水电站自动化课程设计

水电站自动化课程设计
水电站自动化课程设计

水电站自动化课程设计

专业:能源与动力工程

设计人:

班级:

学号:

指导老师:

完成时间: 2017年 1 月 11 日

目录

目录........................................................ - 1 - 第一章设计原始资料......................................... - 2 - 第二章电动机主电路设计.................................... - 3 -

2.1 电机的选择.......................................... - 3 -

2.2 主回路接线原理图.................................... - 3 -

2.3 主回路设备的选择.................................... - 5 -

2.4 电机的保护.......................................... - 9 - 第三章系统控制回路设计................................... - 10 -

3.1 系统控制结构....................................... - 10 -

3.2 控制系统的工作原理................................. - 10 - 第四章 PLC控制回路的设计.................................. - 12 -

4.1 PLC的选择.......................................... - 12 -

4.2 I/O端子分配及接线图................................ - 12 -

4.3 梯形图程序设计及说明............................... - 13 -

4.4 语句指令表......................................... - 15 -

4.5 设备清单........................................... - 17 - 附表....................................................... - 18 - 参考文献................................................... - 19 -

第一章设计原始资料

集水井排水装置自动控制

某水电站渗漏排水系统有二台相同的渗漏排水泵,一台工作,一台备用。水泵类型为深井泵,单台配套电动机容量:90kW,电压:AC380V。每台水泵出水管道上安装一只电动阀门,水泵抽水时电动阀门打开,水泵停止时电动阀门关闭,电机功率1.5kW。

排水井水位和高程:渗漏排水井底板高程3.0m,停泵水位高程5.0m,工作泵启动水位高程11.5m,备用泵启动水位高程12.0m,报警水位高程12.2m。

控制要求(机构系统图如图1):

(1)深井泵启动前3秒必须先给润滑水,泵启动后2min切断润滑水,润滑水由机组技术供水系统供给,供水管径20mm,通过电磁阀自动控制,该电磁阀的工作可自动合/分,也可手动合/分。

(2)盘面上要有电源指示灯,运行指示灯和故障指示灯。控制柜有电时电源指示灯亮,抽水泵电动机运转时运行指示灯亮,控制柜有故障时故障指示灯亮,故障信号:(a)接触器故障(b)启动超时(45s)

(3)深井泵工作方式:自动/手动。自动方式时,控制装置依据控制流程要求自动实现水泵的启/停控制。手动方式时,通过操作面板上的操作开关直接控制水泵,该方式仅供设备调试或检修使用。

(4)蓄水池水位达到报警水位时,控

制柜内喇叭要发出断续的蜂鸣声,电铃要

响。

(5)出水管道上的阀门电动机正反转

时要有硬件互锁和软件互锁,避免电气短

路。

(6)工作水泵和备用泵每周轮换一

次。

图1-1 集水井排水装置机构系统图

第二章电动机主电路设计

2.1 电机的选择

(1)水泵电动机的选择

根据本设计深井泵的工作环境、方式以及电动机的容量:90KW,电压:AC380V,可选择Y280M-2电动机,其具体参数如表2-1所示。

(2)电动阀电动机的选择

由于电机的功率为1.5KW,则选用Y90S-2电动机,其具体参数如表2-1所示。

表2-1 电动机技术参数

2.2 主回路接线原理图

考虑到排水装置的控制要求,设计得电动机主回路接线图如图2-1所示,其工作原理如下:

合上电源开关QS1,按下启动按钮SB1,接触器KM1得电吸合并自锁,接触器KM2也同时得电吸合,电动机三相绕组在Y形接法下降压启动,同时时间继电器KT1通电计时。

经过一段时间的延时后,时间继电器KT1常闭触点打开,常开触点闭合,接触器KM2失电释放,其常闭辅助触点闭合,继电器KM3得电吸合并自锁,将电动机三相绕组接成△形在全压下运行。

其中,1号泵电动机由POWER1电源单独供电,2号泵电动机由POWER2电源单独供电,并互为备用。当两路电源中有一路发生故障切除时(1QF、2QF之一断),则备用电源自动切换装置APD将母联断路器(3QF)合上,以保证电动机的正常工作。

由于电动机的功率较大,为减小启动电流,故在本设计的电动机主回路中选用Y-△降压启动方式。其控制回路如图2-2所示。

图2-2 控制电路图

2.3 主回路设备的选择

2.3.1 接触器的选择

在电气控制电路中,接触器的使用十分广泛,其额定电流和额定电压是随时用条件的不同而变化的,只有根据不同使用条件去正确选用,才能保证它在控制电路中长期可靠运行,充分发挥其作用。

接触器用于带有负载主电路的自动接通和切断,分直流和交流接触器两大类,交流接触器主要有CJ0及CJ10系列。机床电器控制电路中应用最多的是交流接触器。

在一般情况下,选用交流接触器的主要依据如下:

① 吸引线圈电源种类:交流或直流。

② 主触点额定电压、额定电流。

③ 辅触点类型、数量及其额定电流。

④ 吸引线圈的电源种类,频率和额定电压。

⑤ 额定操作频率(次/h ),即允许每小时接通的最多次数。

具体选择时应注意以下四点:

① 主触点额定电流N I 应大于或等于被控对象(负载)电流,对于电动机这种负载可按下面经验公式来初步确定其主触点电流N I ,即 N

N N kU P I 3

10?= (2-1) 式中:N P 为被控制电动机额定功率(kW );N U 为电动机额定电(V );k 为经验系数,一般取1~1.4.实际选用接触器时,主接触器额定电流应大于计算值,也可以参照《控制电器及应用》表6-9,按被控电动机的容量进行选取。对于频繁启动和制动以及频繁正反转工作的电动机,为了防止接触器主触点的烧蚀和过早损坏,应将其额定电流降低一个等级使用,或将表6-9中所示的被控电动机容量减半选用。

② 接触器主触点额定电压N U 应大于被控对象的额定电压。

③ 接触器触点数量及其种类应满足控制需要,当辅触点的对数不能满足要求时,可用增设中间继电器的方法来解决。

④ 接触器吸引线圈的电压种类与电压等级应根据控制电路及被控对象的要求选用。简答控制电路可直接选用380/220V 电源电压作为接触器吸引线圈电压。比较复杂的控制电路选用127/110V 或更低的电压作为接触器吸引线圈电压比较合适。

由式2-1计算可得:

A kU P I N N N 2.1693804.11090103

1311=??=?=

A kU P I N N N 95.33801105.11032322=??=?=

故KM1、KM2、KM3应选用CJ20-250接触器,KM4、KM5选用CJ20-5。

2.3.2 熔断器的选用

1、选用的一般原则

① 按合适的电压等级和配电系统中能出现的最大短路电流来选用熔断器。 ② gG 、gM 和aM 熔断体的选用:(a)gG 熔断体属于一般用途的可实现全范围分断的熔断体,它兼有过电流保护功能,主要用于线路保护;(b)gM 熔断体可实现全范围保护电动机,既可用于对电动机电路的过载保护,也可用于对电动机回路的短路保护,gM 熔断体还可以保护照明回路;(c)aM 熔断体只能在部分范围分段地保护电动机,所以用在电动机主回路时需要在回路中配套热继电器。

③ 当熔断器是按上下级安装时,需要考虑选择性配合关系。

g 类熔断体的过电流选择比有1.6:1和2:1两种。一般地,专职人员使用的带刀口的熔断体过电流选择比为1.6:1,而带螺栓连接的熔断体和圆筒形熔断体其过电流选择比为2:1.

应用在电动机回路的熔断器:对于单台的电动机主回路,应当按电动机的起动电流倍数来考虑让熔断体的截断电流大于或等于电动机的起动冲击电流,熔断体的额定电流应当等于n I )(5.3~5.1,这里的n I 是电动机的额定电流为166A 。

则A I 2491665.1e1=?=,A I 1.54.35.1e2=?=

所以FU1、FU2选用NGT1-250/380熔断器,FU3选用RLIB15熔断器。

2.3.3 热继电器的选用

热继电器主要用于电动机的过载保护,选用时必须考虑电动机的工作环境、起动情况、允许过载能力等因素,具体应按以下几个方面来选择。

① 星型联结的电动机可选用两相或三相结构的热继电器;三角形联结的电动机应选用带断相保护的三相结构热继电器。

② 在长期工作制或间断长期工作制下,按电动机的额定电流来确定热继电器的型号及热元件的额定电流等级。热元件的额定电流应接近或略大于电动机的额定电流,即

N RT I I )1.1~05.1(= (2-2)

对于工作环境恶劣、起动频繁的电动机,热元件的额定电流则按下式确定,即

N RT I I )5.1~15.1(= (2-3) ③ 在不频繁起动的场合,要保证热继电器在电动机起动过程中不产生误动作。通常,当电动机起动电流为其额定电流的6倍且起动时间不超过6s 时,热继电器的额定电流应大于或至少等于被保护电动机的额定电流。若电动机的起动时间较长(超过5s ),热元件的额定电流可调节到电动机额定电流的 1.1~1.5倍。

④ 对于正反转和通断频繁的特殊工作制电动机,不宜采用热继电器作为过载保护装置,必要时可选用埋入电动机绕组的温度继电器或热敏电阻来保护。

由式2-2可得: A I RT 3.17416605.11=?=

A I RT 57.34.305.12=?=

所以,FR1选用T250热继电器,FR2选用JRSI-25热继电器。

2.3.4 断路器的选用

空气开关也就是断路器,在电路中作接通、分断和承载额定工作电流,并能在线路和电动机发生过载、短路、欠压的情况下进行可靠的保护。其选型原则如下:

(1)断路器的额定电压必须大于或等于线路的工作电压。

(2)断路器的额定短路通断能力≥线路中可能出现的最大短路电流。

(3)断路器的额定电流≥线路的负载电流。

(4)漏电断路器的额定漏电动作电流必须≥2倍的线路业已存在的泄漏电流。

(5)断路器末端单相对地短路时能使选用B 、C 、D 型瞬时脱扣器的开关动作,对于不同类型的负载(用电设备)选用不同的瞬时脱扣器和相应的电流等级的产品。

(6)在装漏电保护器之前必须搞清原有的供电保护型式,以便判断是否可

以直接安装或需改动。

(7)有进出线规定的产品必须严格按要求接线,进出线不可反接。

综合以上因素考虑,则本设计选用DZL25断路器

2.4 电机的保护

本设计中通过采用三个PTC热敏电阻内置于电动机定子绕组内监测电动机运转时定子绕组内温度,温度开关两端引致PLC相应输入端。温度开关为双金属片结构,正常工作时触点处于闭合状态(具体见第四章温度开关介绍)。当电动机过热时,任一个PTC热敏电阻温度达到额定断开温度时,电阻值急剧上升,温度开关的双金属片触点断开, PLC机温检测输入端断开,PLC立即切断电动机启动器;保护电机绕组、轴承、电容器等易发热器件。温度开关额定断开温度也即是欲控制电动机定子绕组最高温度参考设置为90℃。

另外,采用断路器和熔断器用于电动机的短路保护。

第三章 系统控制回路设计

3.1 系统控制结构

图3-1 集水井排水装置的自动控制原理流程图

3.2 控制系统的工作原理

可编程控制器进入运行状态,先检测各状态量和通过A/D 模块检测水位变送器传送的水位信号,如发现某一事故则作对应的事故处理,如果发现LCU 传送的手动开和停泵的信号,也作对应的处理。为了准确可靠的工作,PC 对水位的检测通过开关量输入和A/D 采样对节点式和模拟量输出的水位信号进行检测,当两水位信号都是大于工作泵启动水位时,则置M 1 =1,当水位不小于备用泵启动水

位时,则置M 2 =1,当水位不大于水泵停止水位时,则置M 1=M 2=0。M 1和M 2中间继电

器状态如表3-1所示。

表3-1 M

1和M

2

中间继电器状态图

自动投入:当M

1

=1,即集水井水位上升到工作泵启动水位时,则PC发一开

关量输出信号控制工作泵电动机启动。当集水井水位下降到停泵水位(M

1

=0)时,PC发出信号控制关闭水泵电动机。

备用投入:当M

2

=1,即当工作泵故障或来水量大增,使集水井水位上升到备用泵启动水位时,PC发一控制信号控制打开备用水泵,并发出报警信号。当集

水井中水位下降到停泵水位时即M

2

=0时,则PC发一控制信号控制备用泵停机。

第四章PLC控制回路的设计

4.1 PLC的选择

1、输入点数的确定:设置4个水位点从高到低依次是过高水位、备用泵启动水位、工作泵启动水位、停泵水位,用到4个输入端;电源信号用到2个输入端;泵出口示流信号、压力信号各用到2个输入端,润滑水示流信号用到2个输入端,用于电机运行的接触器KM1、KM

2、KM6、KM7,用于电机三角形降压启动的接触器KM

3、KM8,用于阀门电动机正反转的接触器KM

4、KM

5、KM9、KM10用到10个输入端,共计22个开关量输入点。

2、输出点数的确定:水位指示灯4个;1号泵启动/停泵信号2个;2号泵启动/停泵信号2个;两组冲水电磁阀2个;两组阀门正/反转及停车信号6个;电源指示灯2个;手动指示灯和自动指示灯2个;两组故障指示灯和蜂鸣器报警输出共3个;总计23个开关量输出点。

3、根据以上分析选用FX2N-48MR-001,共24个开关量输入端,24个开关量输出端。输入点余出2个可用于主备水位计各自输入端,亦可作为余量。FX2N 是FX系列中功能最强、速度最高的微型PLC,内置用户存储器8Kb,可扩展到16Kb,最大可扩展到256个I/O点,可有多种特殊功能扩展,实现多种特殊控制功能(PID、高速计数、A/D、D/A、等)。有功能很强的数学指令集。通过通信扩展板或特殊适配器可实现多种通信和数据链接。

4.2 I/O端子分配及接线图

PLC外部端子接线图如图4-1所示:

4.3 梯形图程序设计

根据系统工艺和控制要求,依据I/O端子分配,在梯形图程序中设置了相应的程序段功能模块,设计梯形图如图4-2所示。

水电站自动化

水电站自动化 1、同步发电机并列时脉动电压周期为20s,则滑差角频率允许值ωsy为5、在电力系统通信中,主站轮流询问各RTU,RTU接到询问后回答的方式属于6、下列同步发电机励磁系统可以实现无刷励磁的是7、某同步发电机的额定有功出力为100MW,系统频率下降时,其有功功率增量为20MW,那么该机组调差系数的标么值R*为8、下列关于AGC 和EDC的频率调整功能描述正确的是9、在互联电力系统中进行频率和有功功率控制时一般均采用10、电力系统的稳定性问题分为两类,即11、电力系统状态估计的正确表述是1 2、发电机并列操作最终的执行机构是13.同步发电机励磁控制系统组成。14.电机励磁系统在下列哪种情况下需要进行强行励磁15.同步发电机的励磁调节器16.直流励

磁机励磁系统的优点是17.当同步发电机进相运行时,其有功功率和无功功率的特点是18.进行预想事故分析时,应采用快速潮流法仿真计算,主要包括19.电力系统发生有功功率缺额时,系统频率将。20.在互联电力系统区内的频率和有功功率控制用的最普遍的调频方法是。21.自动励磁调节器的强励倍数一般取。22.分区调频法负荷变动判断。23.下列关于主导发电机调频描述错误的是。24.下列不属于值班主机的任务是。发电计划的功能包括26.电力系统中期负荷预测的时间范围是。27.馈线远方终端FTU 的设备包括28.重合器的特点是29.主站与子站间通常采用的通信方案是30.同步发电机并列的理想条件表达式为:fG=fX、UG=UX、δe=0。 31.若同步发电机并列的滑差角频率允许值为ωsy =%,则脉动电压周期为(s)。 32.谋台装有调速器的同步发电机,额定有功出力为100MW,当其有功功率增量

水电站课程设计

水电站课程设计——水轮机选型设计说明书 学校: 专业: 班级: 姓名: 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

水电站自动化系统机组LCU

水电站自动化系统机组LCU 一、系统概述: 1、水电站自动化系统概括说明: 水电站自动化系统是电站安全、优质、高效运行的重要保证。 目前我国绝大多数大中型电厂以及新建电厂均投入计算机自动化系统设备,国内自动化系统的市场已步入成熟发展的阶段。 水电站自动化系统采用全开放、分层分布式结构,系统由站控层、网络层和现地层设备构成。站控层各站点功能相对独立,互不影响;现地层以间隔为单元,各个 LCU (现地控制单元Local Control Unit)功能也相对独立,在站控层故障的情况下,LCU 仍能独立完成其监测和控制功能。 站控层是水电厂/站设备监视、测量、控制、管理的中心。站控层包括:操作员站、工程师站、通信服务器。另外根据水电厂/站的需要可以配置模拟屏、背投系统。 现地层一般以间隔为单元,配有机组LCU、公用设备及升压站LCU、坝区LCU 以及辅机控制单元等,不同的控制对象分散在各个机旁,或是中控室。在站控层及网络层故障的情况下,现地层仍能独立完成各间隔的监测和控制功能。现地层各LCU完成各单元的任务,相互独立,一个LCU故障不会影响其他LCU的运行。

网络层是站控层与现地层数据传输通道通。网络层可以按不同的容量的水电厂/站和不同的客户需求,配置成单以太网、双以太网和光纤自愈环网。网络通讯介质可采用光纤、同轴电缆或屏蔽双绞线。 系统网络结构有:单以太网、双以太网模式等。 单以太网系统特点是:在保证系统数据通道带宽的同时,做到系统扩展能力强,形式简洁,接口简单,方便安装调试。在实现系统性能的同时,可以有效地降低系统的成本。系统适合与中小型水电站,以及对系统成本控制有较高要求的水电站。 选用双以太网模式,相比单以太网而言,有效地提高系统的可靠性以及分担数据流量、减轻网络负荷,相应得网络投资加大。正常时,设备的数据交换分配在两个网络上,当某个网络发生故障的时候,立即自动切换到非故障的网络上,保证系统得正常通讯。该网络模式适用于各类大中型水电站,以及对系统 可靠性要求相对较高的用户。

水电站自动化讲解

1.7 数字式并列装置 1.7.1 概述 用大规模集成电路微处理器(CPU )等器件构成的数字式并列装置,由于硬件简单, 编程方便灵活,运行可靠,且技术上已日趋成熟,成为当前自动并列装置发展的主流。 模拟式并列装置为简化电路,在一个滑差周期s T 时间内,把S ω假设为恒定。数字式并列装置可以克服这一假设的局限性,采用较为精确的公式,按照e δ当时的变化规律,选择最佳的越前时间发出合闸信号,可以缩短并列操作的过程,提高了自动并列装置的技术性能和运行可靠性。 数字式并列装置由硬件和软件组成,以下分别进行介绍。 1. 主机。 微处理器(CPU )是装置的核心。 2. 输入、输出接口通道。 在计算机控制系统中,输入、输出过程通道的信息不能直接与主机总线相连,它必须由接口电路来完成信息传递的任务。 3. 输入、输出过程通道。 为了实现发电机自动并列操作,需要将电网和带并发电机的电压和频率等状态按照要 求送到接口电路进入主机。 (1) 输入通道。按发电机并列条件,分别从发电机和母线电压互感器二次侧交流电压 信号中提取电压幅值、频率和相角差等三种信息,作为并列操作的依据。 1)交流电压幅值测量。采用变送器,把交流电压转换成直流电压,然后由A /D 接 口电路进入主机。对交流电压信号直接采样,通过计算求得它的有效值。如图1.18所示。 2)频率测量。测量交流信号波形的周期T 。把交流电压正弦信号转化为方波,经二 分频后,它的半波时间即为交流电压的周期T 。 3)相角差e δ测量。如图1.19所示,把电压互感器电压信号转换成同频、同相的方 波信号。 (2)输出通道。自动并列装置的输出控制信号有: 1)发电机转速调节的增速、减速信号。 图1.17 数字式并列装置控制逻辑图

水电站课程设计水电站厂房设计

课程设计:水电站厂房设计 专业班级:12级水利水电工程卓越班姓名: 学号: 指导教师: 南昌工程学院水利与生态工程学院印制 2015——2016学年第一学期

南 昌 工 程 学 院 课程设计(论文)任务书 I 、课程设计(论文)题目:某水电站厂房课程设计 II 、课程设计(论文)使用的原始资料(数据)及设计技术要求: 一、设计原始资料 (一)工程概况 图1为某水电站的厂房布置图,它是一座以发电为主兼有防洪、灌溉、过木、供水等综合效益的县办骨干电站。采用钢筋混凝土堆石坝,最大坝高74m ,坝址以上控制流域面积564k ㎡,占全流域面积的75.3%,多年平均流量为s m /6.173水库总库容为3 810783.2m ?,属多年调节。 图1 厂房为坝后式,安装3台8000KW 机组,总装机容量KW 4104.2?,保证出力5500KW ,多年平均发电量h KW ??4107260,年利用小时3025h ,在系统中(地方电网)担任调峰、调相任务,并可对下游梯级进行调节,经济效益显著。 在枢纽布置上,为避免厂房、溢洪道、筏道的相互干扰,将岸坡式溢洪道布置在坝左岸的一鼻形山脊上,用钢筋混凝土挡土墙与堆石坝衔接,出口消能采用挑流形式。过木干筏道布置在坝左岸的山坡上。隧洞布置在坝右岸的山体中,具有导流、发电引水和放空等

多种功能,即施工期用隧洞导流,并在导流洞口上的山岩中另开一洞口,与隧洞相连成为“龙抬头”形式,采用塔式进水口作为发电引水和放空隧洞的首部,水库蓄水时将导流洞口封赌。隧洞直径为5.2m 。隧洞出口设有放空水库用的闸门。在放空闸门上游另凿发电引水岔洞,洞径4.6m ,然后以三根m 2Φ的钢支管与机组相连。 本工程规模属大(2)型,枢纽为二等工程,电站厂房按3级建筑物设计。 (二)水电站厂房主要设备 1、水轮机和发电机 电站最大水头m H 3.64max =,加权平均水头m H cp 63.59=,最小水头m H 02.38min =。按水头范围及装机容量,套用3台现有机组。水轮机型号为140220--LJ HL ,单机额定 出力为KW 8333,该机组适用m H 65max =,m H 38min =m H p 58=,额定流量35.16m /s , 和电站水头范围比较匹配。发电机型号为3300/168000-SF ,单机额定出力KW 8000(悬式),采用密封式通风,可控硅励磁。水轮机导叶0b 为0.35m 。水轮机带轴长3.74m ,发电机转子带轴长4.785m.。一台机组在设计水头、额定出力下运行的尾水位为100.1 m 。 2、调速器:选用3500-YDT 型电气液压式 3、主阀:采用卧式液压型摇摆式接力器双平板偏心蝴蝶阀 4、桥式起重机:本电站的最重部件为发电机转子带轴重37.5t ,结合厂房布置要求。选用起重机跨度m L k 12=,主副钩最大起升高度分别为20m 和22m ,主钩最高位置至轨顶距离为0.911m ,小车高度2.723m 。厂房屋顶结构厚度为2.456 m 。 二、设计技术要求 厂房课程设计重点是主厂房内部主要设备和结构的布置,以及轮廓尺寸的决定。设计图应符合工程图纸的要求,说明书应能说明设计内容,文字通顺、整洁。 III 、课程设计(论文)工作内容及完成时间: 一、工作内容 水电站厂房课程设计要求学生根据所给任务书,利用所给的资料,完成下列工作: 1、用简略的方法选择厂房的主要和辅助设备。 2、进行厂区和厂房内部布置,决定厂房的轮廓尺寸。 3、绘制设计图纸(至少要有一平一立两张图纸)和编写设计计算书和说明书。 二、完成时间 本课程设计2周,具体安排大致如下(供参考): 1、设计布置,了解设计任务书及熟悉原始资料 1天 2、进行厂房布置设计,并布置草图 6天 3、绘厂房布置图(可用计算机绘制)及整理编写计算书和说明书 3天 Ⅳ 主 要参考资料: 《水电站厂房设计规范 SL 266-2014 替代SL266-2001 中华人民共和国水利部 编 中国水利水电出版社 2014》 《DLT5186-2004水力发电厂机电设计规范》 《水力机械(第2版)金钟元 编 中国水利水电出版社 1992》

水电厂自动化(1)概论

1.水电厂在电力系统中的作用:1担负系统的调频、调峰任务。电能不能大量存储,其生产、输送、分配和消耗必须在同一时间内完成。为了保持系统的频率在规定的范围内,系统中就必须有一部分发电站和发电机组随负荷的变化而改变出力。以维持系统内发出的功率和与消耗的功率平衡。对于变化幅度不大的负荷,频率的调整任务主要是由发电机组的调速装置来完成。对于变化幅度较大、带有冲击性质的负荷,则需要有专门的电站或机组来承担调频的任务。2担负系统的备用容量。具有一定的备用容量,是电力系统进行频率调整和机组间负荷经济分配的前提。由于所有发电机组不可能全部不间断地投入运行,而且投入运行的发电机组也不是都能按额定容量工作,故系统中的电源容量并不一定等于所有发电机组额定容量的总和。为了保证供电可靠性和电能质量,系统的电源容量应大于包括网损和发电站自用电在内的系统总负荷。。。。 2.电力系统备用容量分类:1负荷备用。用于调整系统中短时的负荷波动,并满足计划外负荷增加的需要。这类备用容量应根据系统负荷的大小、运行经验和系统中各类用户的比重来确定,一般为系统最大负荷的2%—5%。2事故备用。用于代替系统中发生事故的发电设备,以便维持系统的正常供电。事故备用容量与系统容量、发电机台数、单机容量、各类型发电站的比重和供电可靠性的要求等因素有关,一般约为系统最大负荷5%—10%,并不应小于系统中最大一台机组的容量。3检修备用。是为定期检修发电设备而设置的,与负荷性质、机组台数、检修时间长短及设备新旧程度有关。。。。 3.水电厂自动运行的内容:1自动控制水轮发电机组的运行,实现开停机和并列、发电转调相和调相转发电等自动控制程序。2自动维持水轮发电机组的经济运行。3完成对水轮发电机组及其辅助设备运行工况的监视和对辅助设备的自动控制。4完成对主要电气设备(如主变压器、母线和输电线路等)的控制、监视和保护。5完成对水工建筑物运行工况的控制和监视,如闸门工作状态的控制和监视,拦污

xx水电站自动化改造

水电站自动化改造工程 一、工程概况 xxx水电站位于xx流域,xx河支流东河、西河上,xxx镇境内,为跨流域开发的水电站,该电站是xx公司装机容量最大的电站。装机容量为2×2000KW,设计年发电量1026万KWh,年利用小时数2565h。电站水库来水面积为66.2km2,总库容635万m3,调节库容298.9万m3。 电站主体建筑物有:拦河坝、隧洞、压力钢管、厂房、升压站。 拦河坝为砌石双曲拱坝,坝顶高程238.2m,最大坝高52.55m,坝顶宽3.0m,坝顶弧长158m。 发电引水隧洞,总长1554.3m,由进口、隧洞、调压井组成,从隧洞进口到调压井断面为2.5×2.75m的城门洞,局部采用钢筋混凝土衬砌。调压井为圆筒型,内径为2.5m,从调压井至隧洞出口101.5m,隧洞出口接压力钢管,主管直径1.3m,长241.5m,支管直径0.9m,两支管长30+21.5m,壁厚10mm及12mm。 发电主厂房内安装2×2000kW的卧式机组。水轮机型号为HLD46-WJ-67,额定出力为2000kW,设计水头103.5m,流量2.688m3/s,额定转速1000r/min,配套的水轮发电机为SFW2000-6/1430,额定容量2500kVA,额定电压为6300V,额定电流为229.1A,调速器为YDT-600型,油压装置为HYZ-0.3型,并设置了一台手动双梁桥式起重机。 升压站位于厂房左侧山坡,距厂房40m,站内布置S7-5000kVA/38.5/6.3kV主变压器1台,S7-100kVA/35/0.4kV厂用变1台,(另S7-100kVA/6.3/0.4kV厂用变1台备用),DW1-35/630型多

水电站自动化保护

一、选择题 1、应用水头范围广(约为20~700m)的水轮机是()水轮机。 A、混流式 B、轴流式 C、斜流式 D、贯流式 2、在施工中块体大小必须与混凝土制备、运输和浇筑的生产能力相适应,即要保证在混凝土初凝时间内所浇的混凝土方量,必须等于或大于块体的一个浇筑层的混凝土方量。主要是为了避免()出现。 A、冷缝 B、水平缝 C、临时缝 D、错缝 3、在洪泛区、蓄滞洪区内建设非防洪建设项目,应当编制()。 A、洪水影响评价报告 B、洪水可利用资源化评价报告 C、建设项目可行性研究报告 D、洪水影响与方案实施报告 4、根据《水利水电工程施工质量评定规程(试行)》(SL176—1996),关于工程质量检验,以下说法正确的是()。 A、工程质量检验的计量器具需经县级以上人民政府技术监督部门认定的计量检定机构或其授权设置的计量检定机构进行检定,并具备有效的检定证书 B、参与中间产品质量资料复核人员应具有中级以上工程系列技术职称 C、质量监督机构实行以普查为主要方式的监督制度 D、临时工程质量检验项目及评定标准,由建设、监理、设计及施工单位参照《水利水电基本建设工程单元工程质量评定标准》的要求研究决定,并报相应的质 E、检测人员应熟悉检测业务,了解被检测对象和所用仪器设备性能,并经考核合格,持证上岗 5、关于阶段验收,下列说法正确的是( )。 A、工程截流前,应进行截流前(阶段)验收 B、水电站每台机组投入运行前,均应进行机组启动(阶段)验收 C、大型枢纽工程在截流、蓄水等阶段验收前,必须先进行技术性初步验收 D、泵站每台机组投入运行前,均应进行机组启动(阶段)验收 E、对于总台数少于3台的泵站,可待全部机组安装完成后,再进行机组启动验收 6、水泥帷幕灌浆时,坝体混凝土和基岩的接触段应先行单独灌浆并应待凝,接触段在岩石中的长度不得大于()。 A、1m B、2m C、3m D、4m 7、对于挡水建筑物有时将坝轴线布置成折线,其主要考虑的理由是()。

水电站厂房课程设计西华精选文档

水电站厂房课程设计西 华精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

课程设计报告 (理工类) 课程名称: 水电站建筑物课程设计 课程代码: 8511961 学院(直属系): 能源与环境学院 年级/专业/班: 2010级/水利水电工程/2班 学生姓名: 学号: 3320 实验总成绩:

任课教师: 杨耀 开课学院: 能源与环境学院 水电站厂房课程设计任务书 西华大学能源与环境学院 2012年5月 一、课程设计的目的 课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算、制图和应用技术资料的技能。 二、课程设计的内容与要求 设计的内容概括地说,就是在给定工程枢纽布置和厂区位置的前提下,利用现有资料进行厂房布置设计。 具体内容包括: 1.确定主厂房的轮廓尺寸;

确定厂房轮廓尺寸时有关机组和设备的尺寸可由给定的基本数据查找或查阅有关的工具书。 2.绘出蜗壳与尾水管单线图,拟定转轮流道、座环等尺寸; 3.选择厂房起重设备; 4.进行厂区布置; 厂区布置可在地形图上绘出,要求至少拟定两个方案进行比较后,确定一个方案。 5.进行厂房布置; 厂房布置的具体内容包括主、副厂房的布置和对厂房结构布置的考虑,说明如下: ①在布置主、副厂房的同时,对厂房的结构布置一定要有考虑,包括: a.主厂房的分缝 b.一、二期混凝土的划分 c.止水的设置 d.下部块体结构的布置,包括机墩、蜗壳混凝土、尾水管的结构型式、尾水闸墩、上下游墙等的结构布置,在下部块体中要设哪些工作孔道,在什么位置等。

水电站电气自动化设备的可靠性初探

水电站电气自动化设备的可靠性初探 发表时间:2017-03-29T15:18:59.600Z 来源:《北方建筑》2016年12月第35期作者:徐文静 [导读] 电在我们生活中发挥的作用越来越重要,已经成为我们日常生活和工作必不可少的一部分。 四川省玉溪河灌区管理局百丈水库电站四川邛崃 611530 摘要:电的发明并广泛应用,让我们的日常生活发生了翻天覆地的巨大变化。电灯、电话、冰箱、洗衣机等等电器设备的发明和使用,让我们的生活变得更加光明,更加方便,由此可见,电在我们生活中的重要性。同时,电还是企业单位生产发展所必须的能源,如果没有电,可能很多企业都无法正常运转生产,对国民经济的发展有着重要的意义。因此,保障电的供需平衡是电力人员工作的重中之重,必须保障发电机等与电生产运输使用等相关设备的正常并高速运转,其中,必然要全力保证发电站电气设备的可靠性和稳定性,保证与之相关的每一个子系统甚至是细小的零部件都可以正常使用,保证每一个生产环节的安全和可靠。本文通过多方面的研究和探索来全面介绍发电机的可靠性和电气设备的可靠性能,从而可以更多层次,更多方面的保障电力系统的可靠性。 关键词:水电站;电气自动化设备;可靠性探究 前言 电在我们生活中发挥的作用越来越重要,已经成为我们日常生活和工作必不可少的一部分。高功率设备的研制并投入使用让我们对电力资源的要求越来越高,这就促使人们研究出更加高质量、可以远距离运输和承受巨大电压的电力系统。但是,电力属于高危险领域,稍有不慎就会发生事故,不仅造成经济损失,更严重的是会造成巨大的人员伤亡。因而,要加强水电站等电力设备的可靠性,以此来更好的增加水电站发电系统的稳定性,减少故障发生的频率。因此,只有充分了解水电站的系统每一个环节,清楚每一个设备操作流程,并制定好各种故障的应急措施,保障水电站电气设备的安全使用,保证水电站的高效运转,从而传送出电压更加稳定,更加高质量的电能。一、电力系统可靠性探究的现状 (一)电力系统可靠性研究的进展 只有全面系统的了解电力设备的使用情况和可能出现的故障,才能更好的掌握电力设备的使用特点和存在的问题,及时的根据数据的变化来制定对应的调整措施,并指明下一步的研究方向。同时,建立关于电力可靠性管理的报告表,让更多的人知道目前的电力系统的发展状况和最新研究成果,这也从另一方面预测了电力系统运转的可靠性,更好的发现电力系统存在的不足之处,推动电气自动化的发展,更好的满足经济社会发展的需要。 目前,水电站数量众多,而且水电站电气设备并没有统一的要求和使用标准,或许,每一个水电站所使用的设备不一样,加之,电力生产和使用情况的不确定性让整个电力市场更加混乱,导致电力系统更加不稳定,这也给经济社会的发展埋下了潜在的安全隐患。因而,想要经济快速高效而又稳定的发展,必须加强电力市场的监管和规范,按照市场运行的特点制定契合实际情况的原则。除此之外,还应加强市场技术方面的支持,促进市场产品的标准更加规范化,更加统一化,以此更好的促进市场的发展,更好的规避风险。 (二)电力系统可靠性研究的瓶颈 电力系统的可靠性要求电力系统能够安全稳定而又持续不断的更加可靠的保证电能的需求量,尽可能的避免因自身或者外在原因造成的故障,导致电力系统的瘫痪或者破坏,带来严重的经济损失。 建立完整的数据库,电力系统是一个非常复杂而庞大无比的完整的系统,太多的不确定因素让它稳定性较差,因而,只有把这个完整的系统按照一定的规律和标准划分为多个不同的版块,进行全面细致的研究和评估预测,掌握其运行的规律和特点,得出可靠性的数据,发现可能会出现的各种故障以及找出解决措施,保证其的可靠性和稳定性。 当前的市场和用电情况在不断的变化之中,只有积极的去研究可以加强电力系统可靠性的措施和性能更加稳定的设备,才能更好的保证电力系统的安全运转,更好的推动电力系统的完善和发展。 (三)研究电力系统可靠性的初衷 电力对我们生活的重要性是有目共睹的,根本无法想象如果没有电,现如今的社会是什么样子,可能会瘫痪。电力的稳定需要电力系统的可靠运转,稳定传送,只有这样我们才能继续生活在电的世界。但是,电力系统并不是没有任何缺点的,水电站的电气设备可能会出现各种各项的故障造成电力系统的瘫痪,因而,要加强电力系统可靠性的研究,加强电力系统的可靠性,研究制造更多的新技术新产品新设备,更好的推动经济的发展,而不能因为现在的“安稳”而忘记潜在的隐患。 二、水电站电气设备的可靠性发展 (一)励磁系统、发电控制设备、机组顺序自动控制系统、调速系统的可靠性 励磁系统之所以被称为系统,是因为它由多个设备和子系统组成,各个组成部分之间的复杂连接,环环相扣,相互影响,不管是哪一个环节或者设备出现问题,整个系统都不能正常运转。 发电控制设备是整个发电系统的关键,包含着励磁系统、调速系统等组成,不管是哪一个系统出现问题,都会牵一发而动全身,整个系统也会处于非正常运转状态,因而,想要水电站正常工作就要保证每一个子系统的正常运转。 机组顺序自动控制系统包括电源灯部件,它们相互关联,共同的作用于这个系统,共同保证这个系统的正常运转。 调速系统是由三个部分组成的,分别是气电、机械部门和电液转换器,每个组成系统之间相互依存,相互作用。 (二)输电设备的可靠性 输电设备在电力系统中地位十分重要,由变压器、短路器以及电气主接线组成,它们相依相存,密不可分,只有每一个组成部分都正常运转才能保证整个系统的正常运转。只有用串联以及并联的方法来综合分析,才能明白输电设备的运行原理,才能更加明白它的可靠性分析。 (三)电气元件的可靠性 有些电气元件是可以修复的,但是有一些是无法修复的,包括时间以及使用寿命等等,其中设备系统的寿命,简单的说也就是时间,

水电站课程设计

. . 水电站课程设计 ——水轮机选型设计说明书 学校: 专业: 班级: : 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

水电站课程设计

《水电站》课程设计水轮机的选型设计 专业:XXX 班级: XX 姓名:XXX 学号:XXX 指导教师:XXX

【摘要】 本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。 【关键词】 水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置。

【Abstract】 Curriculum project of hydro station is a important course and practical process in curriculum provision of water-power engineering major . There are more contents and specialized knowledge in the curriculum project , which make students not to adapt themselves quickly to complete the design . In this paper , characteristic of the curriculum project is analyzed , causes of in adaptation to the curriculum project in students are found , rational guarding method are proposed , and a example of applying the guarding method is given . The results show that using provided method to guard student design is a good method, when teaching mode and time chart are given , students are guarded from mode of thinking and methodology , and design step are discussed and given . After the curriculum project of hydro station, the capability of students to solve practical engineering problems is improved , and the confidence to engage in design is strengthened . 【Keyword】 Curriculum project of hydro station; guarding method ; mode of thinking ; methodology; design step.

水电站自动化讲解

1. 7 数字式并列装置 1.7.1概述用大规模集成电路微处理器(CPU)等器件构成的数字式并列装置,由于硬件简单,编程方便灵活,运行可靠,且技术上已日趋成熟,成为当前自动并列装置发展的主流。模拟式并列装置为简化电路,在一个滑差周期T s时间内,把S 假设为恒定。数字式并列装 置可以克服这一假设的局限性,采用较为精确的公式,按照 e 当时的变化规律,选择最佳的越前时间发出合闸信号,可以缩短并列操作的过程,提高了自动并列装置的技术性能和运行可靠性。数字式并列装置由硬件和软件组成,以下分别进行介绍。 图1.17 数字式并列装置控制逻辑图 1.主机。 微处理器(CPU)是装置的核心。 2.输入、输出接口通道。在计算机控制系统中,输入、输出过程通道的信息不能直接与主机总线相连,它必须由接口电路来完成信息传递的任务。 3.输入、输出过程通道。 为了实现发电机自动并列操作,需要将电网和带并发电机的电压和频率等状态按照要求送到接口电路进入主机。 (1)输入通道。按发电机并列条件,分别从发电机和母线电压互感器二次侧交流电压信号中提取电压幅值、频率和相角差等三种信息,作为并列操作的依据。 1)交流电压幅值测量。采用变送器,把交流电压转换成直流电压,然后由A /D 接 口电路进入主机。对交流电压信号直接采样,通过计算求得它的有效值。如图 1.18 所示。 2)频率测量。测量交流信号波形的周期T。把交流电压正弦信号转化为方波,经二 分频后,它的半波时间即为交流电压的周期T。 3)相角差e测量。如图1.19 所示,把电压互感器电压信号转换成同频、同相的方波信号。 (2)输出通道。自动并列装置的输出控制信号有: 1)发电机转速调节的增速、减速信号。

水电站课程设计汇本报告

1.课程设计目的 水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。 2.课程设计题目描述和要求 2.1工程基本概况 本电站是一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池设有工作闸门、拦污栅、沉砂池和溢水堰等。 本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。 2.2设计条件及数据 1.厂区地形和地质条件: 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.水电站尾水位: 厂址一般水位12.0米。 厂址调查洪水痕迹水位18.42米。 3.对外交通: 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度: 本地区地震烈度为六度,故设计时不考虑地震影响。 2.3课程设计成果要求

水电站自动化

1. 与火电相比,水电运行有什么特点? 答:水电站生产过程比较简单。水轮发电机组起动快,开停机迅速,操作简便,并可迅速改变其发出功率。同时,水轮发电机组的频繁起动和停机,不会消耗过多能量,而且在较大的负荷变化范围内仍能保持较高的效率。 2. 水电站在电力系统中可承担哪些作用? 答:一、担负系统的调频、调峰任务。二、担负系统的事故备用容量。 3. 什么是备用容量,按用途不同可分为哪些种类?答:为了保证供电的可靠性和电能质量,系统的电源容量应大于包括网损和发电站自用电在内的系统总负荷,即发电负荷。系统电源容量大于发电负荷的部分,即称为备用容量。一、负荷备用。用于调整系统中短时的负荷波动,并满足计划外负荷增加的需要。 二、事故备用。用于代替系统中发生事故的发电设备的工作,以便维持系统的正常供电。三、检修备用。是为定期检修发电设备而设置的,与负荷性质、机组台数、检修时间长短及 设备新旧程度等有关。 四、此外,为满足负荷超计划增长设置的备用,称为国民经济备用。 4. 水电站自动化的目的是什么?有哪些主要内容? 答:水电站自动化的目的是:一、提高工作的可靠性。二、保证电能质量。三、提高运行的经济性。四、提高劳动生产率。主要内容包括:一、自动控制水轮发电机组的运行方式,实现开停机和并列、发电转调相和调相转发电等的自动化。二、自动维持水轮发电机组的经济运行。三、完成对水轮发电机级及其辅助设备运行工况的监视和对辅助设备的自动控制。四、完成对主要电气设备的控制、监视和保护。五、完成对水工建筑物运行工况的控制和监视,如闸门工

作状态的控制和监视,拦污栅是否堵塞的监视等。 5. 计算机控制系统由哪些部分组成? 答:计算机控制系统由计算机(又称中央处理机)、外围和外部设备及被控制对象构成。 6. 分布控制将整个电站的控制功能分为哪两级,这种控制的优点是什么? 答:分布控制将整个电站的控制功能分成两级,即全站管理级和单元控制级。分布控制的优点:一、工作可靠。二、功能强。三、便于实现标准化。 第二章 1.什么是并列运行?有什么好处?答:并列运行就是系统中各发电机转子以相同的电角速度旋转,各发电机转子间的相角差不超过允许的极限值,且发电机出口的折算电压近似地相等。同步发电机乃至各个电力系统联合起来并列运行,可以带来很大的经济效益。一方面,可以提高供电的可靠性和电能质量;另一方面,又可使负荷分配更加合理,减少系统的备用容量和充分利用各种动力资源,以达到经济运行的目的。 2.并列方式有哪两种?各自起什么作用? 答:水轮发电机的并列有两种方式,即准同期和自同期。在水电站一般的应用情况是:以自动准同期作为水轮机发电机正常时的并列方式,以手动准同期作为备用,并均带有非同期闭锁装置。至于自同期,则主要用作事故情况下的并列方式,且一般均采用自动自同期并列,同时要求发电机定子绕组的绝缘及端部固定情况应良好,端部接头应无不良现象。 3. 什么是准同期?什么是自同期?它们各自的优缺点是什么? 答:准同期并列是将未投入系统的发电机加励磁,并调节其电压和频率,在满足

水电站综合自动化系统设计(一)

水电站综合自动化系统设计(一) 简介:为了适应自动化发展和电力体制改革的需要,水电站综合自动化系统具有越来越重要的作用。建立以计算机监控系统为基础,包括水文测报、工业电视监视、消防计算机监控系统等的全方位自动监测控制系统,即为水电站综合自动化系统。 关键字:水电站自动化系统相关站中站:防火分区 1.水电站综合自动化系统的意义及应用 随着我国国民经济的快速发展和人民群众物质文化生活水平的不断提高,社会对电力的需求日益增强,对电能质量的要求也越来越高。我国电力行业长期存在自动化水平低下,难以满足社会对高质量电能的要求,为了提高电能质量和发电效率,需对老式水电站中以常规控制、人工操作为主的控制模式进行以计算机监控系统为基础的综合自动化改造;对新建水电站应按综合自动化要求进行设计并实施,使水电站逐步实现少人值班,最终达到无人值班(或少人值守)的目标。 水电站大多地处偏僻山区,远离城镇,职工长期生活在较差的环境之中。对水电站进行综合自动化改造的另一个目的就是为了改善广大水电职工的工作和生活环境,用计算机监控系统来代替人工操作及定时巡回检查、记录等繁杂劳动,实现无人值班(或少人值守)。 根据国家电力体制改革的要求,实现“厂网分开,竞价上网”后,水电站如果没有综合自动化系统,而是依靠传统的人工操作控制,将难以满足市场竞争的需要。不了解实时行情,参与竞价将非常困难。即使争取到了发电上网的机会,又因设备陈旧落后而不能可靠运行,既影响电网供电,又使自身效益受损,最终也失去了好不容易才争取到的发电机遇。所以,电力体制改革也促使我们要实现综合自动化。 令人欣慰的是,近年来随着我国电力科学技术的不断发展和计算机监控水平的不断提高,许多新建水电站都设计了以计算机监控系统为主的高性能的综合自动化系统,一些老式水电站也逐步进行了以实现综合自动化为目标的改造,并都取得了很好的效果。 2.综合自动化系统设计简介 水电站的综合自动化是建立在以计算机监控系统为基础之上的,对整个电站(甚至梯级电站或整个流域)从水文测报;机组启、停控制,工况监视;辅助、公用设备的启、停控制,工况监视;负荷的分配,直到输电线路运行全过程的自动控制,并能准确地与上一级调度部门进行实时数据通信等全方位自动监测的控制系统。一般包括5个子系统。 2.1计算机监控系统 2.1.1概述 这部分是综合自动化系统的核心和基础。根据计算机在水电站监控系统中的作用及其与常规监控设备的关系,一般有以下三种模式: (1)以常规控制设备为主,计算机为辅; (2)以计算机为主,常规控制设备为辅; (3)取消常规控制设备的全计算机监控系统。 根据水电站的装机容量大小、在电网中的作用和各自的具体情况可分别选用不同模式的监控系统。一般新建电站和具备条件(资金、技术和发电许可等条件)的电站适合选择第三种模式,以便达到一步到位的目的。对于受其它条件限制的老式水电站的改造,可分别考虑第一、第二两种模式作为过渡。这其中各种模式针对各自电站的具体情况,在设计时也略有不同。2.1.2实例 值得说明的是,随着多媒体技术在水电站的应用,语音、动画、可视化、视像功能也用于计算机监控系统。设计时应根据多媒体系统的结构,解决好与监控系统的连接问题。 2.1.3计算机监控系统的主要功能 梯级电站中心计算机监控系统应具备遥测、遥控、遥信、遥调(即“四遥”)的功能。

水电站课程设计

《水电站建筑物》课程设计BL电站计算说明书 姓名: 学号: 指导教师: 年月日

一、基本资料 1.1工程概况 根据某市供水和灌溉的需求,于X河的Y河口坝址修建BL水电站。该电站水库控制流域面积2085km2,坝址处多年平均径流量7.21×108m3。 水库属大(2)型,工程等别为Ⅱ等,主要建筑物为2级,次要建筑物为3级。采用混合坝型,拟建一座坝后式水电站。电站尾水泄入灌溉渠道,结合工农业用水进行发电。 水电站厂房按3级建筑物设计,厂房经右岸坝下公路对外联系。 1.2设计的目的与任务 目的:通过本次课程设计,使学生将所学水电站基本知识加以系统化,能够运用基本理论知识解决实际工程问题,使学生在分析问题、理论计算、制图、编写说明书与计算书等方面得到锻炼,初步掌握水电站的设计步骤、方法、基本理论,为参加工作打下基础。 任务:进行水轮机选型与厂房布置设计。 1.3BL电站设计资料 气象资料: 该地区多年平均气温9.3℃,最低气温-35.8℃。最大风速北风21m/s。最大冰厚0.37m。地面冻结深度一般在1.1m左右。 水文资料: (1)水库特征水位与溢洪道泄量特征: (2 电站尾水渠出口即为灌溉渠道的渠首,渠底高程40.35m,渠顶高程45.90m,渠

道设计流量48.0m 3/s 。渠道加大流量53.0m 3/s 。 电站尾水渠水位流量关系表(Z ~Q ): (3)厂房地质资料 水库坝址系由变质岩、沙岩、熔岩及花岗岩类组成,坝址有一组北北西向断层,在厂房范围内有一小断层通过。 本地区地震基本烈度为Ⅶ度。厂房设计烈度为7度。 (4)水轮机选型的基本资料: 经水能计算,最终确定: 1.电站最大水头H max =27.8m ; 2.加权平均水头H a =22.1m ; 3.设计水头H r =21.3m ; 4.电站正常运转时的最小水头H min =14.0m 。 5.水电站总装机容量N f =6400kW ,考虑水电站运行及用水量变化规律,经方案比较,决定选用两台机组。发电机效率ηf =0.91。 二、 水轮机的选型 本水电站的最大水头H max =27.8m ,正常运转时最小水头H min =14.0m ,加权平均水头H a =22.1m ,设计水头H r =21.3m 。水电站总装机容量N f =6400kW ,设计装机台数2台,单机容量N y1=3200kW 。 2.1水轮机型号选择 根据该水电站的水头变化范围14.0~27.8m ,查《水电站(第三版)》,河海大学,刘启钊主编P 73表3-4水轮机系列型谱中查出合适的机型有HL240、HL310。选择HL240。 2.2 转轮直径的计算 转轮直径D 1按下式计算: m H H Q N D r 63.1%6.893.213.2140.181.93200 81.9r '1r 1=????= =η (2-1) 式中 N r ——水轮机的额定出力,3200kW ; H r ——水轮机的设计水头,21.3m ; '1Q ——原型水轮机单位流量,初步假定s /40.13'1'1m Q Q M ==; η ——与'1Q 相应的原型效率,假设为89.6%。 根据计算结果,D 1=1.63m ,应选择与之相近且偏大的轮转标称直径,但D 1=1.8m 相差太大,可近似取为D 1=1.6m 。

相关文档
最新文档