电力系统污区分布图使用导则

电力系统污区分布图使用导则
电力系统污区分布图使用导则

附件2:

福建省电力系统污区分布图使用导则

(二○○七版)

一、总则

1.1为了正确执行和使用省电网污区分布图,给合我省电网实际情况,特制定本使用导则。

1.2本使用导则和污区图编制说明是福建省电网污区分布图的重要补充和说明。福建省电网污区图、编制说明、使用导则是我省输变电设备防污闪电瓷外绝缘设计、选型及电力生产、运行维护的依据。

1.3 各生产、设计和基建单位(部门)应遵照执行本版污区图和使用导则。

1.4 福建省电网污区图、编制说明和使用导则适用于我省电网35kV及以上输变电设备。各直属直管发供电企业、控股和代管县电力公司必须遵照执行,发电厂等其他电力企业和电力用户可参照执行。

1.5 污源是动态变化的,福建省电网污区图原则上每5年调整修订一次。

二、福建省电网污秽等级划分和污区图

2.1 根据国家电网公司《电力系统污区分级和外绝缘选择标准》Q/GDW152(简称新企标)进行福建电网污秽等级划分、污区图绘制和确定各污级下绝缘水平配置标准。

2.2福建电网污秽等级区域划分详见《福建省电网污区分布图和编制说明》。

2.2《福建省电网污区分布图》同时在全省生产管理系统地理电子地图上发布。

三、电瓷外绝缘的配置和选择

3.1配置原则:电瓷外绝缘爬距配置应符合电瓷外绝缘所处地区污秽等级的要求,并考虑大气环境污染的情况,留有裕度。重要的线路、主力电厂主要出线、电网重要联络线、枢纽变电站等绝缘配置宜高于各污级规定的起始爬电比距。

3.2电瓷外绝缘爬电比距定义:爬电比距=绝缘子爬距/额定线电压。

3.3 外绝缘配置应按绝缘子有效爬距配置,绝缘子有效爬距等于绝缘子几何爬电距离与该绝缘子利用系数的乘积值。对于各类瓷和玻璃悬式绝缘子的选用,必须充分考虑其爬距有效利用系数,即K值。各种典型的绝缘子的K值参见下表。

3.4线路、电站各污秽等级电瓷外绝缘爬电比距应按下表的起始值配置:

注:1.中性点不接地网络绝缘水平按高一级污秽等级选择。

2.根据华东电网的原则要求,取消a、b级污级,只分c1、c2、d1、d2、e五个污级。

3. 5 审查设计时,应以污区图作为依据,核实各地段的污秽等级与所设计的电气设备电瓷外绝缘爬距配置是否相匹配。若要变更污秽等级和爬电比距,设计部门应深入现场调查、进一步了解污湿特征、运行经验、地形地貌等,并在设计审查时提出充分的修改依据。

3.6 主要公路、铁路交通干道的两侧100m范围内的输变电设备外绝缘配置可按相应污级的高一级选取。

3.8 应避免在盐场附近d2级及以上污区建站,线路途径应尽可能避开。

3.9 处于c1级及以上的污区,新(扩、改)建的发变电站应选用采用大爬距设备,在近海8公里范围内建设的变电设备还应涂覆防污涂料,以防止盐雾污闪;在d2级及以上污区建站时,宜选择室内变电站或采用GIS设备,户内站110kV高压一次设备爬电比距不宜低于20mm/kV。

3.10刷防污涂料等防污闪措施不应作为防污闪设计考虑的因素,这方面的裕度应留给生产运行部门。

3.11新建输变电设备外绝缘配置原则

3.11.1新、扩建变电所户外变电设备外绝缘配置:c2及以下污区按不低于25mm/kV配置, d1及以上按实际污级绝缘配置要求配置。

3.11.2 新建输电线路(变电站母线)瓷、玻璃绝缘子悬垂串应符合污区分布图绝缘配置要求;耐张串污秽等级c2及以下的可按25mm/kV配置, d1及以上的可按28mm/kV配置。

3.11.3 输电线路外绝缘宜优先选择耐污型瓷瓶或合成绝缘子;c2级及以上污区线路及变电站母线绝缘子原则上应使用合成绝缘子。

3.11.4 棒形悬式复合绝缘子的爬距按如下原则配置:对c2及以下污区使用的复合绝缘子,其爬电比距选用25mm/kV;对c2以上的污区,选用28mm/kV,宜采用大小伞型。

3.11.5 新建输电线路双悬垂串盘形绝缘子的外绝缘配置应提高10%(不包括V型布置及倒V型布置的绝缘子串)。

3.11.6 在粉尘污染地区应避免使用钟罩型大爬距盘形绝缘子。

3.12 运行输变电设备外绝缘执行原则

3.12.1 对于外绝缘配置已达到污区图和本规定要求的输变电设备,清扫周期可延长到5年。

3.12.2 根据运行经验,设备所处环境确实比较干净,对已运行的线路、电站各污秽等级电瓷外绝缘配置爬距处于以下范围的可以暂不调爬,清扫周期可延长到3年。

3.12.3对于外绝缘配置不满足上表要求的应进行调爬,未调爬前,原则应每年安排清扫,如果延期清扫应加强巡视,并在污闪季节开展盐密状态监测,根据盐密情况,开展状态清扫。

四、调爬

4.1 运行中的输变电设备电瓷外绝缘爬距的配置,应依据污区分布图调整,电瓷外绝缘爬距如果小于污区图各污级要求的爬电比距,根据实际情况进行调爬。

4.2 对合成绝缘子、已涂覆RTV防污闪涂料的输变电设备绝缘子原则上不进行调爬,特殊情况应专题说明。

4.3各发供电单位应以污区图为依据,核查本地区输变电设备电瓷外绝缘与污级不匹配的设备,统计调爬数量、所需资金及调爬安排,及时上报主管部门备案。

4.4 调爬应分轻重缓急,对500kV、220kV主干线和重要的发变电站要优先安排。

4.5 在c2级及以上污区已运行的发变电站,其电气设备电瓷外绝缘

爬电比距不满足配置要求的,应采用涂料、带电清扫等综合防污闪措施。

五、防污闪技术措施

5.1 外绝缘与污级不相适应的电瓷设备应做好常规清扫维护工作。

5.2 110kV以上变电设备的电瓷外绝缘清扫时间宜安排在污闪季节前进行,并尽量以带电清扫为主。

5.3 加强污秽地区线路的零低值瓷绝缘子的检除工作,并提高检测的准确性。

5.4 对爬距与污级不相适应的应进行调爬的输变电设备,若不调整或暂时未能调整时,应因地制宜地采用防污闪技术措施防止污闪的发生,其中包括:防污涂料、带电水冲洗、带电清扫等。

六、注意清查和控制污源

6.1 燃煤火电厂在规划布置厂区设施时,应注意减少火电厂烟囱对设备电瓷外绝缘的污染,并应做好消烟除尘工作。

6.2 对输变电设备附近新建企业的排污情况应予注意,提出减轻排污要求。对可能造成严重污染的小工矿企业、作坊等应及时争取当地政府的支持,予以制止。

七、附则

7.1 本使用导则解释权属福建省电力有限公司生产部。

7.2 本使用导则自颁发之日起生效。

电力系统稳定与控制作业

华北水利水电大学研究生结课论文 姓名杨双双 学号201420542396 专业控制工程 性质国家统招(√)单考() 工程硕士()同等学力()科目电力系统稳定与控制 成绩

加强电网三道防线建设的建议 开题报告 1、选题的背景及意义 随着电网的发展,电网的动态特性日益复杂,电网运行稳定控制的复杂度也相对提升。然而近年来,美国,澳大利亚,瑞典等国家均发生了大面积停电,给这些国家的经济造成了巨大的损失,并严重影响了这些国家的社会生活,这些引起了国内外对电网安全运行的高度关注。为了确保电网的安全稳定运行,一次系统建立了合理的电网结构、配备完整的电力设施、安排合理的安全运行方式,二次系统应配备性能完备的继电保护系统和适当的安全稳定控制措施,这组成一个完备的防御系统,为三道防线。 《电力系统安全稳定导则》规定我国电力系统承受最大扰动能力的安全稳定标准分为三级: 第一级标准:保持稳定运行和电网的正常供电[单一故障(出现概率较高的故障)]; 第二级标准:保持稳定运行,但允许损失部分负荷[单一严重故障(出现概率较低的故障)]; 第三级标准:当系统不能保持稳定运行是,必须防止系统崩溃并尽量减少负荷损失[多重严重故障(出现概率很低的故障)]。 三道防线是电力系统防御体系的重要组成部分,设置三道防线来确保电力系统在遇到各事故时的安全稳定运行,其定义如下: 第一道防线:由性能良好的继电保护装置构成,确保快速、正确地切除电力系统的故障元件。 第二道防线:由电力系统安全稳定控制系统、装置及切机、切负荷等稳定控制措施构成,对预先考虑到的存在稳定问题的运行方式与故障进行检测、判断和实施控制,确保电力系统的安全稳定运行。 第三道防线:由失步解列、频率及电压紧急控制装置构成,当店里系统发生失步震荡、频率异常、电压异常等事故时采取解列、切负荷、切机等控制等措施,防止系统崩溃,避免出现大面积停电。第三道防线一般不站队特定的运行方式与

DLT723-2000 电力系统安全稳定控制技术导则

F23 备案号:7783—2000 中华人民共和国电力行业标准 DL/T 723—2000 电力系统安全稳定控制技术导则 Technical guide for electric power system security and stability control 2000-11-03 发布 2001-01-01 实施 中华人民共和国国家经济贸易委员会发布 前言 本标准根据原电力工业部综科教[1998]28号文《关于下达1997年修订电力行业标准计划的通知》中所列项目任务《电力系统安全稳定控制技术导则》而编制。 电力系统安全稳定控制是保证电力系统安全稳定运行的重要措施。这类措施虽然已在电力系统中有较普遍的应用,但尚缺乏较全面、系统的技术规定来指导有关的科研、设计、制造和运行工作。本标准即为了适应这一要求而制定。 原电力工业部曾制定了《电力系统安全稳定导则》(1981年),并且正在进行修订。该导则提出了对电力系统在扰动时的安全稳定原则要求。本标准是根据这些原则提出对安全稳定控制的技术要求。 本标准编写格式和规则遵照GB/T 1.1—1993《标准化工作导则第一单元:标准起草与表达规则第1部分标准编写的基本规定》及DL/T600—1996《电力标准编写的基本规定》的要求。 本标准附录A是标准的附录,附录B和附录C是提示的附录。 本标准由中国电机工程学会继电保护专委会提出。 本标准由电力行业继电保护标准化技术委员会归口。 本标准起草单位:中国电机工程学会电力系统安全稳定控制分专委会和电力自动化研究院。 本标准主要起草人:袁季修、孙光辉、李发棣。 本标准由电力行业继电保护标准化技术委员会负责解释。 目次 前言

《山西省电力系统污区分布图(2011版)》实施细则

山西省电力系统污区分布图 实施细则 1 总则 1.1适用范围 1.1.1《山西省电力系统污区分布图》及相应的编制说明、实施细则是山西电网输变电设备外绝缘配置及电网防污闪工作的基础,是新建、扩建输变电工程的外绝缘设计依据及电网运行设备的外绝缘改造依据。 1.1.2农电、上网发电厂及用户输变电设备的外绝缘配置和防污闪措施可参照执行。 1.2 污秽等级划分依据 1.2.1《山西省电力系统污区分布图(2011版)》依据国家电网公司企业标准《电力系统污区分级与外绝缘选择标准》(Q/GDW152-2006)划分污秽等级,并应用了部级科研项目《大气环境对输变电设备抗污闪能力的影响》的研究成果,吸取了近年来电网大面积污闪事故的经验教训。 1.2.2《山西省电力系统污区分布图(2011版)》是结合环境污湿特征,现场污秽度及运行经验三方面因素修订的。应用过程中,如与实际情况有出入,应在充分论证的基础上,以实际运行经验为准。 2污区分布图的维护要求 2.1《山西省电力系统污区分布图》的修订周期为1年,局部区域污级的变化应以经审查批准的各市(地)最新的污区图为准。

2.2各运行维护单位应注意搜集相关资料与数据,包括新增设备(变电站、输电线路)、新增污源点、运行经验(包括污闪故障、典型易积污区域)、气象参数及环境监测数据等,为下一次修订污区图奠定基础。 2.3现场污秽度的测量(包括饱和盐密、灰密)周期为一年一次,测量时间原则上应在每年第一场降雨之前,并于每年4月30日前通过网络上报测量结果。 2.4应根据新增设备(变电站、输电线路)、新增污源点及时、合理调整污秽度监测点。污秽度监测点要求如下: 2.4.1污秽度监测点全部设置于架空输电线路;以变电站进出线第一基塔上的污秽度监测点作为变电站监测点,由线路运行维护单位负责维护。 2.4.2监测点性质:污秽度监测点均为模拟监测点,统一使用非带电绝缘子。 2.4.3监测点数量:污秽度监测点应覆盖110~500kV各电压等级架空输电线路。原则上要求沿线路方向每10km设立一个监测点,但下述情况可以进行调整:a)线路经过的局部污源点﹑微地形区﹑微气象区应设立监测点;d﹑e级重污区应适当增加监测点。b)同杆并架或位于同一线路走廊的同电压等级线路的监测点可以适当合并。2.4.4绝缘子型号:污秽度监测点统一使用XP型或XWP型绝缘子;其它型号绝缘子(如:玻璃绝缘子)作为测量绝缘子时,应获得该类型绝缘子的绝缘积污换算。

DL755-2001电力系统安全稳定导则

电力系统安全稳定导则 中华人民共和国电力行业标准 电力系统安全稳定导则 DL755-2001 Guideonsecurityandstability forpowersystem 2001-04-28发布2001-07-01实施 中华人民共和国国家经济贸易委员会发布 前言 本标准对1981年颁发的《电力系统安全稳定导则》进行了修订。 制定本标准的目的是指导电力系统规划、计划、设计、建设、生产运行、科学试验中有关电力系统安全稳定的工作。同时,为促进科技进步和生产力发展,要鼓励采用新技术,例如,紧凑型线路、常规及可控串联补偿、静止补偿以及电力电子等方面的装备和技术以提高电力系统输电能力和稳定水平。自本标准生效之日起,1981年颁发的《电力系统安全稳定导则》即行废止。 本标准由电力行业电网运行与控制标准化技术委员会提出。 本标准主要修订单位:国家电力调度通信中心、中国电力科学研究院等。 本标准主要修订人员:赵遵廉、舒印彪、雷晓蒙、刘肇旭、朱天游、印永华、郭佳田、曲祖义。 本标准由电力行业电网运行与控制标准化技术委员会负责解释。 目次 1.范围 2.保正电力系统安全稳定运行的基本要求 3.电力系统的安全稳定标准

4.电力系统安全稳定计算分析 5.电力系统安全稳定工作的管理 附录A(标准的附录)有关术语及定义 l 范围 本导则规定了保证电力系统安全稳定运行的基本要求,电力系统安全稳定标准以及系统安全稳定计算方法,电网经营企业,电网调度机构,电力生产企业,电力供应企业,电力建设企业,电力规划和勘测、设计、科研等单位,均应遵守和执行本导则。 本导则适用于电压等级为220kV及以上的电力系统。220kV以下的电力系统可参照执行。 2 保证电力系统安全稳定运行的基本要求 2.1总体要求 2.1.1为保证电力系统运行的稳定性,维持电网频率、电压的正常水平,系统应有足够的静态稳定储备和有功、无功备用容量。备用容量应分配合理,并有必要的调节手段。在正常负荷波动和调整有功、无功潮流时,均不应发生自发振荡。 2.1.2合理的电网结构是电力系统安全稳定运行的基础。在电网的规划设计阶段,应当统筹考虑,合理布局。电网运行方式安排也要注重电网结构的合理性。合理的电网结构应满足如下基本要求: a)能够满足各种运行方式下潮流变化的需要,具有一定的灵活性,并能适应系统发展的要求; b)任一元件无故障断开,应能保持电力系统的稳定运行,且不致使其他元件超过规定的事故过负荷和电压允许偏差的要求; c)应有较大的抗扰动能力,并满足本导则中规定的有关各项安全稳定标准; d)满足分层和分区原则; e)合理控制系统短路电流。 2.1.3在正常运行方式(含计划检修方式,下同)下,系统中任一元件(发电机、线路、变压器、母线)发生单一故障时,不应导致主系统非同步运行,不应发生频率崩溃和电压崩溃。 2.1.4在事故后经调整的运行方式下,电力系统仍应有规定的静态稳定储备,并满足再次发生单一元件故障后的暂态稳定和其它元件不超过规定事故过负荷

电力系统安全稳定控制

摘要:近年来,伴随着经济社会的快速发展,电力系统规模的不断扩大使得电网体系的结构日趋复杂,电力设备单机容量逐步提高,与之相关的电力系统安全稳定问题也不断涌现。积极研究和运用先进的安全稳定控制技术不但可以使电力系统运行的可靠性大大提高,而且可以直接带来可观的经济效益。从电力系统安全稳定的相关概念入手分析了电力系统安全稳定控制的相关技术,然后就这些技术在电力系统中的实际应用进行了说明,旨在为电力部门提高安全稳定控制水平提供参考。 关键词:电力系统;安全稳定;控制技术;应用 电力作为当今社会最主要的能源,与人民生活和经济建设息息相关。供电系统如果不稳定,往往导致大面积、长时间的停电事故,造成严重的经济损失及社会影响。因此,学习电力系统安全稳定控制理论并研究适应时代发展要求的新的电力系统安全稳定控制技术对于实现当前电力资源的合理配置、提高我国现有电力系统的输电能力和电网的安全稳定运行具有十分重要的意义。 一、电力系统安全稳定控制概述 1.电力系统稳定的相关概念 电力系统的主要任务就是向用户提供不间断的、电压和频率稳定的电能。它的性能指标主要包括安全性、可靠性和稳定性。电力系统可靠性是指符合要求长期运行的概率,它表示长期连续不断地为用户提供充足电力服务的能力。安全性指电力系统承受可能发生的各种扰动而不对用户中断供电的风险程度。稳定性是指经历扰动后电力系统保持完整运行的持续性。 2.电力系统安全稳定控制模式的分类 按照信息采集和传递以及决策方式的不同,电力系统安全稳定控制模式可以分为以下几种:一是就地控制模式。在这种控制模式中,控制装置安装在各个厂站,彼此之间不进行信息交换,只能根据各厂站就地信息进行切换和判断,解决本厂站出现的问题。二是集中控制模式。这种控制模式拥有独立的通信和数据采集系统,在调度中心设置有总控,对系统运行状态进行实时检测,根据系统的运行状态制定相应的控制策略表,发出控制命令并实施对整个系统的安全稳定控制。三是区域控制模式。区域控制型稳定控制系统是针对一个区域的电网安全稳定问题而安装在多个厂站的安全稳定控制装置,能够实现站间运行信息的相互交换和控制命令的传送,并在较大范围实现电力系统的安全稳定控制。 二、电力系统安全稳定控制的关键技术

励磁控制与电力系统稳定

技术讲座讲稿 励磁系统与PSS 2004年10月

1. 前言 根据我国国家标准GB/T 7409.1~7409.3-1997“同步电机励磁系统”的规定的定义,同步电机励磁系统是“提供电机磁场电流的装臵,包括所有调节与控制元件,还有磁场放电或灭磁装臵以及保护装臵”。励磁控制系统是包括控制对象的反馈控制系统。励磁控制系统对电力系统的安全、稳定、经济运行都有重要的影响。我国国家标准和行业标准都对励磁控制系统提出了具体的要求。这里,就励磁系统分类、对励磁控制系统的要求、励磁控制系统与电力系统稳定的关系、电力系统稳定器等几个问题和大家一起进行讨论。 2. 励磁系统分类 同步电机励磁系统的分类方法有多种。主要的方法有两种,即按同步电机励磁电源的提供方式分类和同步电机励磁电压响应速度分类两种分类方法。 按同步电机励磁电源的提供方式不同,同步电机励磁系统可以分为直流励磁机励磁系统,交流励磁机励磁系统和静止励磁机励磁系统。 按同步电机励磁电压响应速度的不同,同步电机励磁系统可以分为常规励磁系统、快速励磁系统和高起始励磁系统。 2.1 直流励磁机励磁系统 由直流发电机(直流励磁机)提供励磁电源的励磁系统叫直流励磁机励磁系统。它主要由直流励磁机和励磁调节器组成。早期的中小容量的同步电机的励磁调节器从发电机的PT(电压互感器)和CT(电流互感器)取得电源;较大容量的同步电机的励磁调节器的电源有时经励磁变压器取自发电机端时,此时,励磁变压器也是主要组成部分(图2-1)。 同步电机的励磁电源是直流励磁机的输出,励磁调节器根据发电机运行工况调节直流励磁机的输出,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。 直流励磁机主要采用由原动机拖动与主发电机同轴的拖动方式,少数(主要是备用励磁机)为由异步电动机非同轴的拖动方式。直流励磁机的励磁方式,主要有它励、自并励和自励加它励三种方式。它励方式的直流励磁机的励磁全部由励磁调节器提供;自并励方式的直流励磁机的励磁全部由直流励磁机本身提供,励磁调节的任务是通过调节与励磁绕组相串联的电阻的大小来实现的;自励加它励方式的直流励磁机的励磁,一部分由励磁

加强三道防线建设确保电网的安全稳定运行(摘要)通用版

安全管理编号:YTO-FS-PD732 加强三道防线建设确保电网的安全稳 定运行(摘要)通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

加强三道防线建设确保电网的安全稳定运行(摘要)通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 (南瑞继保电气有限公司,江苏南京211100) 《电力系统安全稳定导则》规定我国电力系统承受大扰动能力的安全稳定标准分为三级: 第一级标准:保持稳定运行和电网的正常供电[单一故障(出现概率较高的故障)]; 第二级标准:保持稳定运行,但允许损失部分负荷[单一严重故障(出现概率较低的故障)]; 第三级标准:当系统不能保持稳定运行时,必须防止系统崩溃并尽量减少负荷损失[多重严重故障(出现概率很低的故障)]。 我们设置三道防线来确保电力系统在遇到各种事故时的安全稳定运行: 第一道防线:快速可靠的继电保护、有效的预防性控制措施,确保电网在发生常见的单一故障时保持电网稳定运行和电网的正常供电; 第二道防线:采用稳定控制装置及切机、切负荷等紧

江苏电网污区分布图(2017版)执行规定

江苏电网污区分布图(2017版)执行规定 一、污秽等级的划分 按照国家电网公司企业标准《电力系统污区分级与外绝缘选择标准第一部分交流系统》(Q/GDW 1152.1-2014),污秽等级划分为a、b、c、d、e 五级,根据江苏电网实际情况,2017版江苏电网污区分布图不设a、b级。 二、污区等级与爬电比距对应关系 2017版江苏电网污区分布图按统一爬电比距表示,污区等级与统一爬电比距(设备爬电距离/最高相电压)和额定爬电比距(设备爬电距离/额定线电压)的对应关系见表1。 表1污区等级与爬电比距、额定爬电比距对应关系

污区等级统一爬电比距 (mm/kV) 额定爬电比距 (cm/kV)(以500kV为例) c 35 2.2 d 44 2.8 e 55 3.5 三、新建输变电设备外绝缘配置原则 1. 新、改扩建输变电设备外绝缘应坚持“配置到位,留有裕度”的原则,外绝缘爬电比距配置应不低于相应污区等级对应的爬电比距要求。 2. 新、改建输电线路爬电比距推荐取值见表2。 表2新、改建输电线路爬电比距配置原则(不低于) 污区等级等值盐密(mg/cm2)统一爬电比距(mm/kV)普通型双伞型 盘形瓷、 玻璃绝缘子 复合绝缘子 c 0.05-0.1 0.04-0.08 39.4 39 d 0.1-0.25 0.08-0.20 47.2 ≥44

e >0.25 >0.20 55.1 3. 输电线路外绝缘配置应按绝缘子有效爬距配置,绝缘子有效爬距等于绝缘子几何爬电距离与该绝缘子利用系数的乘积值。对于各类绝缘子的选用,必须充分考虑其爬距有效利用系数,即K值。当参照绝缘子为双伞型瓷绝缘子时,各种典型的绝缘子的K值如下: 普通型、双伞型、三伞型绝缘子:K取1.0。 钟罩型、深棱型绝缘子: c级及以下污区, K取0.9;d级及以上污区,K取0.8。 长棒形瓷绝缘子: 600mm≤常年降水量<1000mm 地区,K取0.9;常年降水量≥1000mm地区,K取1.0。 4.新、改建输电线路耐张绝缘子串的单串片数一般应不少于同型号悬垂单I串的片数,并根据带电作业需要适当留有裕度。

电力系统中自动化控制技术的应用()

电力系统中自动化控制技术的应用 电力系统中自动化控制技术的应用 摘要:电气自动化技术在电力行业中的应用,让电力系统的各个环节的作用以及运行更加高效。谈谈电气自动化控制技术在电力系统中的应用。关键词电力系统自动化控制技术应用 城市化进程与人们生活水平的飞速发展让人们对电能需求越来越大,因而随着计算机技术的发展,电气自动化控制技术在电力系统中应用范围也在逐步扩大,电气自动化控制技术在电力系统中的应用让劳动生产力、劳动生产时间、劳动成本等都得到了有效的节约,成本节约也只是其中的一项,资源的最大化利用才是其中最为根本的优势所在。电气自动化技术在电力行业中的应用,让电力系统的各个环节的作用以及运行更加高效。 1电力系统中电气自动化控制技术的应用 1.1电力系统中应用电气自动化控制技术的发展现状。传统的供变电设备与控制系统已经无法对现代电力生产与配送需求进行满足,所以电气自动化控制技术的快捷、稳定、安全等优势让我国的电力系统的发展更加多元、复杂、广

泛。降低了电力企业生产成本也让电能的配送服务更加高效,电力供应的安全与稳定是电力企业在市场竞争中的重要武器,因此电力自动化控制技术的研究水平标志着我国电力企业发展运行中的进步与创新。 1.2电力系统中电气自动化控制技术的作用和意义。我国科学技术的不断完善与进步,让计算机技术在各个行业的普及度得到了很大跨度的提升。在电气行业的技术发展中也因为得到了计算机技术与PLC技术的辅助获得了长足性的发展。计算机在电力系统中承载着重要的核心作用,是电力系统中供电、变电、输电、配电等各个环节的基础支撑,并起着重要的调控作用。PLC技术是让电力系统进行自动化控制的一项技术,主要的作用是让电力系统的数据信息收集与分析可以更加准确,传输的过程更加稳定,并在此过程中将电力系统的运行成本进行了有效的降低,侧面提升了电力系统的整体运行效率。 2电气自动化控制技术在电力系统中的具体应用 2.1电气自动化控制的仿真技术。电气自动化技术因为得到我国专业科研人员的重点研究与发展,技术创新步伐正在不断加快。电力系统中电气自动化技术也因为科研人员的深入性研究,达到了国际标准。值得一说的是其中的仿真建模技术,不仅提升了数据的精确性与传输数据效率,同

(电力安全)电力系统安全生产的重要性

电力系统安全生产的重要性 安全生产是我国的一项基本国策,是保证经济建设持续、稳定、协调发展和社会安定的基本条件,也是社会文明进步的重要标志。电力的安全生产不仅是电力工业发展的前提和基础,也是电力企业发挥社会效益和提高企业经济效益的保证,“安全第一,预防为主”的方针是电力生产建设的永恒主题。电力生产安全的总体目标是防止发生对社会构成重大影响,对生产力的发展以及对国有资产保值、增值构成重大损失的事故,尤其要杜绝电力生产的人身伤亡事故。为实现这一总体目标,电力安全生产的重点工作要深入贯彻落实、健全完善安全再生产机制和安全教育机制。把搞好安全生产作为企业管理工作核心和基础,加强对电业职工的安全思想教育和安全技术培训工作,提高全员安全技术素质,以确保电力工业的稳步发展。 1、电力安全生产的含义 在电力生产中,安全有着三方面的含义:确保人身安全,杜绝人身伤亡事故;确保电网安全,消灭电网瓦解和大面积停电事故;确保设备安全,保证设备正常运行。这三方面是电力企业安全生产的有机组成部分,互不可分,缺一不可。 2、电力安全生产的重要性和基本方针 电力工业是建立在现代电力能源转换、传输、分配科学技术基础上的高度集中的社会化大生产,是供给国民经济能源的基础行业,也是关系城乡人民生活的公用事业。电力工业具有高度的自动化和发、供、用同时完成的特点。发电、输

电、配电和用户组成一个统一的电网运行系统,任何一个环节出了事故,都会影响整个电网的安全稳定运行。严重的事故则会使电网运行中断,甚至导致电网的崩溃和瓦解,造成长时间、大面积的停电,直接影响到工农业生产和人民生活的正常进行,给社会造成重大的经济损失,影响社会的安定,损害党和政府以及企业的形象。所以电力安全生产不仅是经济问题,也是政治问题。为此,我国电力工业一直坚持“安全第一,预防为主”的方针,并从电网的技术管理、规程制度建设、职工思想行为的规范和职业道德的建设等方面着手,采取一系列措施,加强和改进安全管理工作,努力提高电力生产安全的水平。 “安全第一,预防为主”的方针是由电力工业的特点和电力生产的客观规律决定的,是电力生产多年实践经验的结晶,坚持这一方针,是电力生产、建设、经营等各项工作顺利进行的基础和保证,任何时侯都不能有动摇。

电力系统稳定与控制

电力系统稳定与控制 廖欢悦电自101 2 电力系统的功能是将能量从一种自然存在的形式转换为电的形式,并将它输送到各个用户。电能的优点是输送和控制相对容易,效率和可靠性高。为了可靠供电,一个大规模电力系统必须保持完整并能承受各种干扰。因此系统的设计和运行应使系统能承受更多可能的故障而不损失负荷(连接到故障元件的负荷除外),能在最不利的可能故障情况些不知产生不可靠的广泛的连锁反应式的停电。 由此,电力系统控制所要实现的目的: 1.运行成本的控制:系统应该以最为经济的方式供电; 2.系统安全稳定运行的控制:系统能够根据不断变化的负荷变化及发电资源变化情况调整功率 分配情况; 3.供电质量的控制:必须满足包括频率、电压以及供电可靠性在内的一系列基本要求;一.电力系统的稳定性设计与基本准则 首先,一个正确设计和运行的电力系统: 1.系统必须能适应不断变化的负荷有功和无功功率需求。与其他形式的能量不同,电能不能方便地以足够数量储存。因而,必须保持适当的有功和无功的旋转备用。 2.系统应以最低成本供电并具有最小的生态影响 3.考虑到如下因素,系统供电质量必须满足一定的最低标准: a)频率的不变性 b)电压的不变性 c)可靠性水平 对于一个大的互联电力系统,以最低成本保证其稳定性运行的设计是一个非常复杂的问题。通过解决这一问题能得到的经济效益是巨大的。从控制理论的观点来看,电力系统具有非常高阶的多变量过程,运行于不断变化的环境。由于系统的高维数和复杂性,对系统作简化假定并采用恰当详细详细的系统描述来分析特定的问题是非常重要的。 二、电力系统安全性及三道防线可靠性-安全性-稳定性 电力系统可靠性:是在所有可能的运行方式、故障下,供给所有用电点符合质量标准和所需数量的电力的能力。是保证供电的综合特性(安全性和充裕性)。可靠性是通过设备投入、合理结构及全面质量管理保证的。 电力系统安全性:是指电力系统在运行中承受故障扰动的能力。通过两个特征表征(1)电力系统能承受住故障扰动引起的暂态过程并过渡到一个可接受的运行工况,不发生稳定破坏、系统崩溃或连锁反应;(2)在新的运行工况下,各种运行条件得到满足,设备不过负荷、母线电压、系统频率在允许范围内。 电力系统充裕性:是指电力系统在静态条件下,并且系统元件负载不超出定额、电压与频率在允许范围内,考虑元件计划和非计划停运情况下,供给用户要求的总的电力和电量的能力。 电力系统稳定性:是电力系统受到事故扰动(例如功率或阻抗变化)后保持稳定运行的能力。包括功角稳定性、电压稳定性、频率稳定性。 正常运行状态下,通过调度手段让电力系统保持必要的安全稳定裕度以抵御可能遭遇的干扰。要实现预防性控制,首先应掌握当前电力系统运行状态的实时数据和必要的信息,并及时分析电网在发生各种可能故障时的稳定状况,如存在问题,则应提示调度人员立即调整运行方式,例如重新分配电厂有功、无功出力,限制某些用电负荷,改变联络线的送电潮流等,以改善系统的稳定状况。 目前电网运行方式主要靠调度运行方式人员预先安排,一般只能兼顾几种极端运行方式,且往往以牺牲经济性来确保安全性。调度员按照预先的安排和运行经验监视和调整电网的运行状态,但他并不清楚当前实际电网的安全裕度,也就无法通过预防性控制来增强电网抗扰动的能力。因此,实现电力系统在线安全稳定分析和决策,得出当前电网的稳定状况、存在问题、以及相应的处理措

福建省电力系统污区分布图修订说明介绍

附件1: 福建省电力系统污区分布图修订说明 (二○○七版) 福建省电力有限公司 -4-

二OO七年十月 -5-

一、污区图修订的必要性 二○○七年初,国家电网公司颁布了《电力系统污区分级和外绝缘选择标准》Q/GDW152(简称新企标),并要求各省网公司年内完成按新版污区图的修订和绘制工作。 新企标与二○○五版划分污区等级的依据《国标(GB/T16434)》有较大的不同,主要表现在:一是按新企标所制定出的污区图和绝缘配置可满足设备外绝缘长期不清扫运行,而GB/T16434的则以一年一清扫为基础;二是新企标的分级标准参数污秽度测试数据为连续积污三及以上年的等值盐密和灰密,而GB/T16434中测试数据为年度等值盐密。因此,新企标对对污级划分有全面的提高,对应的绝缘配置也有更高的标准。 二、污区图绘制依据 -5-

1. 国家电网公司企业标准Q/GDW.152--2006《电力系统污区分级与外绝缘选择标准》; 2. 国家电网公司《电力系统污区分级与外绝缘选择标准》实施意见; 3.国家电网公司《电力系统污区分布图绘制规定》; 4.华东电网〔2007〕430号文件《华东电网污秽区域分布图(2007版)绘制细则》。 三、污秽等级划分和污区图绘制原则 在原《福建电力系统污区分布图(2005版)》的基础上,根据污湿特征、运行经验和外绝缘表面污秽度三个因素综合考虑,确定划分本地区污秽等级并绘制污区图,当三者不一致时,以运行经验为决定因素。 四、福建省地理环境及电网概况 -6-

1.自然地理位置 福建省地处中国东南沿海 (北纬23 ° 30′~28°22′,东经115° 50′~120° 40′), 东西宽约540公里,南北长约550公里,略似一个长方形体斜置在中国东海之滨,毗邻浙江、江西、广东、与台湾隔海相望。 2.地形地貌主要特点 福建省素有“东南山国”之称,山地、丘陵分布广泛,海拔500米以上的中、低山占全省面积75%,50~500米的丘陵占全省面积15%,其余10%为低于海拔50米的平原,地势特点为西北高、东南低,呈阶梯状降落地形,以山地丘陵为主。 福建由西、中两列大山带构成主体地形的骨架。蜿蜒于闽赣边界附近的西列大山带,由武夷山脉、杉岭 -7-

基于响应的电力系统暂态稳定控制技术探讨

基于响应的电力系统暂态稳定控制技术探讨 发表时间:2018-10-01T11:18:49.463Z 来源:《电力设备》2018年第16期作者:孟祥华郭珂 [导读] 摘要:基于响应的电力系统暂态稳定控制技术的产生与发展较传统的电力控制系统具备较大的优势,它在运行过程中能够不被电力系统的元件模型与产生的参数所影响,也可以不事先预想故障集合与运行方式。 (国网新疆电力有限公司新疆乌鲁木齐 830011) 摘要:基于响应的电力系统暂态稳定控制技术的产生与发展较传统的电力控制系统具备较大的优势,它在运行过程中能够不被电力系统的元件模型与产生的参数所影响,也可以不事先预想故障集合与运行方式。运用该项技术能够有效、全面的制定出合理的控制措施,对电网运行中的暂态安全稳定加以水平提升。 关键词:电力系统;暂态;稳定控制;技术分析 引言:维持电力系统的安全运行一直以来是保障社会安定和经济发展的重要因素之一。为保障电网稳定运行,我国大型互联电网通常配置了特定的继电保护及安全稳定控制系统,构成了电网安全稳定运行的三道防线。其中,常规二道防线具有针对性强、速度快、可靠性高等特点,但若实际扰动超出了它所涵盖的事件范围,则无法做出有效应对。此外,二道防线的失稳判据和控制策略都是基于离线仿真计算得到,其可靠性严重依赖于仿真模型和参数的准确性。因此,我国现有的暂态稳定控制技术在适应性、控制效率、可靠性等方面仍存在诸多不足。 1.电力系统安全稳定性分类 功角稳定:主要指电网中的互联系统内部的同步发电机,在受到扰动冲击之后还能保持同步的运行能力,是电力系统中的重要热点问题。若功角发生失稳现象,则会引起控制系统中正在运行的发动机转子之间产生的相对角度逐渐扩大.最后难以维持同步运行,从而会在电力系统中产生电压、功率等电气量的不断震荡,导致整个系统的崩溃。电压稳定:主要指在电力系统的初始运行状态下,遭受到一定的扰动后,仍然能够保持全部母线维持稳定电压的能力它主要是由于负荷需求和电力系统向负荷供电之间形成的一种保持平衡的能力。若系统提供的负荷功率随着电流的增大而增大时,则系统的电压处于稳定状态。若系统提供的负荷功率不能随着电流的变化而变化,则系统的电压处于失衡状态。 2基于响应的电力系统稳定性判别技术 2.1基于响应的功角稳定判别技术 数值预测技术是用来判别电力系统功角稳定的重要技术,此类方法主要是利用实测相应信息,然后在通过各类数学方法对发电机的功角摇摆曲线进行预测。此项技术的运用能够有效的判断功角的运动数值是否不小于某一闭值,从而确定系统的暂态稳定性。数值预测技术主要是运用数值序列的排列方式进行分析从而发现有效数据,不用依赖电力系统中的数学模型和参数,只通过数学中的三角函数拟合、多项式拟合以及泰勒级数等方式便可对系统的暂态稳定性作出判别。如可以运用响应数据作为判定基础,对量测数据进行插值运算或是进行曲线拟合等数值运算,进而得到发电机的转子角与角速度的高阶导数,从而获得暂态稳定性的有效数据。 2.2基于响应的暂态电压稳定判别技术 当前在电力系统电压稳定的相关问题研究中,基于响应的电力系统暂态稳定研究还较少,主要是集中在长期电压稳定的领域。运用戴维南等值跟踪系统能够有效的对暂态电压下的稳定状态进行很好的判别,并通过与实时测量信息的结合实现对对系统的稳定控制与分析。在电力系统中只需将任意负荷点在任意时间等值为一个电势源经等值阻抗向该节点负荷供电的一个单机系统,就是戴维南等值。若电力系统中的这一负荷节点电压出现崩溃现象,造成电压出现大幅下降但戴维南等值的电势却变化不大,则电压处于失稳状态。 3.基于广域响应的暂态稳定紧急控制 由于系统的广域响应已包含了电网的所有特征信息,包括运行工况、事故信息等,基于广域响应确定最优的紧急控制地点并计算相应控制量已成为可能。该类控制技术无需制定针对性的策略表,省去了繁琐的计算过程,且基于当前系统的真实性状进行计算,达到“全局分析,实时决策”的目的。此外,通过PMU/WAMS开展数据集中分析,可根据全局信息实现各地区控制装置间的协调、经济运行,是最理想的稳定控制模式。目前,基于广域响应的紧急控制方法研究大多建立在EEAC基础上。提出了一种基于量测数据的闭环暂态稳定紧急控制方法:基于等值单机轨迹,应用广义Hamilton理论定量估计所需的紧急控制量,从而实现在线紧急切机决策。根据等值功角-不平衡功率相平面轨迹,利用曲线拟合外推方法预测系统的完整减速面积。基于单机能量函数,以判别失稳时刻等值单机系统的动能作为剩余减速面积,计算系统到达不稳定平衡点前需降低的等值机械功率,并在计算过程中进一步考虑了失稳判别与紧急控制间的时延所带来的影响。在此基础上,根据等值单机面积积分公式,通过迭代求解方法计算需降低的等值机械功率,提高了切机量的计算精度。 该类紧急控制方法基于等值单机受扰轨迹进行切机量计算。对系统模型参数依赖性小,可应对复杂故障场景,具有良好的适应性。但是,该类方法依赖于全网发电机量测,计算量大、通讯要求高。由于当前广域信息尚存在不确定性时滞,可能会严重影响紧急控制的时效性。 4.展望 基于广域响应的电力系统暂态稳定控制技术,摆脱了传统事件驱动型稳控技术对系统元件模型和参数的依赖,可应对各种复杂运行工况与故障情形,具有极大的在线应用前景,是未来电网安全稳定控制技术的重要发展方向。但WAMS技术尚处于发展初期,虽然在广域动态数据的同步采集和通讯方面已经取得了长足的进展,但在如何高效利用PMU数据,挖掘可靠的系统稳定性特征方面还需进行大量工作,应涉及以下几个方面内容: 一是相关研究中尚未涉及时滞问题和坏数据问题。实际电网在采样和通讯过程中,存在不确定性时延和噪声干扰,将对暂态稳定控制技术的时效性产生重大影响。因此,需建立合理的数学模型研究广域通信时滞的机理,分析所带来的影响并制定有效的应对方法。同时,可研究针对性的滤波方法,从而提高暂态稳定控制技术的抗干扰能力。 二是需进行基于多种控制措施的紧急控制策略研究。实际电网中可用于改善系统暂态性能的控制措施包括:切机/切负荷、HVDC功率调节等。因此,可综合各类控制措施的特点,根据系统实际需求启动最佳的紧急控制策略,以最小代价维持电网暂态稳定。 三是基于实际响应的暂态稳定控制技术,无法准确获知系统未来的真实轨迹,不能对控制后系统的特征进行先验评估。为防止紧急控制过控或欠控所造成的损失,可结合一定的系统快速仿真手段,实现失稳判别的防误和控制策略的校核,进一步提高暂态稳定控制技术的

电力系统安全稳定导则.doc

电力系统安全稳定导则 DL 755-2001 1范围 本导则规定了保证电力系统安全稳定运行的基本要求,电力系统安全稳定标准以及系统安全稳定计算方法,电网经营企业、电网调度机构、电力生产企业、电力供应企业、电力建设企业、电力规划和勘测设计、科研等单位,均应遵守和执行本导则。 本导则适用于电压等级为220kV 及以上的电力系统。220kV 以下的电力系统可参照执行。 2保证电力系统安全稳定运行的基本要求 2.1总体要求 2.1.1为保证电力系统运行的稳定性,维持电网频率、电压的正常水平,系统应有足够的静态稳定储备和有功、无功备用容量。备用容量应分配合理,并有必要的调节手段。在正常负荷波动和调整有功、无功潮流时,均不应发生自发振荡。 2.1.2合理的电网结构是电力系统安全稳定运行的基础。在电网的规划设计阶段,应当统筹考虑,合理布局。电网运行方式安排也要注重电网结构的合理性。合理的电网结构应满足如下基本要求:a)能够满足各种运行方式下潮流变化的需要,具有一定的灵活性,并能适应系统发展的要求; b)任一元件无故障断开,应能保持电力系统的稳定运行,且不致使其它元件超过规定的事故过负荷和电压允许偏差的要求; c)应有较大的抗扰动能力,并满足本导则中规定的有关各项安全稳定标准; d)满足分层和分区原则; e)合理控制系统短路电流。 2.1.3在正常运行方式(含计划检修方式,下同)下,系统中任一元件(发电机、线路、变压器、母线)发生单一故障时,不应导致主系统非同步运行,不应发生频率崩溃和电压崩溃。 2.1.4在事故后经调整的运行方式下,电力系统仍应有规定的静态稳定储备,并满足再次发生单一元件故障后的暂态稳定和其它元件不超过规定事故过负荷能力的要求。 2.1.5电力系统发生稳定破坏时,必须有预定的措施,以防止事故范围扩大,减少事故损失。 2.1.6低一级电网中的任何元件(包括线路、母线、变压器等)发生各种类型的单一故障均不得影响高一级电压电网的稳定运行。 2.2电网结构 2.2.1受端系统的建设 2.2.1.1受端系统是指以负荷集中地区为中心,包括区内和邻近电厂在内,用较密集的电力网络将负荷和这些电源联接在一起的电力系统。受端系统通过接受外部及远方电源输入的有功电力和电能,以实现供需平衡。 2.2.1.2受端系统是整个电力系统的重要组成部分,应作为实现合理的电网结构的一个关键环节予以加强,从根本上提高整个电力系统的安全稳定水平。加强受端系统安全稳定水平的要点有: a.加强受端系统内部最高一级电压的网络联系;

湖南电力系统电子污区分布图编制说明

附件2: 湖南省电力系统电子污区分布图编制说明 一、污区图绘制依据和原则 1.《高压架空线路和发电厂、变电站环境污区分级及外绝缘选择标准》(GB/T16434-1996) 2.关于修订《电力系统污区分布图》的通知(国电安运[1998]223) 附件1:污区分布图修订原则 附件2:部级科研成果《大气环境对输变电设备抗污区能力影响》的应用 附件3:各网、省公司报国家电力公司电力系统污区分布图及资料的要求 附件4:电力系统污区分布图绘制规定 二、电网概况 截止至2005年底,全省(不含小水电)装机容量1496.4万千瓦,其中火电723.05万千瓦,水电容量773.35万千瓦。湖南电网500千伏变电站5座,220千伏变电站78座(含黄秧坪开关站);在运的500千伏线路13条,计1270公里;220千伏线路196条,计8630公里。 三、地理环境及气候特征 1.地理位置。 湖南位于长江中游南岸,地处东经108°47′~114°15′,北纬24°39′~30°08′之间,东西直线距离最宽667公里,南

北直线距离最长774公里,全省土地面积21.18万平方公里,是一个紧邻沿海地区的内陆省份。 2.地形地貌。 湖南三面环山,东有幕阜山、罗霄山脉,南有南岭山脉;西有武陵山、雪峰山脉,海拔从500米至1500米不等。湘北为洞庭湖平原,海拔多在50米以下。湘中则丘陵与河谷盆地相间。全省形成从东南西三面向北倾斜开口的马蹄形状。 境内水系比较完整,湘北有洞庭湖,为全国第二大淡水湖。省内主要河流有湘江、资水、沅江和澧水,分别从西南向东北流入洞庭湖,经城陵矶注入长江。 全省地貌以山地、丘陵为主,山地面积占全省总面积的51.2%,丘陵及岗地占29.3%,平原占13.1%,水面占6.4%。 湖南蕴藏了丰富的矿产资源,有“有色金属之乡”、“非金属矿产之乡”等赞誉。 3.气候特征。 湖南为大陆型中亚热带季风湿润气候。这与本省居亚欧大陆东南部,面向太平洋,省境东南亚边境距海400公里,受东亚季风环流的影响密切相关。 湖南气候具有以下三个特点:第一、光、热、水资源丰富,三者的高值又基本同步。全省4-10月,总辐射量占全年总辐射量的70-76%,降水量则占全年总降水量的 68-84%。第二,气候年内与年际的变化较大。冬寒冷而夏酷热,春温多变,秋温陡降,春夏多雨,秋冬干旱。气候的

电力系统安全稳定控制技术分析 刘向楠

电力系统安全稳定控制技术分析刘向楠 发表时间:2018-01-06T20:25:24.343Z 来源:《电力设备》2017年第26期作者:刘向楠李文翔 [导读] 摘要:随着科学信息技术的发展,采用先进的技术是保障电力系统的安全稳定运行的关键。 (国网江西赣西供电公司江西新余 338000) 摘要:随着科学信息技术的发展,采用先进的技术是保障电力系统的安全稳定运行的关键。充分发掘与综合运用信息技术和计算机网络以及控制领域的先进技术来为电力系统安全稳定控制服务,是提升电力安全系统稳定控制水平的有效方式。本文主要对几项重点的技术手段进行了分析,希望对今后的工作有所帮助。 关键词:电力系统;安全稳定;控制技术;应用 1 电力系统安全稳定控制概述 1.1电力系统稳定的相关概念 电力系统的主要任务就是向用户提供不间断的、电压和频率稳定的电能。它的性能指标主要包括安全性、可靠性和稳定性。电力系统可靠性是指符合要求长期运行的概率,它表示长期连续不断地为用户提供充足电力服务的能力。安全性指电力系统承受可能发生的各种扰动而不对用户中断供电的风险程度。稳定性是指经历扰动后电力系统保持完整运行的持续性。 1.2电力系统安全稳定控制模式的分类 按照信息采集和传递以及决策方式的不同,电力系统安全稳定控制模式可以分为以下几种:一是就地控制模式。在这种控制模式中,控制装置安装在各个厂站,彼此之间不进行信息交换,只能根据各厂站就地信息进行切换和判断,解决本厂站出现的问题。二是集中控制模式。这种控制模式拥有独立的通信和数据采集系统,在调度中心设置有总控,对系统运行状态进行实时检测,根据系统的运行状态制定相应的控制策略表,发出控制命令并实施对整个系统的安全稳定控制。三是区域控制模式。区域控制型稳定控制系统是针对一个区域的电网安全稳定问题而安装在多个厂站的安全稳定控制装置,能够实现站间运行信息的相互交换和控制命令的传送,并在较大范围实现电力系统的安全稳定控制。 2 电力系统安全稳定控制技术 2.1 低频控制技术 低频振荡与系统网络结构、运行状况及发电机磁系统参数密切相关,产生的原因主要包括远距离的输电电路发生功率摆动、大区间联系弱、大机组系统阻尼变弱、远距离输电线路中部或受端的电压不足等。在安全稳定控制装置内增加低频检测判据和控制策略就可实现对低频振荡进行及时的检测和控制。具体措施包括增强网架、串联补偿电容、采用直流输电方案和在远距离输电线路中部装设同步调相机以加强电压支撑的作用。 2.2 低压控制技术 由于电压不稳定会导致整个系统的不稳定。电压崩溃是伴随电压不稳定导致电力系统大面积、大幅度的电压下降的过程,致使大范围内停电。低压控制技术能利用相关的信息管理系统采集当前系统运行时的各种数据,同时还可以针对可能造成电压崩溃的预想事故进行暂态电压稳定(小于 10秒)和中期电压稳定(10~30 秒)分析计算,提出电压预防性控制措施。 2.3 过频控制技术 过频切机是目前电网系统所普遍采用的防止频率过高的防护措施。过频切机的运行机制就是根据电网电源的分布情况合理配置过频切机装置和这些装置的动作值。为了提高动作的可靠性,还应设有频率启动级和频率变化率闭锁。 2.4 基于光电传感器的新技术 与传统的电压和电流互感器相比,新型光学电流和电压互感器具有非常明显的优势,譬如良好的绝缘性能、较强的抗电磁干扰能力等。与现代数字信号处理器(DSP)技术紧密结合的光电传感器成为电力系统安全稳定控制技术的新导向,同时将其应用于全球定位系统(GPS)中可以使广域中采集实时量的统一时标问题得到有效的解决。这一问题的解决对促进继电保护技术的进一步发展发挥了至关重要的作用。 2.5 自适应稳定控制技术 使控制系统对未建模部分的动态过程以及对过程参数的变化变得不敏感是自适应控制的最终目标。其作用原理是这样的:当系统控制过程发生动态变化时,自适应控制系统就能及时捕捉到这一变化并实时调节控制策略和相关的控制器参数,从而实现系统的稳定控制。除此之外,为了使控制操作更为精确,安装有自适应稳定控制系统的电力系统主站或调度中心还可以根据其所接收的电网实测数据及时完成紧急控制策略的自动优化,从而有效实现电力系统的自适应稳定控制,同时还具备相关的事故自动处理功能。目前,自适应稳定控制技术与电力系统紧急控制在线决策技术以及广域测量技术的有效结合实现了电力系统安全稳定的广域测量分析控制一体化,为实现电力系统安全稳定提供了极为重要的技术支撑。 3 电力系统安全稳定控制技术应用分析 3.1 电力系统安全稳定控制体系的构建 在进行电力系统规划设计时要把电力系统的安全性放在首要位置,确保电力系统的持续安全稳定。电力系统安全稳定控制体系可以分为受扰动前的电力系统安全保障体系和受扰动后的电力系统安全稳定控制体系。整个体系由三道防线构成。第一道防线:用于保证系统正常运行和承受各类电力系统大扰动的安全要求。在发生安全故障时该防线可以借助继电保护机制安全快速切除故障元件,确保电网发生常见的单一故障时能够正常稳定运行。该防线主要应用了继电保护、一次性系统设备以及安全稳定预防性控制技术等措施。 第二道防线:该防线借助稳定控制装置及切机、切负荷等稳定控制、功率紧急调制以及串联补偿等技术措施来有效预防稳定破坏,实现系统参数发生严重越限时的紧急控制,从而确保在发生严重故障时电网能继续保持稳定运行。 第三道防线:该防线采用系统解列、再同步以及频率及电压紧急控制等技术实现系统崩溃时的紧急控制,从而当电网遇到多重严重事故而稳定破坏时可以有效防止事故扩大,从源头上杜绝电力供应中大面积停电的出现。 3.2 电力系统安全稳定控制过程分析 电力系统作为一个极其复杂的非线性的动态大系统,由于系统的电气量变化范围相对比较大,而且持续的时间短,分析计算又相对比

相关文档
最新文档