通信原理实验模拟调制系统

通信原理实验模拟调制系统
通信原理实验模拟调制系统

实验一模拟调制系统

1.1 集成乘法器幅度调制电路

一、实验目的

1.通过实验了解振幅调制的工作原理;

2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系;

3.掌握用示波器测量调幅系数的方法。

二、实验仪器

1. 集成乘法器幅度调制电路模块

2. 高频信号源或“PSK调制模块”

3. 双踪示波器

4. 信号(夹子)连接线

三、实验内容

1.模拟相乘调幅器的输入失调电压调节。

2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。

3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。

4.用示波器观察调制信号为方波、三角波的调幅波。

实验原理:用低频调制信号去控制高频振荡(载波)的幅度,使其成为带有低频信息的调幅波。本实验采用MC1496集成模拟相乘器来实现调幅之功能。

1.实验准备

调制信号源:采用非同步函数信号,频率1khz,正弦波,输出峰峰值300mV。

载波源:PSK调制模块,工作频率1MHz,正弦载波,输出峰峰值300mV。

2.交流馈通电压的调整

集成模拟相乘器在使用之前必须进行输入失调调零,也就是要进行交流馈通电压的调整,其目的是使相乘器调整为平衡状态。

(1)载波输入端输入失调电压调节

把调制信号源输出的音频调制信号加到音频输入端,而载波输入端不加信号。

(2)调制输入端输入失调电压调节

把载波源输出的载波信号加到载波输入端,而音频输入端不加信号。

调节电位器8W01使此时输出信号最小:

3.DSB(抑制载波双边带调幅)波形观察

(1)DSB信号波形观察

将高频信号源输出的载波接入载波输入端(8P01),低频调制信号接入音频输入端(8P02)。示波器CH1接调制信号(8P02),示波器CH2接调幅输出端(8P03),即可观察到调制信号及其对应的DSB信号波形。

经调整可看出DSB信号波形为调制信号的包络:

4.AM(常规调幅)波形测量

开关8K01置AM,载波频率仍设置为1MHZ(幅度300mV),调制信号频率1KHZ(幅度300mV)。示波器CH1接调制信号、CH2接调幅输出端。

变化幅度:

调制信号为三角波和方波时:

1.2 集成乘法器幅度解调电路

一、实验准备

1.做本实验时应具备的知识点:

● 振幅解调

● 模拟乘法器实现同步检波

2.做本实验时所用到的仪器:

● 集成乘法器幅度解调电路模块

● 集成乘法器幅度调制模块

● 高频信号源

● 双踪示波器

二、实验目的

1.熟悉电子元器件和高频电子线路实验系统;

2.掌握用MC1496模拟乘法器组成的同步检波器来实现AM 波和DSB 波解调的方法;

3.了解输出端的低通滤波器对AM 波解调、DSB 波解调的影响;

4.理解同步检波器能解调各种AM 波以及DSB 波的概念。

实验原理:振幅解调的方法有包络检波和同步检波两种,本实验采用同步检波,即集成乘法器幅度解调电路。

1.实验准备

复调幅实验部分内容,先产生调幅波,再供这里解调之用。

2.集成电路(乘法器)构成的同步检波

AM 波的解调

分别观察并记录当调制电路输出为a m =30%、a m =100%、a m >100%时三种AM 的解调输出波形,并与调制信号作比较。

m=30%时:

调制电路输出大概为

a

m=100%时:

调制电路输出大概为

a

m>100%时,明显看到失真:调制电路输出

a

AM 波的解调

采用调幅实验中步骤3中相同的方法来获得DSB 波,并加入到幅度解调电路的调幅输入端,而其它连线均保持不变,观察并记录解调输出波形,并与调制信号作比较。

改变调制信号频率及幅度:

调制信号为三角波和方波时:

实验总结与体会: 实验一复习了模拟调制中集成乘法幅度调制与解调过程,使我深入地理解振幅调制与解调的工作原理。在实验中得到了一些体会并发现了一些问题,比如:相乘调幅器使用时要进行馈通电压的调节,否则不能进入平衡状态,会影响调制过程(具体影响有待验证);AM 调幅中调幅输出信号波形相对于调制信号波形有略微的相移,我们认为是调制中的延时所致,但是没有想到方法去验证,而双边调幅过程则不存在这种现象;另外AM 波的解调部分感觉输出波形不理想,不知道具体的原因是什么。

模拟调制仿真

课程设计报告题目模拟调制仿真

目录 一.原理 (1) 二.编程思想 (2) 三.结果 (3) 四.分析 (5) 五.程序代码 (8)

一.原理 1.1模拟调制原理 模拟调制包括幅度调制(DSB,SSB,AM)和相角调制(频率和相位调制)。在本次设计中主要讨论模拟调制中的幅度调制,幅度调制即用基带调制信号去控制高频载波的幅度,使其按基带信号的规律变化的过程。幅度调制主要有AM调制,DSB调制,SSB调制。他们的调制原理如下,AM调制:AM 是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程;DSB调制:在幅度调制的一般模型中,若假设滤波器为全通网络,调制信号中无直流分量,则输出的已调信号就是无载波分量的双边调制信号,或称抑制载波双边带调制信号;SSB调制:由于 DSB 信号的上、下两个边带是完全对称的,皆携带了调制信号的全部信息,因此从信息传输的角度来考虑,仅传输其中一个边带。 1.2 AM调制 AM信号的时域表示式: 频谱: 调制器模型如图所示: 1.3 DSB调制 DSB信号的时域表示式 频谱: 1.4 相干解调 相干解调器原理:为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(称为相干载波),它与接收的已调信号相乘后,经低 00 ()[()]cos cos()cos AM c c c s t A m t t A t m t t ωωω =+=+ 1 ()[()()][()()] 2 AM c c c c S A M M ωπδωωδωωωωωω=++-+++- ? () m t() m s t c t ⊕

2psk调制通信系统

2psk 调制通信系统 一,设计任务与要求 课程设计需要运用MA TLAB 编程实现2PSK 调制解调过程,并且输出其调制及解调过程中的波形,讨论其调制和解调效果。 二,实验基本原理 数字调制技术的两种方法: ①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理。 ②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(2PSK )基本的调制方式。相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK 中,通常用初始相位0和π分别表示二进制“1”和“0”。 2psk 调制器可以采用相乘器,也可以采用相位选择器就模拟调制法而言,与产生2ASK 信号的方法比较,只是对s(t)要求不同,因此2PSK 信号可以看作是双极性基带信号作用下的DSB 调幅信号。而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ 或双极性NRZ 脉冲序列信号均可。2PSK 信号属于DSB 信号。 本次实验采用的的模拟相乘法即通过载波和双极性不归零码的相乘得到2psk 信号,则2psk 信号产生的调制原理框图和时域表达式如下: ?? ?-±=p t P t t p s k e -,c o s ,c o s c o s 2_概率为概率为ωωω 图1时域表达式 图2调制原理框图 2psk 典型波形如下:

三,仿真方案和参数设置 参数设置如下所示: 每码元采样点数Fn=500; 码元数m=50; 载波频率fc=2; 码元速率Rm=1; 加入的白噪声的信噪比snr分别为10,30,50 MATLAB产生2psk信号的程序框图如下:

通信系统仿真经典.doc

题目基于SIMULINK的通信系统仿真 摘要 在模拟通信系统中,由模拟信源产生的携带信息的消息经过传感器转换成电信号,模拟基带信号在经过调制将低通频谱搬移到载波频率上适应信道,最终解调还原成电信号;在数字传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成数字信号。本文应用了幅度调制以及键控法产生调制与解调信号。 本论文中主要通过对SIMULINK工具箱的学习和使用,利用其丰富的模板以及本科对通信原理知识的掌握,完成了AM、DSB、SSB、2ASK、2FSK、2PSK三种模拟信号和三种数字信号的调制与解调,以及用SIMULINK进行设计和仿真。首先我进行了两种通信系统的建模以及不同信号系统的原理研究,然后将学习总结出的相应理论与SIMULINK中丰富的模块相结合实现仿真系统的建模,并且调整参数直到仿真波形输出,观察效果,最终对设计结论进行总结。 关键词通信系统调制 SIMULINK

目录 1. 前言 (1) 1.1选题的意义和目的 (1) 1.2通信系统及其仿真技术 (2) 3. 现代通信系统的介绍 (7) 3.1通信系统的一般模型 (7) 3.2模拟通信系统模型和数字通信系统模型 (7) 3.2.1 模拟通信系统模型 (7) 3.2.2 数字通信系统模型 (8) 3.3模拟通信和数字通信的区别和优缺点 (9) 4. 通信系统的仿真原理及框图 (12) 4.1模拟通信系统的仿真原理 (12) 4.1.1 DSB信号的调制解调原理 (12) 4.2数字通信系统的仿真原理 (16) 4.2.1 ASK信号的调制解调原理 (16) 5. 通信系统仿真结果及分析 (21) 5.1模拟通信系统结果分析 (21) 5.1.1 DSB模拟通信系统 (21) 5.2仿真结果框图 (24) 5.2.1 DSB模拟系统仿真结果 (24) 5.3数字通信系统结果分析 (28) 5.3.1 ASK数字通信系统 (28) 5.4仿真结果框图 (35) 5.4.1 ASK数字系统仿真结果 (35)

通信原理第三章(模拟调制原理)习题和答案

第三章(模拟调制原理)习题及其答案 【题3-1】已知线性调制信号表示式如下: (1)cos cos c t w t Ω (2)(10.5sin )cos c t w t +Ω 式中,6c w =Ω。试分别画出它们的波形图和频谱图。 【答案3-1】 (1)如图所示,分别是cos cos c t w t Ω的波形图和频谱图 设()M S w 是cos cos c t w t Ω的傅立叶变换,有 ()[()() 2 ()()] [(7)(5)(5)(7)] 2 M c c c c S w w w w w w w w w w w w w π δδδδπ δδδδ= +Ω+++Ω-+-Ω++-Ω-= +Ω+-Ω++Ω+-Ω (2)如图所示分别是(10.5sin )cos c t w t +Ω的波形图和频谱图:

设()M S w 是(10.5sin )cos c t w t +Ω的傅立叶变换,有 ()[()()] [()()2 ()()] [(6)(6)] [(7)(5) 2 (7)(5)] M c c c c c c S w w w w w j w w w w w w w w w w j w w w w πδδπ δδδδπδδπ δδδδ=++-+ +Ω+++Ω---Ω+--Ω-=+Ω+-Ω++Ω+-Ω--Ω-+Ω 【题3-2】根据下图所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通过包络检波器后的波形差别。 t 0m(t) 【答案3-2】 AM 波形如下:

通过低通滤波器后,AM 解调波形如下: DSB 波形如下: 通过低通滤波器后,DSB 解调波形如下: 由图形可知,DSB 采用包络检波法时产生了失真。 【题3-3】已知调制信号()cos(2000)cos(4000)m t t t ππ=+载波为4 cos10t π,进 行单边带调制,试确定单边带信号的表达式,并画出频谱图。 【答案3-3】 可写出上边带的时域表示式

ASK调制解调通信系统

信号与通信系统课程设计说明书 题目:设计ASK调制解调通信系统 系部:信息与控制工程学院 专业:电子信息工程 班级:XXXX级X班 学生姓名:XXX学号:XXXXXXXXXX 指导教师:XXX 2018年6月12日

目录 1 设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 2 设计方法与内容 (3) 2.1 MATLAB简介 (3) 2.2 ASK信号调制原理 (3) 2.3 ASK解调原理 (4) 3 仿真实现过程 (5) 3.1 ASK信号的产生 (5) 3.2 载波信号波形 (5) 3.3 ASK调制解调实现 (6) 3.4 叠加噪声的ASK调制解调 (7) 4 结论 (10) 5 附录 (11) 参考文献 (18)

1 设计任务与要求 1.1 设计任务 1.根据题目查阅有关资料,掌握数字带通调制技术。 2.学习MATLAB软件,掌握MATLAB各种函数的使用。 3.据数字带通调制原理,运行MATLAB进行编辑,仿真调制过程,记录并分析仿真 结果。 1.2 设计要求 1.掌握ASK调制解调原理 2.绘制出ASK信号解调前后在时域和频域中的波形,观察解调前后频谱的变化理 解ASK信号解调原理。

2设计方法与内容 2.1 MATLAB简介 Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件。它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便、界面良好的用户环境。它还包括了Toolbox(工具箱)的各类问题的求解工具,可用来求解特定学科的问题。其特点是: (1) 可扩展性:Matlab最重要的特点是易于扩展,它允许用户自行建立指定 功能的M文件。对于一个从事特定领域的工程师来说,不仅可利用Matlab所提供的函数及基本工具箱函数,还可方便地构造出专用的函数。从而大大扩展了其应用范围。当前支持Matlab的商用Toolbox(工具箱)有数百种之多。而由个人开发的Toolbox则不可计数。 (2) 易学易用性:Matlab不需要用户有高深的数学知识和程序设计能力,不 需要用户深刻了解算法及编程技巧。 (3) 高效性:Matlab语句功能十分强大,一条语句可完成十分复杂的任务。 如fft语句可完成对指定数据的快速傅里叶变换,这相当于上百条C语言语句的功能。它大大加快了工程技术人员从事软件开发的效率。 2.2 ASK信号调制原理 数字信号对载波信号的振幅调制称为振幅键控,即ASK(Amplitude Shift Keying)。2ASK就是调制信号为二进制数字基带信号时的振幅键控。 简单的说,振幅键控就是利用载波的幅度变化来传递数字信息,而其频率和初始相位保持不变。在2ASK中,载波的幅度只有两种变化状态,分别对应二进制信息的“0”或“1”。 2ASK已调信号可表示为 e 0 = s(t) cosωct 式中,ωc为载波角频率,s(t)为单极性NRZ矩形脉冲序列 s(t) =Σan g(t-n Ts) 其中,g(t)是持续时间为Ts、高度为1的矩形脉冲,an为二进制数字 1,出现概率为p a n= 0,出现概率为1?p

基于MATLAB的模拟调制系统仿真与测试(AM调制)

闽江学院 《通信原理设计报告》 题目:基于MATLAB的模拟调制系统仿真与测试学院:计算机科学系 专业:12通信工程 组长:曾锴(3121102220) 组员:薛兰兰(3121102236) 项施旭(3121102222) 施敏(3121102121) 杨帆(3121102106) 冯铭坚(3121102230) 叶少群(3121102203) 张浩(3121102226) 指导教师:余根坚 日期:2014年12月29日——2015年1月4日

摘要在通信技术的发展中,通信系统的仿真是一个重点技术,通过调制能够将信号转化成适用于无线信道传输的信号。 在模拟调制系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。在幅度调制中,文中以调幅、双边带和单边带调制为研究对象,从原理等方面阐述并进行仿真分析;在角度调制中,以常用的调频和调相为研究对象,说明其调制原理,并进行仿真分析。利用MATLAB下的Simulink工具箱对模拟调制系统进行仿真,并对仿真结果进行时域及频域分析,比较各个调制方式的优缺点,从而更深入地掌握模拟调制系统的相关知识,通过研究发现调制方式的选取通常决定了一个通信系统的性能。 关键词模拟调制;仿真;Simulink 目录 第一章绪论 (1) 1.1 引言 (1) 1.2 关键技术 (1) 1.3 研究目的及意义 (2) 1.4 本文工作及内容安排 (2) 第二章模拟调制原理 (3) 2.1 幅度调制原理 (3) 2.1.1 AM调制 (4) 第三章基于Simulink的模拟调制系统仿真与分析 (6) 3.1 Simulink工具箱简介 (6) 3.2 幅度调制解调仿真与分析 (8) 3.2.1 AM调制解调仿真及分析 (8) 第四章总结 (12) 4.1 代码 (13) 4.2 总结 (14)

模拟调制系统

第五章模拟调制系统 知识结构-调制的基本概念和作用、分类 -幅度调制的主要类型,及各自的调制解调方法、波形、 频谱、带宽、及抗噪声性能 -角度调制的主要类型,及各自的调制解调方法、功率、 带宽、及抗噪声性能 教学目的-了解模拟调制及其解调的原理和系统的抗噪声性能 -掌握各种已调信号的时域波形和频谱结构,系统的抗噪 声性能 -了解一些常用的调制解调芯片 教学重点-信噪比增益 -已调信号表达式的写法及分析、波形画法及分析 -卡森公式 教学难点-信噪比增益 -角度调制中最大频偏的概念和计算 教学方法及课时-多媒体授课(6学时)(3个单元) 作业-5-4,5-7,5-9,5-16,5-18 备注(在上课之前最好让学生复习一下“高频电路”中相关内容) AM和DSB在高频电路中如果已经讲的比较细,此处可略 讲。

单元七(2学时) §5.1 引言(调制的作用和分类) 知识要点:调制的过程、作用、分类 我们在第一章已经学过了模拟通信系统和数字频带通信系统的模型。从模型图中可以看出,它们都需要进行“调制”。那么什么是调制?为什么要进行调制?调制有哪些分类呢?我们下面逐一介绍。 §5.1.1 调制的概念(过程) 所谓调制,就是在发送端将要传送的信号附加在高频振荡信号上,也就是使高频振荡信号的某一个或几个参数随基带信号的变化而变化。其中要发送的基带信号又称“调制信号”;高频振荡信号又称“被调制信号”。 §5.1.2 调制的作用 调制的主要作用有三个: 1、将基带信号转化成利于在信道中传输的信号; 2、改善信号传输的性能(如FM具有较好的信噪比性能) 3、可实现信道复用,提高频带利用率。 §5.1.3 调制的分类 分2大类:正弦波调制、脉冲调制 正弦波调制又可分为模拟调制和数字调制。其中模拟调制又分调幅和调角2类,这是我们本章的主要内容。 §5.2 幅度调制与解调 知识要点:AM DSB SSB VSB的原理及波形频谱的画法带宽计算 §5.2.1 幅度调制的一般模型

无线通信系统中的调制解调基础(二):相位调制

无线通信系统中的调制解调基础(二):相位调制 作者:Ian Poole Adrio Communications Ltd 第二部分解释了相移键控(PSK)的多种形式,包括双相相移键控(BPSK),四相相移键控(QPSK),高斯滤波最小相移键控(GMSK),和目前流行的正交幅度调制(QAM)。 第一部分解释了调幅(AM)和调频(FM)技术,并介绍了其优点和缺点。第三部分将会介绍直接序列扩频(DSSS)技术和正交频分复用(OFDM)调制技术。 调相 相位调制是另一种广泛采用的调制技术,特别是在数据传输的应用中。因为相位和频率是相辅相成的(频变是相变的一种形式),两种调制方法可以用角度调制(angle modulation)来概括。 为了解释调相如何工作,我们首先要对相位做出解释。一个无线信号包涵了一个正弦信号的载波,幅度从正到负程波浪形变化,一个周期后回到零点,这个同样可以由一个围绕一个零点旋转的一个点来表示,如图3-13所示,相位就是终点到起点的角度。 调相改变了信号的相位,换句话来说,图中绕着原点旋转的点的位置会改变,要实现这个效果既是要在短时间内改变信号的频率。所以,当进行相位调制的时候会产生频率的

改变,反之亦然。相位和频率是密不可分的,因为相位就是频率的积分,频率调制可以通过简单的CR网络转变成相位调制。因此,相位调制与频率调制信号的边带、带宽具有异曲同工的效果,我们必须留意这个关系。 相移键控 相位调制可以用来传输数据,而相移键控是很常用的。PSK在带宽利用率上有很多优势,在许多移动电话无线通信的应用中广为采用。 最基本的PSK方法被称作双相相移键控(BPSK),有时也称作反向相位键控(PRK)。一个数字信号在1和0之间改变(或表述为1和-1),这样形成了相位反转,就是180°的相移,如图3-14。 双相相移键控(BPSK) PSK的一个问题是接收机不能精确的识别传输的信号,来判定是mark(1)还是space (0),即使发射机和接收机的时钟同步也很难实现,因为传输路径会决定接受信号的精确相位。为了克服这个问题,PSK系统采用差分模式对载波上的数据进行编码。比如说,信号为1的时候改变相位,信号为0时不改变相位,在这个基础架构上可以做更多的改进,一些其它的PSK方法也被开发了出来。一个方法是信号为1时做90°的相移,在信号为0时做-90°相移,这样保留了0和1之间180度的相差。在简单的系统中如果不采用该方式进行传输,在传一个长序列的0的时候有可能会失去同步,这是因为产生突发模式时相位没有改变。 基于基本的PSK会有很多改变,各个方案都有各自的优缺点,让设计人员针对具体的应用采用不同的解决方法。比如说四相相移键控(QPSK),采用了四个相位,每个相差90°,8-PSK,采用8个相位等等。 为了方便表述一个PSK信号,我们采用相位矢量或者星座图,如图3-15。采用这个图可以很好的体现相位信息和幅度信息。在这个图里面,信号的相位用角度表示,幅度用具离圆心的距离表示。这样这个信号中的同相分量用sine信号表示,而正交分量用cosine 信号表示。大部分PSK系统采用不变的幅度,因此圆心周围的点与圆心距离相等并只改

模拟调制系统的设计

X x通大学信息科学与工程学院课程设计实验报告 姓名:学号 班级: 实验项目名称:模拟调制系统的设计 实验项目性质:设计性实验 实验所属课程:通信原理 实验室(中心):现代电子实验中心 指导教师: 实验完成时间: 2013 年 1 月 1 日

一、实验目的 1. 综合应用《Matlab编程与系统仿真》、《信号与系统》、《现代通信原理》等多门课程知识,使学生 建立通信系统的整体概念; 2. 培养学生系统设计与系统开发的思想; 3. 培养学生利用软件进行通信仿真的能力。 二、实验内容及要求 内容: 模拟调制系统:主要分为线性调制系统和非线性调制系统,其中线性调制分为AM、DSB、SSB、VSB,非线性调制主要为FM,主要完成FM调制。(至少选择2种方法)。调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将信号转换成合适于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。AM信号的调制属于频谱的线性搬移,它的解调往往采用非相干解调即包络解调方式;而FM信号的调制属于频谱的非线性搬移,它的解调有相干和非相干解调两种方式。 要求: 1.最多2人一组(2人一组必须连成系统) 2.对通信系统有整体的较深入的理解,深入理解自己仿真部分的原理的基础,画出对应的通信子系 统的原理框图 3.提出仿真方案; 4.完成仿真软件的编制 5.仿真软件的演示 6.提交详细的设计报告 三、实验原理 1.模拟通信系统设计原理 模拟通信系统的主要内容是研究不同信道条件下不同的调制解调方法。调制可以分为三类,即调幅(AM)、调频(FM)、调相(PM)。

模拟调制系统AM系统

西安邮电大学 《通信原理》软件仿真实验报告 实验名称:模拟调制系统——AM系统 院系:通信与信息工程学院 专业班级:XXXX 学生姓名:XXX XX 学号:XXXX (班内序号) 指导教师:XXX 报告日期:XXXX年XX月XX日 ●实验目的: 1、掌握AM信号的波形及产生方法; 2、掌握AM信号的频谱特点; 3、掌握AM信号的解调方法; 4、掌握AM系统的抗噪声性能。 仿真设计电路及系统参数设置: 时间参数:No. of Samples = 4096;Sample Rate = 20000Hz; ●仿真波形及实验分析: 1、调制信号与AM信号的波形和频谱: 调制信号为正弦信号,Amp= 1V,Freq=200Hz;直流信号Amp = 2V;余弦载波Amp = 1V,Freq= 1000Hz;无噪声;调制信号: AM信号: ●采用相干解调,记录恢复信号的波形和频谱: 接收机模拟带通滤波器Low Fc = 750Hz,Hi Fc = 1250Hz,极点个数6; 接收机模拟低通滤波器Fc = 250Hz,极点个数为9;恢复信号: ●采用包络检波 全波整流器Zero Point = 0V;模拟低通滤波器Fc = 250Hz,极点个数为9;恢复信号: 由信号功率谱可以看出,相干解调要比包络检波的恢复效果好。 ●改变高斯白噪声的功率谱密度,观察并记录恢复信号的变化:

无高斯白噪声: 加高斯白噪声(功率谱密度(density in 1 ohm=0.00002W/Hz))恢复信号: 改变高斯白噪声的功率谱密度(density in 1 ohm=0.0002W/Hz)恢复信号: 改变高斯白噪声的功率谱密度(density in 1 ohm=0.002W/Hz)恢复信号: 综上可得高斯白噪声越大,恢复信号失真越严重。 实验成绩评定一览表

通信原理教案ch5模拟调制系统

系部:信电学院任课教师: 课时安排:理论6课时

正弦载波:s(t) = Acos(ω0t + φ0) 振幅调制表示式:sm(t) = Am(t) cos(ω0t + φ0) 若m(t) ?? M(ω), s(t) ?? S(ω), sm(t) ?? Sm(ω),则 Sm(ω) = (1/2π)[M(ω) ? S(ω)] 由于S(ω) = AF(cos ω0t) = Aπ[δ(ω ? ω0) + δ(ω + ω0)],因此 Sm(ω) = (A/2)[M(ω ? ω0) + M(ω + ω0)] M(ω)基带谱线性搬移至±ω0 频率处,谱形不变,因此称为线性调制。(但请注意;线性调制≠线性变换,任何调制都是非线性变换!) 由此可得出线性调制的一般模型—由乘法器+带通滤波器组成: 线性调制的一般模型 考虑到H(ω)的带通滤波作用,输出Sm(ω)可表示为(这里将幅度A归一化为1) Sm(ω) = (1/2)[M(ω ? ω0) + M(ω + ω0)] · H(ω) 适当选择H(ω),可得到如下几种幅度调制方式与信号: 1. 抑制载波双边带信号(DSB) 输入调制信号无直流,即M(0) = 0,且为带宽2fH的理想带通滤波器, 输出为sm(t) = m(t) cos ω0t,为双边带抑制载波DSB-SC 时域 频域 2. 有载波的双边带调幅信号(AM) 输入调制信号含直流,即M(0)≠ 0,设m(t) = m0, m(t) = m0 + m′(t),其中m′(t)为交流分量,sm(t) = [m0 + m′(t)] cos ω0t,H(ω)同上为理想带通滤波器,类似于上面的分析有 时域、频域波形

模拟调制技术及其应用

模拟调制技术及其应用 O 引言 通信信号调制方式自动识别是信号分析领域中一个比较重要的研究方向,尤其是在军事通信领域有着很大的应用前景。随着电子对抗技术研究的不断深人,迫切需要进行调制信号自动识别技术的研究,它被广泛应用于:信号确认,干扰识别,无线电侦听,电子对抗,信号监测和威胁分析等领域。当前最具吸引力的实现是软件无线电以及其它可重构系统。 常用的自动识别的方法有理论决策法和模式识别法两种,理论决策法是采用假设检验理论解决信号分类问题,通常根据信号的统计特性,基于耗费函数最小化原则导出统计检验量(主要特征量),并设置合适的门限识别信号。A.K.Nan.di 利用特征参数γ max 、δap、δdp,P识别AM、DSB、LSB、USB、FM、VSB、AM.FM 七种模拟调制方式,由于计算参数曲与需要提取对噪声敏感的非折叠相位信息,因此在低信噪比时识别准确率较低,文中指出在信噪比低于10dB时,识别准确率很低。Y.T.Chan仅利用R参数识别AM,FM,SSB,DSB信号,需要设置三个门限值,且相邻两个门限值之间相差很小,因此在低信噪比时识别效果也不好。在实际的军事通信系统中,AM、DSB、LSB、USB、FM五种模拟调制方式为常用的调制方式,因此可以根据这五种信号的特点,提出在低信噪比时有较高识别准确率的识别流程。本文针对低信噪比时通信信号模拟调制方式的特点,提出了一种基于决策理论的模拟调制方式识别流程,该流程综合运用y~,P,R三个特征参数对AM、DSB、LSB、USB、FM五种模拟调制方式进行识别。由于无相位信息参数,仅利用对噪声不敏感的瞬时幅度与谱对称信息,因此可以在低信噪比时对模拟通信信号进行识别,结合信号的线性平滑处理技术或小波门限消噪法对输人数据进行处理,可以进一步提高识别正确率。 1 特征参数的提取与识别流程设计 通信信号的调制信息包含在信号的瞬时幅度、相位、频率的变化之中,不同的信号其频谱也呈现不同的特征,通过提取瞬时幅度、相位、频率以及频谱的参数统计特征,可以识别不同的通信信号。本文根据AM、DSB、LSB、USB、FM五种 模拟调制方式的特点,提取的特征参数为γ max ,R,P,其中γ max ,R对应信号 的瞬时幅度特征,P对应频谱对称性特征。在一定的信噪比条件下,根据提取的三个特征参数值,通过设置合理的判决门限,就可以识别出这五种调制方式,判别准则如下: (1)零中心归一化瞬时幅度谱密度的最大值γ max : γ max =max|FFT(A cn (i))|2/N 式中, N s 为取样点数,A cn (i)为零中心归一化瞬时幅度,由下式计算:A (f)=A(i) /m ,A (i)=^A ( )一1,而m。=ΣA(i)为瞬时幅度A(i)的平均值,用平均值来

通信原理实验B-软件仿真实验四 模拟调制系统—SSB系统

班级:通工1612 姓名:学号: 软件仿真实验四模拟调制系统—SSB系统 实验目的: 1、掌握SSB信号的产生方法; 2、掌握SSB信号波形和频谱的特点; 3、掌握SSB信号的解调方法; 4、掌握SSB系统的抗噪声性能。 知识要点: 1、SSB信号的产生方法; 2、SSB信号的波形和频谱; 3、SSB信号的解调方法; 4、SSB系统的抗噪声性能。 仿真要求: 建议时间参数:No. of Samples = 4096;Sample Rate = 20000Hz 双边谱选择(20Log|FFT|【dB】) 1、利用移相法产生SSB信号,记录SSB信号的波形和频谱; 其中:图符0为调制信号,采用幅度1V、频率400Hz的正弦信号; 图符3为载波信号,采用幅度1V、频率2000Hz的正弦信号; 2、自行设计调整系统结构及参数,利用滤波法实现SSB信号(建议使用带阻滤波器); 3、采用相干解调,记录恢复信号的波形; LSB模拟带通滤波器Low Fc = 1500Hz,Hi Fc = 1700Hz,极点个数5; USB模拟带通滤波器Low Fc = 2300Hz,Hi Fc = 2500Hz,极点个数5;

接收机模拟低通滤波器Fc = 500Hz,极点个数9; 4、在接收机模拟带通滤波器前加入高斯白噪声; 建议Density in 1 ohm = 0.00002W/Hz,观察并记录恢复信号波形的变化; 5*、改变高斯白噪声功率谱密度,观察并记录恢复信号波形的变化; 实验报告要求: 1、记录SSB信号的波形和频谱,分析SSB信号波形和频谱的特点; 2、记录恢复信号波形的变化,分析噪声对恢复信号的影响。 系统框图: 仿真结果与实验分析: 1、利用相移法产生SSB上边带信号,记录SSB上边带信号的波形 2、利用相移法产生SSB上边带信号,记录SSB上边带信号的频谱

数字通信系统的调制技术 翻译

引言 这个应用笔记介绍了数字解调的概念在如今许多通信系统中的应用。重点放在解释那些设计用来提高系统效率的设备。大多数通信系统涉及到这三个类别之一:带宽效率、电源效率和成本效益。带宽效率定义为一个调制方案将数据投放到有限的带宽上的能力。电源效率定义为通信系统在最低的实际功率下可靠地发送信息的水平。在大多数通信系统中,带宽效率放在很重要的位置上。要优化的参数取决于特定系统的要求,可以在下面两个例子见。 对于地面数字微波无线电的设计者来说,最重要的是优秀的带宽效率同是具有低的比特错误率。他们有足够的电源以供使用不用去担心电源效率。他们并不太关心接受者的费用或者容易程度因为他们不必建立庞大的数量。另一方面,手持蜂窝电话设计人员重视电源效率因为这些手机需要用电池运行。费用也同样放在很重要的位置因为蜂窝手机必须用低费用去吸引更多的消费者。所以,这些通信系统牺牲一些带宽效率去提高电源效率和降低成本。 每当这些关于效率的参数(带宽、电源和成本)其中之一增加的时候,另一个也会随之减少,或者变得更加复杂也可能在不好的环境下不能很好地工作。成本费用是系统中的重中之重。低成本无线电总是被需要的。在过去,通过牺牲电源和带宽效率来减低无线电成本是可能的。而如今情况已经改变了。无线电频谱是非常有价值的,而那些不能很好地运用频谱效率的设备将会没有市场或者在竞争中被

新产品所代替。这些权衡因素必须在数字射频通信系统设计中考虑清楚。 应用笔记介绍: ?用于移动数字调制的原因; ?信息如何调制到同相和正交信号上; ?不同种类的数字调制; ?过滤技术来节省带宽; ?在数字调制信号中的方法; ?复用技术用于共享传输信道; ?数字信道以及接受者如何工作; ?数字射频通信系统的测量; ?重要的数字通信系统的关键规格概述表; ?应用在数字射频系统中的一个术语表 这些概念在任何通信系统的建构中均存在。如果你明白了这些结构,那么你就能够明白现在或者未来的任何通信系统如何工作。 第一章为什们进行数字调制 移动数字调制提供了赋予更多信息的能力,更适合于数字数据服务,更高的数据安全性,更好品质的通信系统以及更快的系统可用性。通信系统的发展有以下几方面限制因素:

AM模拟调制系统的设计与仿真

摘要 调幅,英文是Amplitude Modulation(AM)。调幅也就是通常说的中波,范围在503---1060KHz。调幅是用声音的高低变为幅度的变化的电信号。 本课程设计主要研究了AM模拟调制系统的设计和仿真。在本次通信系统仿真训练中,我主要通过了解模拟幅度调制和解调的原理和其实现方法,然后根据其模拟幅度调制系统的原理给出了调制和解调的框图。其次弄懂了AM模拟调制的基本原理。最后利用Matlab软件仿真模拟幅度调制系统,实现AM调制和相干解调,给出了调制信号、载波信号及已调信号及解调信号的波形图和频谱图,并计算了该系统的信噪比。 关键词:调制解调 AM模拟调制信噪比

目录 前言 (1) 一、调制及解调原理 (2) 1.1调制原理 (2) 1.2 解调原理 (3) 二、模拟调制 (4) 2.1 模拟调制原理 (4) 2.2 AM调制的基本原理 (4) 2.3 AM解调原理与抗噪性能 (6) 2.4 FIR数字滤波器设计方法 (8) 三、AM调制解调系统的MATLAB仿真及其分析 (10) 3.1 AM调制解调分析的MATLAB实现 (10) 3.2 MATLAB仿真及其分析 (10) 总结 (13) 参考文献 (14) 附录 (15)

前言 调制在通信系统中的作用是至关重要的。所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。广义的调制分为基带调制和带通调制(也称载波调制)。在大多数场合,调制一般指载波调制。 载波调制,就是用调制信号去控制载波的参数的过程,使载波的某一个或某几个参数按照调制信号的规律而变化。调制信号是指来自信源的信息信号(基带信号),这些新号可以是模拟的,也可以是数字的。未接受调制的周期性振荡信号称为载波,它可以是正弦波,也可以是非正弦波。载波调制后称为已调信号,它包含有调制信号的全部特征。解调则是调制的逆过程,其作用是将已调信号中的调制信号恢复出来。 此次设计主要进行模拟调至系统的模拟和仿真,最常用和最重要的模拟调制方式是用正弦波作为载波的幅度调制和角度调制。常见的调幅AM、双边带DSB、单边带VSB等调制就是幅度调制的几个典型实例;而频率调制FM是角度调制中被广泛采用的一种。 本文主要分析了AM在高斯白噪声影响下的波形变化,通过对有无噪声解调信号波形的对比分析,,估计AM调制解调系统的性能。

移动通信下的数字调制技术开题报告

西安邮电大学 毕业设计(论文)开题报告通信与信息工程学院院(系)信息对抗技术专业12级02班课题名称:移动通信下的数字调制技术的研究 学生姓名:陈小楠学号:03126036 指导教师:刘晓慧 报告日期: 2015年11月4日

1.选题目的(为什么选该课题): 当今移动通信系统基本采用数字调制技术进行信息传递,相比于传统的模拟调制方式,数字调制具有极大优势。现代移动通信网络要求信息传输效率高精确度好,抗噪性强,数字调制技术相比于模拟调制技术在以上方面有着更好的使用价值,数字调制技术可以将信息进行多重复用,同时增设安全密钥,大大提高信息的安全性。随着调制技术的发展,数字调制应用于移动通信网络的成本也得到大大降低。数字调制技术通常分为线性调制技术和恒包络调制技术两大类。蜂窝移动通信是采用蜂窝无线组网方式,在终端和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。蜂窝移动通信业务是指经过由基站子系统和移动交换子系统等设备组成蜂窝移动通信网提供的话音、数据、视频图像等业务。调制是对信号源的编码信息进行处理,使其变为适合传输的形式的过程。即是把基带信号(信源)转变为一个相对基带信号而言频率非常高的带通信号.带通信号叫做己调信号,而基带信号叫做调制信号。调制可以通过改变调制后载波的幅度,相位或者频率来实现。 信号的调制可分为模拟调制和数字调制。数字调制是指将用离散的数字信号对载波波形的某些参数(如幅度、相位和频率)进行控制,使这些参数随基带信号的变化而变化。与模拟调制相比,数字调制的优点是频谱利用率高、纠错能力强、抗信道干扰失真能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输,以及高效的多址接入和更高的安全保密性等。 2.前期基础(已学课程、掌握的工具,资料积累、软硬件条件等): 拥有良好的信息对抗技术专业基础,学习了通信原理,信号与系统,移动无线通信原理等课程,对于BPSK,2FSK,2ASK,QPSK,OQPSK,QAM,GSM,频分复用(FDM)时分复用(TDM)码分复用(CDMA)等基础的理论知识有一定的掌握和了解。熟练掌握MATLAB,SIMULINK等通信工具包的使用,将在中国知网,中国文献期刊网查询有关资料及查阅有关图书资料。

王 通信原理课程设计 模拟调制系统的线性调制(幅度调制)的AM调制和非线性调制(角度调制)的FM调制

重庆交通大学信息科学与工程学院通信原理课程设计实验报告 专业班级: 学号: 姓名: 实验所属课程:通信原理 实验室(中心):信息科学与工程学院软件中心指导教师: 实验完成时间: 2013 年 1 月 1日

教师评阅意见: 签名:年月日实验成绩: 一、设计题目 模拟调制系统的线性调制(幅度调制)的AM调制和非线性调制(角度调制)的FM调制 二、实验内容及要求: 1.掌握模拟调制系统的调制和解调(AM,FM)的方法 2.理解模拟调制系统的原理 3.掌握相干解调 4.能熟练运用matlab软件,设计程序,并进行仿真,实现设计功能 三、实验过程(详细设计): 本实验共包括2个程序,一个是线性调制AM,另一个是非线性调制FM,具体程序如下: AM调制 clear all; close all; clc; clf; %************初始的一些定义********** t=0:0.001:2; dt=0.001; %定义t及抽样间隔 w=2*pi*2; n=2*pi*15; m=sin(w*t); %基带信号 p=cos(n*t); %载波信号 %*************AM调制***************** AM=cos(n*t)+m.*cos(n*t); %AM调制信号,Ao=1 %******基带信号与载波信号波形图******

subplot(211); plot(t,m); title('基带信号'); xlabel('t'); ylabel('m(t)'); subplot(212); plot(t,p); title('载波信号'); xlabel('t'); ylabel('p(t)'); %********已调信号与加噪后的波形图******* figure subplot(211); plot(t,AM); title('AM调制'); xlabel('t'); ylabel('S(t)'); snr=10; %定义信噪比为10 y=awgn(AM,snr); subplot(212); plot(t,y); title('加噪后的波形图'); xlabel('t'); ylabel('B(t)'); %******通过带通滤波器和解调的波形图***** m1=2*dt*13; m2=2*dt*17; [b,a]=butter(4,[m1 m2],'bandpass') %设计4阶,带通为m1--m2的滤波器,求滤波器系数 H=filter(b,a,AM); figure subplot(211) plot(t,H); title('带通滤波后的波形'); xlabel('t'); ylabel('H(t)'); xx=abs(hilbert(H)); %希尔伯特变化,解调 xx=xx-1; subplot(212) %解调信号与原基带信号对比 plot(t,m,t,xx,'r') title('解调信号与基带信号对比'); ylabel('m(t)'); xlabel('t'); %************AM频谱图***************

通信系统的调制与解调文献综述

本科毕业设计(论文)文献综述 课题名称:基于MATLAB的TD-SCDMA通信系统的调制与解调仿真程序设计

一、课题国内外现状 TD-SCDMA的发展过程始于1998年初,在当时我国的邮电部科技司的直接领导下,由原电信科学技术研究院组织队伍在SCDMA技术的基础上,研究和起草符合IMT-2000要求的我国的TD-SCDMA建议草案。该标准草案以智能天线、同步码分多址、接力切换、时分双工为主要特点,于ITU征集IMT-2000第三代移动通信无线传输技术候选方案的截止日1998年6月30日提交到ITU,从而成为IMT-2000的15个候选方案之一。ITU综合了各评估组的评估结果。在1999年11月赫尔辛基ITU-RTG8/1第18次会议上和2000年5月伊斯坦布尔的ITU-R全会上,TD-SCDMA被正式接纳为CDMATDD制式的方案之一[1]。 CWTS(中国无线通信标准研究组)作为代表中国的区域性标准化组织,从1999年5月加入3GPP以后,经过4个月的充分准备,并与3GPPPCG(项目协调组)、TSG(技术规范组)进行了大量协调工作后,在同年9月向3GPP建议将TD-SCDMA纳入3GPP标准规范的工作内容。1999年12月在法国尼斯的3GPP 会议上,我国的提案被3GPPTSGRAN(无线接入网)全会所接受,正式确定将TD-SCDMA纳入到Release 2000(后拆分为R4和R5)的工作计划中,并将TD-SCDMA简称为LCRTDD(Low Code Rate,即低码片速率TDD方案)。 经过一年多的时间,经历了几十次工作组会议几百篇提交文稿的讨论,在2001年3月棕榈泉的RAN全会上,随着包含TD-SCDMA标准在内的3GPPR4版本规范的正式发布,TD-SCDMA在3GPP中的融合工作达到了第一个目标。 至此,TD-SCDMA不论在形式上还是在实质上,都已在国际上被广大运营商、设备制造商所认可和接受,形成了真正的国际标准。 综合而言,TD-SCDMA作为中国提出的第三代移动通信标准,自1998年正式向ITU提交以来,已经历十多年的时间,完成了标准的专家组评估、ITU 认可并发布、与3GPP(第三代伙伴项目)体系的融合、新技术特性的引入等一系列的国际标准化工作,从而使TD-SCDMA标准成为第一个由中国提出的,以我国知识产权为主的、被国际上广泛接受和认可的无线通信国际标准。这是我国电信史上重要的里程碑[2]。

模拟调制系统概述

第四章数字信号的基带传输 由消息转换过来的原始信号所具有的频带称为基本频带(或基带)。对基带信号的频谱不做搬移的传输称为基带传输。 一、数字基带信号的基本波形 1.单极性不归零码 图例。 1和0分别对应于正电压(或负电压)和零电压,只能用于极短距离传送。 ①有直流成分;②判决电平在1/2处,较难稳定;③同步问题不能解决;④ 需要解决接地(零电平)问题。 2.双极性不归零码 图例。 1和0分别对应于正电压和负电压,可用于低速数据传送如RS-232。①统计平均1和0出现各一半时无直流成分;②判决电平为0电平,容易稳定;③不需要解决接地(零电平)问题;④同步问题仍然不能解决;⑤1和0不等概率分布时有直流成分。 3.单极性归零码 图例。 1对应于一个宽度τ小于码元宽度T的正脉冲,0无脉冲,τ/T称为占空比。 可提取同步信号。 4.双极性归零码 图例。 1和0分别对应于一个宽度τ小于码元宽度T的正脉冲和负脉冲。相邻脉冲必有零电平,可提取同步信号。 5.差分码 图例。 以相邻码元电平极性的改变表示1,否则表示0。(“1”差分码) 6.多进制码 每一个码元可表示若干二进制数。如四进制码。 图例。

二、数字基带信号的线路编码 对原始基带信号作编码转换时需要遵循的原则: ?无直流分量,尽量在中频带; ?包含定时信息; ?与信源统计特性无关; ?一定的错误检测能力; ?误码增殖小; ?转换设备简单; ?传输效率高。 1.曼彻斯特码 每个码元用两个连续且极性相反的脉冲来表示,比如用“正+负”脉冲表示1,用“负+正”脉冲表示0。直流分量被完全消除,在连续1和连续0都有码元间隔。 图例。 2.差分曼彻斯特码 图例。 每个码元用两个连续且极性相反的脉冲来表示,以相邻码元电平极性的改变表示0,否则表示1。(“0”差分双相码) 3.CMI码(Coded Mark Inversion) 用“负+正”脉冲(编码01)表示0,用“负+负”脉冲(00)“正+正”脉冲(11)表示1。规定接续的码元1(不管是否有0将它们隔开)须由交替反转的00或11表示。 图例。 4.Miller码(或延迟调制Delay Modulation) 1在码元周期中点跳变,单个零不跳变,连续两个0则在码元周期交界处跳变。 图例。 三、码间串扰 图例:基带信号的传输模型。

相关文档
最新文档