程为20y +=.

⑴求函数()f x 的解析式;

⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;

⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.

32. (2011省模,利用⑴的结论,转化成根的分布分题)

已知a ∈R ,函数()ln 1,()(ln 1),x a

f x x

g x x e x x

=

+-=-+(其中 2.718e ≈) (I )求函数()f x 在区间(]0,e 上的最小值;

(II )是否存在实数(]00,x e ∈,使曲线()y g x =在点0x x =处的切线及y 轴垂直?若存在,求出0x 的值;若不存在,请说明理由。

33. 已知函数x x f =)(,函数x x f x g sin )()(+=λ是区间[-1,1]上的减函数. (I )求λ的最大值;

(II )若]1,1[1)(2-∈++

(Ⅲ)讨论关于x 的方程

m ex x x f x

+-=2)

(ln 2的根的个数. 三、不等式证明

作差证明不等式

34. (2010湖南,最值、作差构造函数) 已知函数x x x f -+=)1ln()(. (1)求函数)(x f 的单调递减区间;

(2)若1->x ,求证:1

1

1+-x ≤)1ln(+x ≤x .

35. (2007湖北20,转换变量,作差构造函数,较容易) 已知定义在正实数集上的函数2

1()22

f x x ax =

+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. ⑴用a 表示b ,并求b 的最大值; ⑵求证:当0x >时,()()f x g x ≥.

36. (2009全国II 理21,字母替换,构造函数)

设函数()()2

ln 1f x x a x =++有两个极值点12x x 、,且12x x <

⑴求a 的取值范围,并讨论()f x 的单调性; ⑵证明:()212ln 2

4

f x ->

变形构造函数证明不等式

37. (变形构造新函数,一次) 已知函数()(1)ln f x a x ax =+-. ⑴试讨论()f x 在定义域内的单调性; ⑵当a <-1时,证明:12,(0,1)x x ?∈,

1212|()()|

1||

f x f x x x ->-.求实数m 的取值范围.

38. (2011辽宁理21,变形构造函数,二次) 已知函数1ln )1()(2+++=ax x a x f . ⑴讨论函数)(x f 的单调性;

⑵设1-

39. (2010辽宁文21,构造变形,二次) 已知函数2()(1)ln 1f x a x ax =+++. ⑴讨论函数()f x 的单调性;

⑵设2a -≤,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x --≥.

40. (辽宁,变形构造,二次)

已知函数f (x )=

2

1x 2

-ax +(a -1)ln x ,1a >. (1)讨论函数()f x 的单调性;

(2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有

1212

()()

1f x f x x x ->--.

41. 已知函数()1ln (0).f x x a x a =--< (1)确定函数()y f x =的单调性;

(2)若对任意(]12,0,1x x ∈,且12x x ≠,都有1212

11

|()()|4|

|f x f x x x -<-,求实数a 的取值范围。

42. (变形构造)

已知二次函数()2

f x ax bx c =++和“伪二次函数”()2

g x ax =+ln bx c x +(a 、b 、

,c R ∈0abc ≠),

(I)证明:只要0a <,无论b 取何值,函数()g x 在定义域内不可能总为增函数; (II)在二次函数()2

f x ax bx c =++图象上任意取不同两点1122(,),(,)A x y B x y ,线段AB 中

点的横坐标为0x ,记直线AB 的斜率为k , (i)求证:0()k f x '=;

(ii)对于“伪二次函数”()2

ln g x ax bx c x =++,是否有①同样的性质?证明你的结论.

43. (变形构造,第2问用到均值不等式)

已知定义在正实数集上的函数f(x)=x2+4ax +1,g(x)=6a2lnx +2b +1,其中a >0.

⑴设两曲线y =f(x),y =g(x)有公共点,且在该点处的切线相同,用a 表示b ,并求b 的最大值; ⑵设h(x)=f(x)+g(x)-8x ,证明:若a ≥-1,则h(x)在(0,+∞)上单调递增; ⑶设F(x)=f(x)+g(x),求证:对任意x1,x2∈(0,+∞),x1<x2有>8.

44. 已知函数1

)(+=x a

x ?,a 为正常数.

⑴若)(ln )(x x x f ?+=,且a 2

9

=,求函数)(x f 的单调增区间;

⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.

⑶若)(ln )(x x x g ?+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有

1)

()(1

212-<--x x x g x g ,求a 的取值范围.

45. 已知函数2

1()ln (1)2

f x x ax a x =-+-(0

(Ⅰ)求函数()f x 的单调区间;

(Ⅱ)记函数()y F x =的图象为曲线C .设点11(,)A x y ,22(,)B x y 是曲线C 上的不同两点.如果在曲线C 上存在点00(,)M x y ,使得:①;②曲线C 在点M 处的切线平行于直线

AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在“中值相依切线”,

请说明理由.

46. 已知函数)0)(ln()(2>=a ax x x f .

(1)若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围; (2)当1=a 时,设函数x x f x g )()(=

,若1),1,1

(,2121<+∈x x e

x x ,求证42121)(x x x x +<

47. 已知2()ln ,()3f x x x g x x ax ==-+-.

(1) 求函数()f x 在[,2](0)t t t +>上的最小值;

(2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围; (3) 证明: 对一切(0,)x ∈+∞,都有成立.

48. (2011陕西21,变形构造,反比例)

设函数()f x 定义在(0,)+∞上,(1)0f =,导函数1

()f x x

'=,()()()g x f x f x '=+.()g x (1)求()g x 的单调区间和最小值; (2)讨论及1()g x

的大小关系;

(3)是否存在00x >,使得01

|()()|g x g x x

-<对任意0x >成立?若存在,求出0x 的取值范围;若不存在,请说明理由.

49. 已知函数1ln ()a x

f x a R x

-+=

∈,

(Ⅰ)求()f x 的极值

(Ⅱ)若ln 0x kx -<在R +

上恒成立,求k 的取值范围 (Ⅲ)已知10x >,20x >且12x x e +<,求证1212x x x x +>

50. 已知函数x

x

x f ln )(=的图象为曲线C , 函数b ax x g +=21)(的图象为直线l .

(Ⅰ) 当3,2-==b a 时, 求)()()(x g x f x F -=的最大值;

(Ⅱ) 设直线l 及曲线C 的交点的横坐标分别为21,x x , 且21x x ≠, 求证: 2)()(2121>++x x g x x .

51. 已知函数211

()ln()4f x x x x a a

=

-++,其中常数0.a > ⑴若()1f x x =在处取得极值,求a 的值;

⑵求()f x 的单调递增区间;

⑶已知若1212,(,),x x a a x x ∈-≠,且满足12'()'()0f x f x +=,试比较12'()'(0)f x x f +与的大小,并加以证明。

替换构造不等式证明不等式

52. (第3问用第2问)已知217

()ln ,()(0)22

f x x

g x x mx m ==

++<,直线l 及函数(),()f x g x 的图像都相切,且及函数()f x 的图像的切点的横坐标为1。

(I )求直线l 的方程及m 的值;

(II )若()(1)'()()h x f x g x =+-其中g'(x)是g(x)的导函数,求函数()h x 的最大值。

(III )当0b a <<时,求证:()(2).2b a

f a b f a a

-+-<

53. 已知函数()x x x f ln =、 (Ⅰ)求函数()f x 的单调区间;

(Ⅱ)若k 为正常数,设()()()g x f x f k x =+-,求函数()g x 的最小值; (Ⅲ)若0a >,0b >,证明:()()()()2f a a b ln f a b f b +++-≥、

54. (替换构造不等式) 已知函数1

)(2

++=

x b

ax x f 在点))1(,1(--f 的切线方程为03=++y x . ⑴求函数()f x 的解析式;

⑵设x x g ln )(=,求证:)(x g ≥)(x f 在),1[+∞∈x 上恒成立;(反比例,变形构造) ⑶已知b a <<0,求证:

2

22ln ln b

a a

a b a b +>--.(替换构造)

55. (替换证明)

已知函数ln ()1x

f x x

=-.

(1)试判断函数()f x 的单调性;

(2)设0m >,求()f x 在[,2]m m 上的最大值;

(3)试证明:对任意*n ∈N ,不等式11ln()e n n

n n

++<

都成立(其中e 是自然对数的底数).

56. (2010湖北,利用⑵结论构造)

已知函数0b

f x ax c a x

=++>(

)()的图象在点(1,(1))f 处的切线方程为1y x =-. a b c ⑴用表示出、;

()ln [1)f x x a +∞≥⑵若在,上恒成立,求的取值范围;(反比例,作差构造)

⑶1111ln(1)(1)232(1)n n n n n +++???+>++≥+证明:

.(替换构造)

57. 已知()22(0)b

f x ax a a x

=+

+->的图像在点(1,(1))f 处的切线及直线21y x =+平行. (1)求a ,b 满足的关系式;

(2)若()2ln )f x x ≥∞在[1,+上恒成立,求a 的取值范围; (3)证明:11111(21)()

35

21221

n

n n n n ++

+++

>++∈-+ (n ∈N *)

58. 已知函数.1)1()1ln()(+---=x k x x f

(1)求函数)(x f 的极值点。

(2)若0)(≤x f 恒成立,试确定实数k 的取值范围。 (3)证明:

)1,(6)

1)(4(1

ln 154ln 83ln 32ln 2>∈-+<-++++n N n n n n n .

59. (替换构造)

已知函数()ln(1)(1) 1.f x x k x =---+ ⑴求函数()f x 的单调区间;

⑵若()f x ≤0恒成立,试确定实数k 的取值范围;(一次,作差构造) ⑶证明:①当2x >时,ln(1)2x x -<-;②*1ln (1)

(,1)1

4n

i i n n n N n i =-<∈>+∑.

60. (2011浙江理22,替换构造)

已知函数()2ln(1)(0)f x a x x a =+->. ⑴求()f x 的单调区间和极值;

⑵求证:(1)lg lg lg 4lg lg (1)23n n

n n e e e

e e n n

++

++???+>+*

()n N ∈.

61. (替换构造)

已知函数()1(0,)x f x e ax a e =-->为自然对数的底数.

⑴求函数()f x 的最小值;

⑵若()f x ≥0对任意的x ∈R 恒成立,求实数a 的值;(一次,作差构造) ⑶在⑵的条件下,证明:121()()(

)()(*)1

n

n

n n n n e

n n

n

n n e -++???++<∈-N 其中. 四、不等式恒成立求字母范围

恒成立之最值的直接应用

62. (2011北京理18倒数第3大题,最值的直接应用) 已知函数2

()()x k

f x x k e =-。

⑴求()f x 的单调区间;

⑵若对于任意的(0,)x ∈+∞,都有()f x ≤

1

e

,求k 的取值范围.

63. (2008天津理20倒数第3大题,最值的直接应用,第3问带有小的处理技巧)

已知函数()()0≠++=x b x

a

x x f ,其中R b a ∈,. ⑴若曲线()x f y =在点()()2,2f P 处切线方程为13+=x y ,求函数()x f 的解析式; ⑵讨论函数()x f 的单调性;

⑶若对于任意的??????∈2,21a ,不等式()10≤x f 在??

?

???1,41上恒成立,求b 的取值范围.

64. (转换变量,作差)

已知函数2()()x f x x a e =-.

⑴若3a =,求()f x 的单调区间;

⑵已知12,x x 是()f x 的两个不同的极值点,且1212||||x x x x +≥,若

323

3()32

f a a a a b <+-+恒成立,求实数b 的取值范围。

恒成立之分离常数

65. (分离常数)

已知函数()ln 1,.a

f x x a R x

=

+-∈ (1) 若()y f x =在0(1,)P y 处的切线平行于直线1y x =-+,求函数()y f x =的单调区间;

(2) 若0a >,且对(0,2]x e ∈时,()0f x >恒成立,求实数a 的取值范围

66. (2011长春一模,恒成立,分离常数,二阶导数)

已知函数12

)(2

---=ax x e x f x

,(其中∈a R ,e 为自然对数的底数).

(1)当0=a 时,求曲线)(x f y =在))0(,0(f 处的切线方程;

(2)当x ≥1时,若关于x 的不等式)(x f ≥0恒成立,求实数a 的取值范围. (改x ≥0时,)(x f ≥0恒成立.a ≤1)

67. (两边取对数的技巧)设函数1

()(1(1)ln(1)

f x x x x =>-++且0x ≠)

(1)求()f x 的单调区间; (2)求()f x 的取值范围;

(3)已知11

2(1)m x x +>+对任意(1,0)x ∈-恒成立,求实数m 的取值范围。

68. (分离常数)

已知函数1ln ()x

f x x

+=

. (Ⅰ)若函数在区间1

(,)2

a a +其中a >0,上存在极值,求实数a 的取值范围;

(Ⅱ)如果当1x ≥时,不等式()1

k

f x x ≥+恒成立,求实数k 的取值范围;

69. (2010湖南,分离常数,构造函数)

已知函数2()(,),f x x bx c b c =++∈R 对任意的,x ∈R 恒有()()f x f x '≤. ⑴证明:当20()();x f x x c +≥时,≤

⑵若对满足题设条件的任意b 、c ,不等式22()()()f c f b M c b --≤恒成立,求M 的最小值。

70. (第3问不常见,有特点,由特殊到一般,先猜后证)已知函数x

x n x f )

1(11)(++=

(Ⅰ)求函数f (x )的定义域

(Ⅱ)确定函数f (x )在定义域上的单调性,并证明你的结论.

(Ⅲ)若x >0时1

)(+>x k

x f 恒成立,求正整数k 的最大值.

71. (恒成立,分离常数,涉及整数、较难的处理)

已知函数).0()

1ln(1)(>++=

x x

x x f

(Ⅰ)试判断函数),0()(+∞在x f 上单调性并证明你的结论;

(Ⅱ)若1

)(+>x k

x f 恒成立,求整数k 的最大值;(较难的处理)

(Ⅲ)求证:(1+1×2)(1+2×3)…[1+n (n +1)]>e 2n -3.

72. (分离常数,双参,较难)已知函数32()(63)x f x x x x t e =-++,t R ∈. (1)若函数()y f x =依次在,,()x a x b x c a b c ===<<处取到极值. ①求t 的取值范围;②若22a c b +=,求t 的值.

(2)若存在实数[]0,2t ∈,使对任意的[]1,x m ∈,不等式 ()f x x ≤恒成立.求正整数m 的最大值.

73. (2008湖南理22,分离常数,复合的超范围)

已知函数2

2

()ln (1).1x f x x x

=+-+

⑴求函数()f x 的单调区间;

⑵若不等式1(1)

n a

e n

++≤对任意的N*n ∈都成立(其中e 是自然对数的底数),求a 的最大值.

(分离常数)

74. (变形,分离常数)

已知函数x a x x f ln )(2+=(a 为实常数).

(1)若2-=a ,求证:函数)(x f 在(1,+∞)上是增函数; (2)求函数)(x f 在[1,e ]上的最小值及相应的x 值;

(3)若存在],1[e x ∈,使得x a x f )2()(+≤成立,求实数a 的取值范围.

75. (分离常数,转换变量,有技巧) 设函数2()ln f x a x bx =-.

⑴若函数()f x 在1x =处及直线1

2y =-相切: ①求实数,a b 的值;②求函数()f x 在1

[,]e e

上的最大值;

⑵当0b =时,若不等式()f x ≥m x +对所有的2

3[0,],[1,]2

a x e ∈∈都成立,求实数m 的取值

范围.

恒成立之讨论字母范围

76. (2007全国I ,利用均值,不常见) 设函数()e e x x f x -=-.

⑴证明:()f x 的导数()2f x '≥;

⑵若对所有0x ≥都有()f x ax ≥,求a 的取值范围.

77. 设函数f (x )=e x +sinx,g (x )=ax,F (x )=f (x )-g (x ). (Ⅰ)若x =0是F (x )的极值点,求a 的值;

(Ⅱ)当 a =1时,设P (x 1,f (x 1)), Q (x 2, g (x 2))(x 1>0,x 2>0), 且PQ //x 轴,求P 、Q 两点间的最短距离; (Ⅲ):若x ≥0时,函数y =F (x )的图象恒在y =F (-x )的图象上方,求实数a 的取值范围.

78. (用到二阶导数,二次)

设函数2

()2

x

k f x e x x =-

-. ⑴若0k =,求()f x 的最小值;

⑵若当0x ≥时()1f x ≥,求实数k 的取值范围.

79. (第3问设计很好,2问是单独的,可以拿掉)已知函数1ln )1()(+-+=x x x b x f ,斜率 为1的直线及)(x f 相切于(1,0)点.

(Ⅰ)求()()ln h x f x x x =-的单调区间;

(Ⅱ)当实数01a <<时,讨论2

1()()()ln 2

g x f x a x x ax =-++

的极值点。 (Ⅲ)证明:(1)()0x f x -≥.

80. (2011全国I 文21,恒成立,一次,提出一部分再处理的技巧) 设函数(

)

2

()1x

f x x e ax =--.

⑴若a =

1

2

,求()f x 的单调区间; ⑵若当x ≥0时()f x ≥0,求a 的取值范围.

81. (2011全国新理21,恒成立,反比例,提出公因式再处理的技巧,本题的创新之处是将一

般的过定点(0,0)变为过定点(1,0),如果第2问范围变为1x >则更间单) 已知函数ln ()1a x b

f x x x

=

++在点(1,(1))f 处的切线方程为230x y +-=. ⑴求a 、b 的值;

⑵如果当0x >,且1x ≠时,ln ()1x k

f x x x

>

+-,求k 的取值范围。

82. (恒成立,讨论,较容易,但说明原理)已知函数x a x x f ln )1()(--=. (1)求函数)(x f 的单调区间和极值;

(2)若0)(≥x f 对),1[+∞∈x 上恒成立,求实数a 的取值范围.

83. (2010新课程理21,恒成立,讨论,二次,用到结论1x e x +≥) 设函数2()1x f x e x ax =---. ⑴若0a =,求()f x 的单调区间;

⑵若当0x ≥时()0f x ≥,求a 的取值范围.

84. (恒成立,2010全国卷2理数,利用⑴结论,较难的变形讨论)

设函数()1x

f x e -=-.

⑴证明:当x >-1时,()1

x

f x x ≥+; ⑵设当0x ≥时,()1

x

f x ax ≤+,求a 的取值范围.

85. 已知函数,且函数()f x 是()1,-+∞上的增函数。 (1)求k 的取值范围; (2)若对任意的0x >,都有11

1+<+-x e x kx (e 是自然对数的底),求满足条件的最大整数

k 的值。

86. (2008山东卷21) 已知函数1

()ln(1),(1)

n

f x a x x =

+--其中n ∈N*,a 为常数. ⑴当n =2时,求函数f (x )的极值;

⑵当a =1时,证明:对任意的正整数n ,当x ≥2时,有f (x )≤x -1.

五、函数及导数性质的综合运用

87. (综合运用)

已知函数()()x f x xe x -=∈R ⑴求函数()f x 的单调区间和极值;

⑵已知函数()y g x =的图象及函数()y f x =的图象关于直线1x =对称,证明当1x >时,

()()f x g x >

⑶如果12x x ≠,且12()()f x f x =,证明122x x +>

88. (2010天津理数21,综合运用)

已知函数11

()(x x f x x e

--=∈R).

⑴求函数()f x 的单调区间和极值;

⑵已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当2x >时,()();f x g x > ⑶如果12x x ≠,且12()()f x f x =,证明:12 4.x x +>

89. 已知函数1

()x x f x e

-=

.

(1) 求函数()f x 的单调区间和极值;

(2) 若函数()y g x =对任意x 满足()(4)g x f x =-,求证:当2x >,()();f x g x > (3) 若12x x ≠,且12()()f x f x =,求证:12 4.x x +>

90. 已知函数()ln(1),()1x

f x x

g x e =+=-, (Ⅰ)若()()F x f x px =+,求()F x 的单调区间;

(Ⅱ)对于任意的210x x >>,比较21()()f x f x -及21()g x x -的大小,并说明理由.

91. (2011辽宁理21,利用2的对称)

已知函数x a ax x x f )2(ln )(2

-+-=. ⑴讨论)(x f 的单调性;

⑵设0>a ,证明:当a

x 1

0<

<时,)1()1(x a f x a f ->+;(作差)

⑶若函数)(x f y =的图像及x 轴交于A 、B 两点,线段AB 中点的横坐标为0x ,证明:

0()0f x '<.

92. (恒成立,思路不常见)

已知函数x

a

x x f ln )(-=

,其中a 为实数. (1)当2=a 时,求曲线)(x f y =在点))2(,2(f 处的切线方程;

(2)是否存在实数a ,使得对任意),1()1,0(+∞∈ x ,x x f >)(恒成立?若不存在,请说

明理由,若存在,求出a 的值并加以证明.

93. 已知函数)1,0(12)(2<≠++-=b a b ax ax x g ,在区间[]3,2上有最大值4,最小值1,设

()

()g x f x x

=

. (Ⅰ)求b a ,的值;

(Ⅱ)不等式02)2(≥?-x x k f 在]1,1[-∈x 上恒成立,求实数k 的范围; (Ⅲ)方程0)3|

12|2

(|)12(|=--+-x

x

k f 有三个不同的实数解,求实数k 的范围.

94. 已知函数1()(1)[1ln(1)]f x x x

=+++, 设2

()()g x x f x '=? (0)x >

(1)是否存在唯一实数(,1)a m m ∈+,使得()0g a =,若存在,求正整数m 的值;若不存在,

说明理由。

(2)当0x >时,()f x n >恒成立,求正整数n 的最大值。

95. (第3问难想)已知函数2

()()x

f x ax x e =+,其中e是自然数的底数,a R ∈。 (1) 当0a <时,解不等式()0f x >;

(2) 若()f x 在[-1,1]上是单调增函数,求a 的取值范围;

(3) 当0a =时,求整数k的所有值,使方程()2f x x =+在[k,k+1]上有解。

96. (2011高考,单调性应用,第2问难)

已知a 、b 是实数,函数,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导

函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致. (1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;

(2)设,0

97. (2010湖南文数,另类区间)

已知函数()(1)ln 15,a

f x x a x a x

=

++-+其中a<0,且a ≠-1.

(Ⅰ)讨论函数()f x 的单调性; (Ⅱ)设函数

332(23646),1

(),1

(){x x ax ax a a e x e f x x g x -++--≤?>=(e 是自然数的底数)。是否存在

a ,使()g x 在[a ,-a ]上为减函数?若存在,求a 的取值范围;若不存在,请说明理由。

98. (2008辽宁理22,第2问无从下手,思路太难想) 设函数ln ()ln ln(1)1x

f x x x x

=

-+++. ⑴求()f x 的单调区间和极值;

⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.

99. (第二问较难) 设函数2()()()x f x x a x b e =-+,a b R ∈、,x a =是()f x 的一个极大值点.

⑴若0a =,求b 的取值范围;

⑵当a 是给定的实常数,设123x x x ,,是()f x 的3个极值点,问是否存在实数b ,可找到

4x R ∈,使得1234x x x x ,,,的某种排列1234,,,i i i i x x x x (其中{}1234i i i i ,,,={}1234,

,,)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由.

100. 已知函数()f x =ln a x ,2()g x x =,记()()()F x g x f x =-

(Ⅰ)求()F x 的单调区间;

(Ⅱ)当12a ≥时,若1x ≥,比较:(1)g x -及1

()f x

的大小;

(Ⅲ)若()F x 的极值为2a ,问是否存在实数k ,使方程2

1()(1)2

g x f x k -+=有四个

不同实数根?若存在,求出实数k 的取值范围;若不存在,请说明理由。

六、导数应用题

101. 某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t 元(其中t 为

常数,且2≤t ≤5),设该工厂每件玩具的出厂价为x 元(35≤x ≤41),根据市场调查,日销售量及e x (e 为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件. (1)求该工厂的日利润y (元)及每件玩具的出厂价x 元的函数关系式;

(2)当每件玩具的日售价为多少元时,该工厂的利润y 最大,并求y 的最大值.

102. 如图,ABCD 是正方形空地,正方形的边长为30m ,电源在点P 处,点P 到边AD 、AB 的距离分别为9m 、3m ,某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF ,MN :NE=16:9,线段MN 必须过点P ,满足M 、N 分别在边AD 、AB 上,设()AN x m =,液晶广告屏幕MNEF 的面积为2().S m

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

函数与导数压轴题方法归纳与总结

函数与导数压轴题方法归纳与总结 题型与方法 题型一 切线问题 例1 (二轮复习资料p6例2) 归纳总结: 题型二 利用导数研究函数的单调性 例2 已知函数f (x )=ln x -a x . (1)求f (x )的单调区间; (2)若f (x )在[1,e]上的最小值为3 2,求a 的值; (3)若f (x )

归纳总结: 题型三 已知函数的单调性求参数的围 例 3.已知函数()1 ln sin g x x x θ=+?在[)1,+∞上为增函数, 且()0,θπ∈, ()1 ln ,m f x mx x m R x -=--∈ (1)求θ的值. (2)若[)()()1,f x g x -+∞在上为单调函数,求m 的取值围. 归纳总结:

题型四 已知不等式成立求参数的围 例4..设f (x )=a x +x ln x ,g (x )=x 3-x 2-3. (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (3)如果对任意的s ,t ∈????12,2都有f (s )≥g (t )成立,数a 的取值围. 归纳总结: 跟踪1.已知()ln 1 m f x n x x =++(m,n 为常数)在x=1处的切线为x+y -2=0(10月重点高中联考第22题) (1) 求y=f(x)的单调区间;

(2) 若任意实数x ∈1,1e ?? ???? ,使得对任意的t ∈[1,2]上恒有32()2f x t t at ≥--成立,数a 的取值围。 跟踪2. 设f (x )=-13x 3+12 x 2+2ax .(加强版练习题) (1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值围; (2)当0

导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题 2010年和2011年高考中的全国新课标卷中的第21题中的第色)步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。 洛必达法则简介: 法则1若函数f(x)和g(x)满足下列条件:⑴lim f x = 0及lim g x = 0 ; (2) 在点a的去心邻域内,f(x) 与g(x)可导且g'(x)丰0; f '(X ) (3) lim l , x a g x 那么lim?L = |im?=|。—g(x ) —g'(x) 法则2若函数f(x)和g(x)满足下列条件:⑴lim f x =0及lim g x = 0 ; x^C * ‘ (2) A> 0, f(x)和g(x)在-::,A 与A,::上可导,且g'(x)丰 0; 0 比.T-i 0 0 ②洛必达法则可处理一,,o宀,1 -, “, 0 ,::-::型。 ◎在着手求极限以前,首先要检查是否满足-,-,o ?:: , 1 , ::0, 0°,::_::型定式, 否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ◎若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数f (x) = e x -1 - x - ax2。 (1)若a = 0,求f (x)的单调区间; (2)若当x_ 0时f (x) _ 0,求a的取值范围 原解:(1) a = 0 时,f(x)=e x-1-x, f'(x) = e x-1. 当(-::,0)时,f'(x):::0 ;当x (0^::)时,f'(x).0.故f (x)在(--■- ,0)单调减少,在(0「:)单调增加 (II ) f '(x) = e x - 1 - 2ax 由(I )知e x一「x,当且仅当x = 0时等号成立.故那么lim?=lim_^l。F g(x) F g^x) 法则3若函数f(x)和g(x)满足下列条件:⑴lim f x - ::及lim g x二::; (2)在点a的去心邻域内,f(x) 与g(x)可导且g'(x)丰0; f '(X) ⑶ lim l , x a g x 那么limd = lim?=l。—g(x ) J g (x) 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: f '(x) _ x _ 2ax = (1 _ 2a)x , 1 从而当1-2a 一0,即a 时,f '(x) _ 0 ( x 一0),而f(0) =0 , 2 于是当x^O 时,f(x)K0. 1 x x | 由e 1 x(x = 0)可得e - 1- x(x= 0).从而当a 时, 2 故当x (0,ln 2a)时,f'(x) :: 0,而f (0) = 0,于是当x (0,ln 2a)时,f(x) ::0. ①将上面公式中的X i a, X is 换成x T +8, X T - a, + — x— a , x— a洛必达法则也成立。综合得a的取值范围为

导数压轴题的几种处理方法

等号两边无法求导的导数恒成立求参数范围几种处理方法常见导数恒成立求参数范围问题有以下常见处理方法: 1、求导之后,将参数分离出来,构造新函数,计算 1+ ln x 例:已知函数 f (x ) = . (Ⅰ)若函数在区间 (a , a + 12) (其中 a > 0 )上存在极值,求实数 a 的取值范围; (Ⅱ)如果当 x ≥ 1 时,不等式 f (x ) ≥ k 恒成立,求实数 k 的取值范围; x +1 解:(Ⅰ)因为 f (x ) = 1+ ln x , x > 0 ,则 ' = - ln x , … 1 分 x f (x ) x 当 0 < x < 1 时, ' > 0 ;当 x > 1 时, ' . 所以 f (x ) 在(0,1)上单调递 f (x ) f (x ) < 0 增 ; 在 (1, +∞) 上 单 调 递 减 , 所 以 函 数 f (x ) 在 x = 1 处 取 得 极 大 值 . … 2 分 因为函数 f (x ) 在区间 (a , a + 1 ) (其中 a > 0 )上存在极值, 2 ?a < 1 1 所以 ?? 1 , 解得 < a < 1. … 4 分 ?a + > 1 2 2 ? (Ⅱ)不等式 f (x ) ≥ k ,即为 (x +1)(1+ ln x ) ≥ k , 记 g (x ) = (x +1)(1+ ln x ) , x +1 x x 所以 ' ' x - ln x … 6 分 [(x +1)(1+ ln x )] x - (x +1)(1+ ln x ) g (x ) = x 2 = x 2 , 令 h (x ) = x - ln x , 则 h '(x ) = 1 - 1x , x ≥ 1,∴ h '(x ) ≥ 0. ∴ h (x ) 在 [1, +∞) 上单调递增,∴[h (x )]min = h (1) = 1 > 0 ,从而 g '(x ) > 0 故 g (x ) 在 [1, +∞) 上也单调递增,∴[g (x )]min = g (1) = 2 ,所以 k ≤ 2 …8 分 2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考导数压轴题 答案

一、导数单调性、极值、最值的直接应用 1、解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3±=x . )(x g '的变化情况如下表: x 0 )3 3, 0( 33 )1,3 3( 1 )(x g ' - 0 + )(x g ↘ 极小值 ↗ 所以当3 3 = x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴1 2 111211222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 2 1<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2、解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠ -=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: x ()a 2-∞-, a 2- ()22--a a , 2-a ()∞+-,2a + 0 — 0 + ↗ 极大值 ↘ 极小值 ↗

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

函数与导数经典例题高考压轴题含答案

函数与导数经典例题高考 压轴题含答案 Last revision on 21 December 2020

函数与导数经典例题-高考压轴 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21()3 2 f x x =+,()h x =. (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)2 4 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6 f n h n h h h n -+++≥ . 3. 设函数ax x x a x f +-=22ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 =a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a ,b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是 自然对数的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

高考导数压轴题处理集锦

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=-(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=-(x +m )?f ′(x )=-?f ′(0)=e 0-=0?m =1, 定义域为{>-1},f ′(x )=-=, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=-(x +2),则g ′(x )=-(x >-2). h (x )=g ′(x )=-(x >-2)?h ′(x )=+>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-)=-<0,g ′(0)=1->0, 所以h (x )=g ′(x )=0的唯一实根在区间内, 设g ′(x )=0的根为t ,则有g ′(t )=-=0, 所以,=?t +2=e -t , 当x ∈(-2,t )时,g ′(x )g ′(t )=0,g (x )单调递增; 所以g (x )=g (t )=-(t +2)=+t =>0, 当m ≤2时,有(x +m )≤(x +2), 所以f (x )=-(x +m )≥-(x +2)=g (x )≥g (x )>0. 例2已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥22 1)(,求b a )1(+的最大值。 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞

高考导数压轴题零点问题

导数压轴题之零点问题 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增, 而==1, 故a≤1,

综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值. 【解答】解:(1)∵函数f(x)在区间[e,+∞)上为增函数, ∴f′(x)=a+lnx+1≥0在区间[e,+∞)上恒成立,∴a≥(﹣lnx﹣1)max=﹣2.

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

2016年度高考导数压轴题终极解答

◇导数专题 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论(zhongdianzhangwo) ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 一、导数单调性、极值、最值的直接应用

1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . ' 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(2 11a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(112 1x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12 1 11211222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 2 1 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(02 2 e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论:

2020年全国高考导数压轴题汇编

2016全国各地导数压轴题汇编 1、(2016年全国卷I理数) 已知函数2 )1()2()(-+-=x a e x x f x 有两个零点 (I )求a 的取值范围 (II )设21,x x 是)(x f 的两个零点,求证:221<+x x 2、(2016年全国卷I文数) 已知函数2)1()2()(-+-=x a e x x f x (I )讨论)(x f 的单调性 (II )若)(x f 有两个零点,求a 的取值范围 3、(2016年全国卷II 理数) (I )讨论函数x x 2f (x)x 2 -=+e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II )证明:当[0,1)a ∈ 时,函数2x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域. 4、(2016年全国卷II 文数) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 5、(2016年全国卷III 理数) 设函数)1)(cos 1(2cos )(+-+=x a x a x f 其中a >0,记|)(|x f 的最大值为A

(Ⅰ)求)(x f '; (Ⅱ)求A ; (Ⅲ)证明A x f 2)(≤' 6、(2016年全国卷III 文数) 设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性; (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x -<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->. 7、(2016年天津理数) 设函数R x b ax x x f ∈---=,)1()(3 其中R b a ∈, (Ⅰ)求)(x f 的单调区间; (Ⅱ)若)(x f 存在极点0x ,且)()(01x f x f =其中01x x ≠,求证:3201=+x x ; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]2,0[上的最大值不小于...4 1 8、(2016年四川理数) 设函数x a ax x f ln )(2 --=其中R a ∈ (Ⅰ)讨论)(x f 的单调性; (Ⅱ)确定a 的所有可能取值,使得x e x x f -->11)(在区间(1,+∞)内恒成立(e =2.718…

相关文档
最新文档