镁铝尖晶石透明陶瓷的制备与性能研究

镁铝尖晶石透明陶瓷的制备与性能研究
镁铝尖晶石透明陶瓷的制备与性能研究

摘要

摘要

本文主要综述了镁铝尖晶石透明陶瓷制备的研究进展;分别介绍了镁铝尖晶石透明陶瓷的抗钢包渣侵蚀性能研究和透光性能研究,同时介绍了不同的镁铝尖晶石的制备,还有镁铝尖晶石在各领域的应用,并对其发展前景做了展望。

关键词:镁铝尖晶石;透明陶瓷;镁铝尖晶石性能;镁铝尖晶石制备

MgAl2O4 transparent ceramic preparation

and Properties Research

Abstract

This paper reviewed the research progress in MgAl2O4transparent ceramic preparation; then introduces the research study and transmittance properties of ladle slag resistance of mg Al spinel transparent ceramics erosion, also introduces the different preparation of magnesia alumina spinel, spinel and application in various fields, and has made the forecast to its development prospects.

Keywords: Magnesia alumina spinel; Transparent ceramics; Magnesia alumina spinel properties; Preparation of magnesia alumina spinel

1 绪论

尖晶石是一组分子组成为AB2O4的等轴晶系的系列化合物。在所有的尖晶石类结构中,氧原子是等同的,以立方密堆积排列[1]在镁铝尖晶石(MgAl

O4)

2中,由于氧原子比阳离子大得多,铝和镁的金属离子分别按一定的规律插入在O2 -按最密堆积形成的八面体和四面体空隙中,并保持电中性[2]。

由镁铝尖晶石粉末制备的透明多晶MgAl2O4既具有陶瓷的优点,如耐高温( 2135 ℃)耐腐蚀,耐磨损、抗冲击高、硬度高、强度良好的电绝缘性能、线胀系数小等,又具有如蓝宝石晶体、石英玻璃的光学性能,在紫外可见光、红外光波段具有良好的透过率[3]。可用于制造导弹头罩透明装甲、电子元器件的绝缘骨架,红外波段窗口材细陶瓷器皿、光纤及光纤传感器,还可作为投影电视发光基片。

众所周知,粉体合成是制备光学透明陶瓷非常关键一环。因此,制备高纯、超细、化学均匀性和成分可控及低温烧结性的镁铝尖晶石粉末成为一个重要的研究课题。本文对近年来国内外的各种性能研究,制备方法及应用作一综述。

2 镁铝尖晶石透明陶瓷性能研究

2.1 镁铝尖晶石的抗钢包渣侵蚀性能研究

镁铝尖晶石( MgO-Al2O3,MA) 是固溶体,它是MgO-Al2O3二元系统中唯一的化合物,其熔点高,热膨胀系数小,热导率低,抗热震性好,抗侵蚀能力强。因此,镁铝尖晶石质耐火材料通常用作水泥窑、钢包等的内衬材料.在影响尖晶石质材料使用寿命的各种因素中,尖晶石原料自身的抗渣侵蚀性占据重要的地位。

张艳奎[4]等分别以四种不同Al2O3含量的镁铝尖晶石粉S67、S70、S78、S90为原料,纸浆废液为结合剂,混匀后压制成型,经烘干和1 600 ℃ 3 h 热处理后,进行1 600 ℃保温3 h 的抗钢包渣侵蚀试验,并对侵蚀后的四种尖晶石试样进行显微结构分析,以比较其抗钢包渣侵蚀性能的差异。结果表明(图1,图2):随着尖晶石原料中Al2O3含量的增加,抗渣侵蚀性能逐渐减弱,抗渣渗透性逐渐增强,但Al2O3质量分数增加到约90%( 即S90) 时其抗渗透反而有所减弱。

SEM 分析显示(图3):在尖晶石受渣侵蚀过程中生成的MgO-FeOx 固溶体和( Mg,Mn,Fe) ( Fe,Al) 2O4 复合尖晶石,能起到抑制渣侵蚀和渗透的作用;而渗透层中游离的Al2O3与渣中CaO 反应生成高熔点的CA6和CA2相,并以网络结构贯穿于尖晶石中间,有利于阻止渣的进一步渗透。综合考虑抗侵蚀性能和渗透性能认为,尖晶石原料S78 抵抗钢包渣侵蚀能力较强。

图1 四种尖晶石圆柱试样渣侵蚀后的显微形貌

Fig.1 SEM photographs of four corroded spinel cylindrical specimens

Fig.4 SEM photographs of corrosion layer of four spinel specimens

图3 三种尖晶石试样渗透层的显微结构照片

Fig.3 SEM photographs of penetration layer of three spinel specimens

2.2 透明陶瓷透光性能研究

当光通过某一介质时,由于介质的吸收,散射和折射等效应而使其强度衰减,对于透明陶瓷而言,这种衰减除了与材料的化学组成有关外,主要是取决于材料的显微组织结构。若入射光的强度为I0,试样的厚度为t ,试样的反射率为r,则透过试样的光强度I 为[5]:

式中:,反射率很小时可忽略多次反射,则式( 1) 可表示为:

其中:为线收缩系数;Sim为散射系数;Sop为折射在不连续界面上( 如晶界、晶界层等) 的散射系数。从式( 2) 可知,要获得高的透光率,必须使α,Sim,Sop各个系数尽可能小或趋于零。因此,透明陶瓷应该没有或尽量减少象气孔和晶界等这样的吸收中心和散射中心,同时还应是单相的、由均质晶体组成,并具有较高的光洁度。所以陶瓷的晶界组织结构和残余气孔是影响透明的主要因素。大量研究表明:原料组成、制粉方式、烧结条件、烧成气氛等都影响陶瓷的致密度,从而对陶瓷的透光性产生了较大的影响。

3 镁铝尖晶石透明陶瓷的制备

3.1 水热合成法

水热合成法制备粉体是在密封压力容器中,以水作为溶媒,在高温高压的条件下制备粉体的方法[6]。

P. K rijgsman 等人用Al (OH) 3 和Mg (OH) 2 作原料,经水热合成过程,在4MPa ,523 K 条件下制备组成为 Mg (OH)

和(AlOOH) 45的复合粉体,粒

2

径在2~10μm范围,后经一定温度煅烧可制备尖晶石粉。水热法制备单相粉体的优点:晶粒发育完整,粒径很小且分布均匀,团聚程度很轻,易得到合适的化学计量物和晶粒形态,省去高温煅烧和球磨,避免了杂质和结构缺陷,而且粉

体的烧结性能好。用水热法制尖晶石粉应注意的问题是所用原料的可溶性问题。因为有些反应剂在水热反应发生前会发生结晶化。

3.2 共沉淀法

共沉淀法是在同一溶液中加入沉淀剂生成2种或2种以上的沉淀物,经热处理来制备粉末。

马亚鲁[7]以化学纯A l C l36 H2O·M g C l26H2O 为原料,化学纯NH

H2O作沉

3

淀剂,按摩尔比MgO∶Al

O3= 1∶1 . 5 配制成浓度为0 . 5 m o l/ L的混合盐溶液,

2

在快速搅拌下缓慢滴入氨水溶液,调节溶液的p H 值为11~12,在65 ℃时效30min 便可得到白色絮状凝胶,凝胶经水洗,离心分离后于85 ℃干燥,并在900 ℃保温1h的条件下煅烧,便得到镁铝尖晶石粉末。分析表明:凝胶中含有2Mg (OH) 2·A l (OH)3和少量Al (OH) 3AlOOH。在热分解过程中,500 ℃左右时2Mg (OH) 2 ·A l (OH) 3 分解生成尖晶石和MgO,同时 AlOOH 分解成γ- Al2O3,随着温度升高至850 ℃,MgO 和γ- Al

O3 反应生成尖晶石,850 ℃左右前驱物几

2

乎完全生成尖晶石。该法制备的粉末,成分均匀,纯度高,颗粒尺寸较小,平均在40nm左右,颗粒形状近似球形,无硬团聚存在。粉末的比表面积在100m2/ g 以上,活性好,易烧结,但沉淀物水洗过滤困难且容易引入杂质。

3.3 超临界法

超临界法指作为反应溶剂乙烯醇在超过其临界点的条件下使溶质Mg Al (OR) 4 ]2分解成固态粒子,经热处理结晶化生成尖晶石粉的方法。M. Bar j [8]用MgAl (OR) 4]2 作原料,在超临界态的乙烯醇中分解形成固体粒子,经1100 ℃热处理形成尖晶石粉。所制备的镁铝尖晶石粉有很好的等计量化学均匀性,不存在相偏析,制备的粉体随反应时间不同,平均粒径在4 . 3~9 . 8μm,同时介质浓度也影响尖晶石粉的质量、结晶度、粒子分布和平均粒径。SEM 分析显示这些微粒是由更小的粒子团聚而形成,经超声波处理,团聚体很容易分散,单个粒子的直径可达20nm ,该法制备的粉体具有很好的可烧结性。

4 光学透明尖晶石的应用

4.1 应用于导弹窗口和整流罩

透明镁铝尖晶石陶瓷透过波段覆盖紫外和红外,具有低的光散射、高的光学

透过率,有高的机械强度和硬度,用该材料制作的整流罩抗高低温冲击,抗振动,抗加速度冲击,耐水、酸碱侵蚀,具有良好的抗干扰能力,而且成本较低,可满足高马赫导弹整流罩的光学和机械性能要求,具有综合性能较好的优势[9]。

4.2 光学透明尖晶石应用于透明装甲

对装甲材料的要求发展趋势是高强度(有足够的抗弹性能)、轻质量(减轻系统负重,提高系统机动性)、节省空间、抗弹性能好、多功能。对透明装甲材料还要求透过率高(能满足人员和设备的观测要求)和能够制造大尺寸的制品,并能以较低的成本稳定批量生产。采用尖晶石材料制造的防弹窗口能很好地满足上述要求。

4.3 透明尖晶石陶瓷用于制作基片和衬底

基片材料应具有合适的力学、热学、化学和电学性质。它们的机械强度要求很高,以使得组件能安全地连接在上面,同时又可将它们接到相应的设备中。耐腐蚀,化学性质稳定,通常要求有低的介质损耗因子以保持在回路中高的Q值,低的介电常数,以减少导线间的相互干扰作用,并要求高的热传导率等。目前使用的各方面综合性能最好的仍是氧化铝¨引。而尖晶石与氧化铝各项性能相近的同时,有更强的化学稳定性,适合用作各类电路元件如厚膜电路、薄膜电路、集成电路载体和芯片封装等高性能的基片材料[10]。

多晶硅薄膜在集成电路、薄膜晶体管和太阳电池等领域都有广泛的应用。目前的晶体硅太阳电池成本大约是硅材料本身成本的一半。晶体硅太阳薄膜电池具有高效率和稳定性的特点,能有效地降低太阳电池多晶硅薄膜可以用不同的方法在不同的衬底上得到,不同的衬底材料对多晶硅薄膜的生长有不同的影响。镁铝尖晶石具有硬度高,耐高温,化学稳定性好,耐磨,耐腐蚀等特点,它和硅都是立方结构,具有较好的相容性,适合高温过程,生长的薄膜内应力较小,高温过程生长条件能获得较大晶粒尺寸的薄膜,有利于制备性能好的太阳电池,是适于生长多晶硅薄膜的衬底材料。已有研究者成功地在镁铝尖晶石透明陶瓷上制备出性能良好的多晶硅薄膜

4.4 各种照明灯具

透明多晶尖晶石可用于制备新型灯具,例如:铯灯、铷灯和钾灯等,以及其他恶劣环境下如:机场跑道等特殊场合下的灯具。在各种金属卤素灯的研制中,人们在增加功率的同时不断地致力于提高灯管的透过率,进而提高灯具的亮度和

效率,降低能耗。由于尖晶石固有的结构优势:属于立方晶系的尖晶石较之六方晶系的氧化铝更易得到透过率高的制品,从而提高灯管亮度和使用寿命。已有相应研制工作在进行。

4.5 各种高温、高压以及腐蚀性环境下的设备观察窗口及其他应用

透明尖晶石陶瓷耐腐蚀,强度高并且可透过可见和红外波段,可用作各种设备的观察和探测窗口:例如用作瓦斯探测器窗口,耐受煤矿井下恶劣环境;能耐高温的锅炉水位计;用作高温、高压反应设备的观测窗口;耐磨损的商品条码扫描仪窗口;井下探测用的传感器等。

光学透明陶瓷材料由于耐高温而省去了窗口冷却系统,对设备的设计和应用带来极大方便。有研究者为改进抵抗断裂的性能,进行了全新的纤维增强研究,制备了纤维增强的陶瓷基透明复合材料用作光学窗口,透光性能良好。

此外,透明尖晶石陶瓷还可望用作核反应堆壁材料、低压高频电容器、感应线圈骨架,光纤及光纤传感器;光学计算机部件、医用手术刀具,高档手表、精密仪表的壳体以及镜面;各种护目镜片等。

参考文献:

[1] 刘康时,杨兆雄, 吴基球等.陶瓷工艺原理.广州:华南理工大学出版社,19901139~140.

[2] 闻芳,杜洪兵,雷牧云等.镁铝尖晶石超细粉末的制备[J].现代技术陶瓷,2003,97(3):3.

[3] 邓国珠.PTC 热敏陶瓷电极的老化研究.电子元件与材料,1995,14 (5) :32.

[4] 张艳奎,韩兵强,邱文冬等.不同Al2O3含量的镁铝尖晶石抗钢包渣侵蚀性研究耐火材

料,2013,47(2),4.

[5] 刘军芳,傅正义,张东明,等.透明陶瓷的制备技术及其透光因素的研究.硅酸盐通报

2003,3 .

[6] 闻芳,杜洪兵,雷牧云,等.镁铝尖晶石超细粉末的制备.现代技术陶瓷,2003,3.

[7] H okazon o S, Manako K, K ato A. The Sintering behaviour of spinel powders produced by a

hom ogeneous precipitation tech h n i q ue . Br C era m T rans J ,1992 ,91(3) :77~79.

[8] 马亚鲁.化学共沉淀法制备镁铝尖晶石粉末的研究.无机盐工业,1998 ,30 (1):3-4.

[9] 雷牧云,黄存新,闻芳等.透明尖晶石陶瓷的研究进展,人工晶体学报,2007,36(2):4.

[10] 廖华,林理彬,刘祖明等.四川大学物理系,辐射物理及技术国家教育部重点实验室,成

都,610064.

试验三结构陶瓷的制备及性能测试

实验一陶瓷墙地砖的制备 陶瓷墙地砖的制备包括坯料和釉浆的制备、坯体成型、施釉、烧成等主要工序。陶瓷墙地砖产品质量的好坏与泥釉料配方、工艺参数及工艺控制密切相关。本实验目标是要求学生制备出陶瓷内外墙砖或地板砖的小件制品,从中体会陶瓷墙地砖的生产工艺技术,提高操作技能。可分组进行各阶段的实验,然后组合在一起,也可以上组为下一组制备泥浆、釉浆和坯体。 一、实验目的 1、掌握坯料、釉料制备方法。 2、掌握和运用粉体、釉浆及产品性能测试技术。 3、掌握陶瓷砖的成型方法。 4、了解陶瓷烧成过程中的物理、化学变化。 5、了解影响陶瓷墙地砖产品质量的因素及改进方法。 二、实验内容 独立设计制作各类陶瓷墙地砖;了解和掌握制备陶瓷砖的工艺步骤(包括配方计算、配料、研磨、成型、施釉、烧成等过程);墙地砖抗弯强度、吸水率、热稳定性等性能的测试方法及影响因素分析。 三、实验原理 制定坯料配方的方法通常是根据产品性能要求,选用原料,确定配方及成型方法。例如制造日用瓷则必须选用烧后呈白色的原料,包括粘土原料并要求产品有一定强度;制造化学瓷则要求有好的化学稳定性;制造地砖则必须有高的耐磨性和低的吸水性;制造电瓷则需有高的机电性能;制造热电偶保护管必须能耐高温、抗热震并有高的传热性,制造火花塞则要求有大的高温电阻、高的耐冲击强度及低的热膨胀系数。 选择原料确定配方时既要考虑产品性能,还要考虑工艺性能及经济指标。各地文献资料所载成功的经验配方固有参考价值,但无论如何,不能照搬。因粘土、瓷土、瓷石均为混合物;长石、石英常含不同的杂质,同时各地原有母岩的形成方法、风化程度不同,其理化工艺性能不尽相同或完全不同,所以选用原料制定配方只能通过实验来决定。坯料配方试验方法一般有三轴图法、孤立变量法、示性分析法和综合变量法。 三轴图法即三种原料组成图,图中共有66个交点和100个小三角形,其中由三种原料组成的交点有36个,由两种原料组成的交点有27个,由一种原料组成的交点有3个。如图所示。配料时先决定该种坯料所选用各种原料之适当范围,初步确定三轴图中几个配方点(配方点可以在交点上,也可以在小三角形内)。 孤立变量法即变动坯料中一种原料或一种成分,其余原料或成分均保持不变,例如A、月、C三种原料,固定A、B,变动C;或固定月、C,变动A;或固定A、C变动B,最后找出一个最佳配方。 示性分析法即着眼于化学成分和矿物组成的理论配合比。例如高岭土中常含有长石及石英之混合物,长石中常含有未化合的石英,瓷石中则常含有长石、石英、高岭石、绢云母等。如配方中的高岭土是指纯净的高岭石,配方中的长石、石英是指极纯的长石及石英,则最好用示性分析法测定各种原料内之高岭石、长石,石英的含量,以便配料时统计计算。 综合变量法即正交试验法,也叫多因素筛选法、多因素优选法、大面积撒网法。试验前

镁铝尖晶石粉体的制备方法

【摘 要】:综述了目前常用的制备镁铝尖晶石粉体的各种方法的工艺过程、特点及其产物的性能特征。经分析指出纯度和粒度是粉体最重要的两个性能指标;降低合成温度、简化工艺过程是今后制备技术发展的趋势。金属醇盐可能成为获得高纯度产物最有应用前景的前驱物;水热处理、溶剂蒸发、超临界干燥等物理手段是解决粒度最有效的途径。 【关键词】:耐火材料,镁铝尖晶石,粉体,制备方法 引 言 镁铝尖晶石(Magnesium Aluminium Spinel,以下简称MAS)材料是一种熔点高、热膨胀系数小、热导率低、抗热震性好、抗碱侵蚀能力强的材料[1],主要应用于钢包内衬、平炉炉顶、水泥回转窑烧成带衬砖。MAS单晶体是一种高熔点、高硬度的晶体材料。在10GHz以上的微波段上,MAS单晶的声衰减比蓝宝石或石英低得多,可作为介质制作微波声体波器件[2]。MAS还具有优良的电绝缘性,且与Si的匹配性能好,其线膨胀系数与Si相近,因而其外延Si形成膜的形变小,是一种重要的集成电路衬底材料[3]。 近年来,制备MAS粉体的方法受到人们的广泛关注,并在原有制备工艺基础上,涌现出许多新的制备技术。本文拟总结近年来国内外对获取高性能MAS体制备方法,以期找到解决粉体的纯度、粒度、化学均匀性等问题的途径,从而在获取高性能粉体,发挥其优越性能。 1 固相法 1.1传统固相法 固相法是固体与固体之间发生化学反应生成新的固体物质的反应过程,其中反应温度高于600℃称为高温 固相反应。Lepkova D[4]等研究了MgO和Al 2O 3 的固 相反应中,添加剂对尖晶石形成温度和转化率的影响。 将α-Al 2O 3 和Mg(HCO 3 ) 2 分解后的MgO及添加剂均 匀混合后,在一定的温度下反应制备尖晶石粉,添加剂 为B 2O 3 和TiO 2 ,或B 2 O 3 和氟化物(LiF,CaF 2 ,ZnF 2 , BaF 2 )的混合物。尖晶石合成转化率在85%~95%之间, 加入B 2 O 3 和TiO 2 复合添加剂时,尖晶石粉的生成量最大。 传统固相法无疑是最简单、最方便的合成尖晶石的工艺, 存在的显著缺点是合成温度高。而添加剂又会影响产物 的纯度,无法满足高技术领域的要求。 1.2凝胶固相法 凝胶固相法是将初始原料同有机单体、交联剂、引 发剂等混合形成凝胶,干燥后经焙烧制备粉体。粉体具 有颗粒细小均匀、纯度高、分散性好等优点。仝建峰[5] 等以Mg(OH) 2 ·4MgCO 3 ·6H 2 O和Al 2 O 3 按n(Mg)∶ n(Al)=1∶2进行混合,有机单体丙烯酰胺(C 3 H 5 NO)为 凝胶,N,N′-亚甲基双丙烯酰胺为交联剂,过硫酸铵 (NH 2 ) 2 SO 6 水溶液为引发剂,4-甲基乙二胺(C 6 H 16 N 2 ) 为催化剂,选用JA-281试剂为分散剂,用NH 3 ·H 2 O 调节pH值。将干凝胶在1250℃左右保温3h,便可得到 平均粒径为0.5μm的球形MgAl 2 O 4 微粉。王修慧[6]等 先以异丙醇水溶液将高纯MgO粉体分散成浆体,再将异 丙醇铝水解得到凝胶,然后按n(Mg)∶n(Al)=1∶2配 料球磨混合24h,干燥后进行焙烧,800℃即开始出现尖 晶石相,1200℃时形成了完善的MAS相结构,最终得 到纯度高达99.99%MAS粉体。之所以能够降低合成温 度,是原因反应物之一的AlOOH凝胶替代Al 2 O 3 ,活性 高,粒度细,混合过程中可达到高度的均匀性;在加热 至500℃~600℃范围内会生成高活性Al 2 O 3 。此法解决 了产物的纯度问题,可以应用于提拉法生长尖晶石单晶 材料;但其缺点是粒度偏粗大,不适于透明多晶体的制备。 2 沉淀法 2.1 均匀沉淀法 均匀沉淀法是利用某一化学反应,将溶液中的构 晶离子从溶液中缓慢、均匀地释放出来,与溶液中的 Mg2+和Al3+生成沉淀,然后再经干燥、焙烧制得粉 体。Hokazono S[7]等采用2种溶液体系来制备MAS粉 体:一是Al(NO 3 ) 3 、Mg(NO 3 ) 2 、尿素水溶液体系;二 是Al 2 (SO 4 ) 3 、MgSO 4 、尿素水溶液体系。按n(Mg)∶ n(Al)=1∶2进行配料;其中,C 尿素 =1.8mol·L-1, C Al 3+=0.1mol·L-1,C Mg 2+= 0.08mol·L-1,分别用 HNO 3 、H 2 SO 4 调至pH值为2,在90℃水浴分别加热 22.5h和38h,生成的沉淀经离心分离后于100℃干燥 24h,在800℃~1000℃焙烧,得到比表面积为25~ 66m2·g-1的MAS粉体。硝酸盐体系制备的前驱物含 镁铝尖晶石粉体的制备方法 王修慧1,2,王程民2,司 伟2,李 刚2,曹冬鸽2,翟玉春1 (1东北大学材料与冶金学院, 沈阳 110006; 2大连交通大学材料科学与工程学院, 大连 116028) 收稿日期:2008-1-24 基金项目:国家自然科学基金资助项目,编号:50104003 作者简介:王修慧(1964-),男,博士研究生,副教授; 从事金属醇盐、高纯氧化物粉体制备研究。 E-mail:dl_wangxh@https://www.360docs.net/doc/cb4707906.html, 文章编号:1001-9642(2008)07-0003-04

提高氧化铝透明陶瓷透明度

提高氧化铝透明陶瓷的透明度 氧化铝透明陶瓷:又称半透明氧化铝陶瓷或透明多晶氧化铝陶瓷主晶相为α-A12O3。密度3.98g/cm3以上。直线透光率90%~95%以上。介电常数大于9.8。介电损耗角正切值小于2.5×10-4(1GC>,抗弯强度大于350~380MPa。击穿强度6.0~6.4kV/mm。热膨胀系数(6.5~8.5>×10-6/℃。高温下具有良好耐碱金属蒸气腐蚀性。 原料为纯度99.99%以上的Al2O3,添加少量纯氧化镁、三氧化二镧、或三氧化二钇等添加剂,采用连续等静压成型,气氛烧结或热压烧结,严格控制晶粒大小,可获得高致密透明陶瓷。 用于制造高压钠灯的发光管(工作寿命可超过2万h>。也可用作微波集成电路基片、轴承材料、耐磨表面材料和红外光学元件材料等。 1. 概述 透明陶瓷特性:耐高温耐腐蚀 高绝缘高强度 透明 一般陶瓷—气孔、杂质、晶界、结构 ↓ 对光反射损失+吸收损失 ↓ 光学不透明 2.透光模型 表面反射光 ↑ 入射光→陶瓷材料→透射光 ↓ 内部吸收光 + 散射光 ↑↑ 晶体本身+杂质外表+内散射中心 ↓ 杂质+微气孔+晶粒直径↓ 散射量最大←入射光波长=晶粒直径 3.陶瓷透光的基本条件 1>致密度>理论密度的99.5% 2>晶界无空隙或空隙大小<<入射光波长

3>晶界无杂质及玻璃相,或其与微晶体的光学性质相似 4>晶粒较小且均匀,其中无空隙 5>晶体对入射光的选择吸收很小 6>晶体无光学异向性(立方晶系> 7>表面光洁 4.工艺原理 <1)控制以体积扩散为烧结机制的晶粒长大过程 晶粒过快生长—晶界裂缝,封闭气孔 晶粒生长速度 > 气孔移动速度 —包裹于晶体内的气孔更不易排出 加入适量MgO(0.1-0.5%> →透明Al 2O 3 陶瓷 ↓ 1>MgAl 2O 4 晶界析出,阻止晶界过快迁移 2>MgO较易挥发,防止形成封闭气孔↓ 限制晶粒过快生长—微晶结构透明Al 2O 3 陶瓷 <2)控制气孔平均尺寸 烧结透明Al 2O 3 陶瓷:晶粒~25μm,大小均匀 气孔半径0.5-1.0μm 气孔率0.1% 热压烧结Al 2O 3 陶瓷:晶粒1-2μm,大小不均 气孔半径~0.1μm 对可见光散射效应强 在可见光区透光率:烧结瓷 >热压瓷 <3)其他因素:原料纯度、细度,成型方法,烧结气氛等氢气或真空中烧结,透光率高 5.工艺方法 1)配料 主料:高纯Al 2O 3 (>99.9%> —硫酸铝铵热解法 Al 2(NH 4 > 2 (SO 4 > 4 ?24H 2 O ~200℃ → Al 2 (SO 4 > 3 ?(NH 4 > 2 SO 4 ?H 2 O + 23 H 2 O↑ 500~600 ℃ → Al 2 (SO 4 > 3 + 2NH 3 ↑+SO 3 ↑ + 2 H 2 O↑ 800~900 ℃ →γ-Al 2O 3 + 3 SO 3 ↑ ~1300 ℃/1.0~1.5h →α-Al 2O 3 (少量γ-Al 2O 3 提高活性,促进烧结> 改性料:MgO 以Mg(NO 3> 2 加入,共同热分解 —分布均匀,活性较大的MgO 2)成型和烧结: a>常温注浆或等静压成型,高温烧结 浆料pH=3.5,流动性较好 坯体理论密度 > 理论密度的85% 氢气或真空下烧结,T=1700-1900℃

功能陶瓷的固相反应法制备及介电性能测试

功能陶瓷的固相反应法制备及介电性能测试 一、实验目的 1、了解制备功能陶瓷材料的固相反应法; 2、掌握用LCR仪测试功能陶瓷材料介电性能的方法; 3、测量特定频率及温度范围内BaTiO3陶瓷的介电性能随频率及温度的变化; 4、结合实验结果分析BaTiO3陶瓷的介电性能与频率及温度的关系。 二、实验原理 固相反应法制备功能陶瓷: 制备功能陶瓷材料的方法有很多种,其中最成熟、应用最为广泛的则是固相反应法。这种方法以高纯度粉末(常为氧化物)为原料,经精确称量后与球磨介质(常为球状,一般用ZrO2、Al2O3、玛瑙等高硬度材料)及分散液体(通常为水或酒精)混在一起,经球磨、干燥、过筛后得到颗粒细小、混合均匀的粉末。均匀混合的粉末在高温下发生化学反应,合成所需的物相,此过程称为预烧结(又称锻烧)。之后再次进行球磨、干燥、过筛,并将得到的颗粒细小的粉末与少量有机物水溶液(如PV A、PVB等)混合在一起、研磨后过筛(此过程称为造粒),以增加粉末在成型过程中的可塑性和流动性,并减小粉末与模具间的摩擦。将造粒后的粉末放置于金属模具中,并施加高压,即得到具有所需形状的压粉体(又称素胚),此过程称为成型。压粉体具有一定的强度和致密度,但其中仍存在很多气孔,需通过高温下的烧结过程予以排除。由于粉末颗粒细小,具有较高的表面能,这和高温一起构成了烧结过程的动力。在烧结动力的作用下,颗粒之间发生传质的过程,同时伴随着晶粒的长大、大部分气孔的排除、体积的收缩、密度的增大及强度的提高,最终得到致密的陶瓷材料。 材料的介电性能及其测试方法: 介电性是材料对外加电场的一种反应。介电材料内的电荷在外加电场的作用下会发生位移,导致正、负电荷中心不重合,从而发生电极化、在介质表面形成束缚电荷,并在宏观上表现为电容及介电常数。介电常数 是表征材料介电性能

氧化铝陶瓷的制备实验指导书

结构陶瓷的制备通常由所需起始物料的细粉,加入一定的结合剂,根据合适的配比混合后,选择适当的成型方法,制成坯体。坯体经干燥处理后,进行烧结而得到。坯体经烧结后,宏观上的反映为坯体有一定程度的收缩,强度增大,体积密度上升,气孔率下降,物理性能得到提高。 实验目的: 1.选用氧化铝粉体,通过干法成型,制备氧化铝陶瓷。 2.选用合适的烧结助剂,促进氧化铝陶瓷的烧结,加深对陶瓷烧结的理解。 3.熟悉陶瓷常用物理性能的测试方法 实验原理: 氧化物粉体经成型后得到的生坯,颗粒间只有点接触,强度很很低,但通过烧结,虽在烧结时既无外力又无化学反应,但能使点接触的颗粒紧密结成坚硬而强度很高的瓷体,其驱动力为粉体具有较高的表面能。但纯氧化铝陶瓷的烧结需要的温度很高,为在较低的温度下完成烧结,需要向体系中加入一定的助烧剂,使其能在相对较低的温度下出现液相而实现液相烧结。 本实验中,采用向氧化铝粉体中加入适量的二氧化硅粉体以促进烧结,而达到氧化铝陶瓷烧结的目的。 实验仪器: 天平、烧杯、压力机、模具、游标卡尺、电炉等 实验步骤: 1.配料。将氧化铝、氧化锆粉体按80:20的质量比例混合均匀,并外加入 5%的水起结合作用。 2.制样。称取适量混合好的粉体,倒入模具内,压制成型。并量尺寸,计算 生坯的体积密度。 3.干燥。将成型好的生坯充分干燥。 4.烧结。将干燥后的生坯置于电炉内,在1600℃的条件下保温3小时。 5.检测。测量烧后试样的尺寸,计算其体积密度。计算烧结前后线变化率。

1.实验目的 2.实验仪器 3.实验数据记录及数据处理 起始物料的配比;结合剂的加入量;烧结前后试样的体积密度及质量变化;烧结前后的线变化率。 4.思考题: 1)助烧剂的作用机理是什么? 2)常用体积密度的测试方法有哪几种?

镁铝尖晶石

尖晶石型化合物属于等轴晶系,其结构中氧作最紧密堆积,阳离子填充四面体、八面体间隙,每个晶胞中8/64的四面体间隙和16/32的八面体间隙被填充。 镁铝尖晶石是具有相同晶体结构的氧化物中的一种,这种晶体结构称为尖晶石结构。尖晶石组有二十多种氧化物,但只有很少数是常见的。尖晶石组的结构式是AB2O4, 这里A代表二价金属离子,例如镁、铁、镍、锰和/或锌,B代表三价金属离子,例如铝、铁、铬或锰。除非特别指明,本文的尖晶石表示MgAl2O4, 矿物尖晶石是二元系统MgO –Al2O3 的唯一化合物。尖晶石族矿物的明显特征是,它是一种组分可被替代的固溶体,尖晶石组分中一种或两种都可以被这组矿物中的其他组分大量的代替,而且是在晶体结构不改变或晶格没有任何变形的情况下。镁离子和铝离子都可被较小尺寸的其他离子代替,保持电化学平衡。因此尖晶石族矿物有很多种固溶体。另外,随温度的增加,MgAl2O4 相区域增加,尤其是朝着氧化铝含量较高的方向增加。通过这个结构中金属离子和氧离子的空位保持电化学平衡。以后将讨论这一特征,它在尖晶石抗钢渣的侵蚀上起很重要的作用。2.2 物理性能镁铝尖晶石的熔点是2135℃,是熔点较高的耐火材料。表1是MgO、Al2O3和尖晶石相的体积密度、热膨胀系数和热导率的对比。这些相在热膨胀系数上的差别体现出尖晶石优异的抗热震性。MgO和Al2O3生成尖晶石时,密度下降,体积增加,这使我们想到了技术应用上,例如生产浇注料,在浇注料里,MgO和Al2O3原位反应生

作为耐火材料原料的尖晶石的天然资源还没有发现,因此尖晶石必须通过合成来制备。尖晶石生产的两个主要途径是烧结和电熔。大多数耐火材料使用的尖晶石是由高纯合成氧化铝和化学级氧化镁来合成的。烧结尖晶石在竖窑中合成,电熔尖晶石在电弧炉中合成。因为从动力学上说形成固态尖晶石是非常困难的,所以要求原材料很细、反应活性大。烧结合成尖晶石的优点是它是一个连续的陶瓷过程,喂料速度可控,窑内温度分布均匀,可以生产出晶粒尺寸为30-80μm 和气孔率较低(<3%)的非常匀质的产品。另一方面,电熔生产尖晶石是一个典型的批量生产过程。大的晶锭需要很长的冷却时间,导致倒出的晶锭在冷却过程中微观结构不均匀。外部的尖晶石冷却速度比内部的快,晶体尺寸比内部的小。杂质因熔点最低集中在晶锭中心。因此,匀质的电熔尖晶石材料只有通过已加工材料的仔细挑选才能获得。使用高纯原材料的另一个优点,是所得材料的杂质含量很低(MgO+Al2O3 >99%), 尤其是氧化硅含量,这样尖晶石的高温性能很好。矾土基尖晶石已经根据它的几种合成原料进行了评估。Moore et al[2]在实验室合成的矾土和水铝石基尖晶石与合成的氧化铝基尖晶石相比,表现出高的蠕变速率。这是由于矾土中杂质(SiO2, TiO2, Fe2O3, 碱金属)在骨料中形成较多的玻璃相。矾土基尖晶石没有合成氧化铝基尖晶石的性能好,所以它只能用在抗侵蚀性和高温强度要求不高的环境下。 4 产品类型工业尖晶石产品以化学计量比Al2O3/MgO=28.2/71.8作为分界点分为两类,见图1。富镁尖晶石MR66含有过量MgO, 而富铝尖晶石AR78和AR90含有

HfC陶瓷先驱体的制备及其性能研究

Material Sciences 材料科学, 2017, 7(8), 716-724 Published Online November 2017 in Hans. https://www.360docs.net/doc/cb4707906.html,/journal/ms https://https://www.360docs.net/doc/cb4707906.html,/10.12677/ms.2017.78094 Preparation and Properties of HfC Ceramic Precursor Liyan Zhang, Xiaozhou Wang, Yifei Wang Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha Hunan Received: Nov. 5th, 2017; accepted: Nov. 19th, 2017; published: Nov. 27th, 2017 Abstract As an important ultra-high temperature ceramics (UHTCs), HfC ceramics have been considered to be one of the most promising materials for the application in aerospace. A precursor for HfC ce-ramic was prepared by using hafnium tetrachloride, methanol, acetylacetone, and 1,4-butanediol as raw materials. The composition, structure and pyrolysis process of the obtained precursor was investigated by elemental analysis, Fourier transform infrared (FTIR), XPS and TG-MS. The results show that, the precursor mainly contains Hf, C, O, Cl, with a linear structure of Hf-O-C. The compo-sition, structure and properties of the pyrolysis products were analyzed by elemental analysis, XRD and SEM. It is found that hafnia still remain in the products after being treated at 1600?C in argon. In addition, the carbothermal reduction had started at 1200?C, and only HfC existed after the heat treatment of 1600?C in vacuum. Keywords HfC, Ultra-High-Temperature, Precursor, Ceramic HfC陶瓷先驱体的制备及其性能研究 张丽艳,王小宙,王亦菲 国防科技大学,航天科学与工程学院新型陶瓷纤维及其复合材料重点实验室,湖南长沙 收稿日期:2017年11月5日;录用日期:2017年11月19日;发布日期:2017年11月27日 摘要 HfC陶瓷具有优异的耐超高温性能,在航空航天领域具有广阔的应用前景。本文以四氯化铪、乙酰丙酮、甲醇、1,4-丁二醇为原料合成了HfC陶瓷先驱体。采用元素分析、红外光谱、XPS、TG-MS等对先驱体的

刚玉-镁尖晶石炉衬

刚玉-镁铝尖晶石炉衬的应用 2011-11-07 13:19:48 作者:佚名来源:精密铸造分会浏览次数:819 中国铸造协会精铸分会周泽衡李祖雄 东营嘉扬精密金属公司陈亚辉段继东 在硅溶胶精铸工艺生产中,常用的感应电炉容量均小于350㎏,大多为100至150㎏容量的快速熔炼炉,主要是熔炼合金钢,由于精密铸造对合金的熔炼不属于完整的冶炼过程,而是用化学成合格的或基本合格的且很纯净合金料进行快速重熔,为保证合金液的纯净除要十分重视炉料的纯净度外,对直接接触合金的炉衬材料的要求要严格,由于合金在熔化过程中被氧化污染的源头是炉衬、炉料和大气三个方靣,因而对炉衬材料的要求是,纯净度高、杂质少、高温下不污染钢液,且其软化点高于合金的最高熔化温度,使用寿命长。表1为适于作炉衬的几种耐火材料旳主要性能。這些材料除石英外大多是通过电熔或高纯原料高温煅烧而成,杂质含量低,适于精密铸造非真空感应熔炼电炉使用,可根据熔炼的合金种类进行选择。 表1几种炉衬耐火材料的主要性能 1. 镁质材料炉衬 目前囯内硅溶胶工艺精铸生产中常用的炉衬材料是氧化镁质材料,表1中电熔镁砂是由精选的菱镁石或高纯的轻烧镁在电弧炉或电渣炉中熔融,氧化镁中的杂质被熔化成低熔点的熔渣而去除,氧化镁熔体冷却后形成方镁石晶体,再经破碎即为电熔镁砂,其氧化镁含量特级的可达98%以上。另一种海水镁砂是用海水(含氯化镁及硫酸镁)与消化石灰进行反应形成氢氧化镁,经过滤干燥后,再轻烧后制成团粒状,在回转窑中经1700-1800℃重烧而成具有方镁石晶体的颗粒料,它的纯度高、密度大、组织均匀且体积变化相对小些,优于电熔镁砂。从表1可知这两种镁砂具有高的熔点和软化点,因而能满足精密铸造各种合金钢的熔化需要,而且镁砂中杂质含量极少,方镁石在高温下也极为稳定,故此炉衬材料不会污染合金,但是在实陈使用中也发现它的两点不足:①由于镁砂的热膨胀系数大,抗热震性差,这种材料捣固的坩埚在冷热交替的工况下,其一是被烧结的表层易产生裂纹,宽大的裂纹必须细心修补,细小裂纹在再次熔化时,先需用小功率加热,使坩埚烧结层受热膨胀而弥合裂纹后才能大功率熔化合金,否则合金液容易渗入裂缝造成穿炉;其二是由于炉衬的未烧结层的镁砂

镁铝尖晶石透明陶瓷地制备与性能研究

摘要 本文主要综述了镁铝尖晶石透明瓷制备的研究进展;分别介绍了镁铝尖晶石透明瓷的抗钢包渣侵蚀性能研究和透光性能研究,同时介绍了不同的镁铝尖晶石的制备,还有镁铝尖晶石在各领域的应用,并对其发展前景做了展望。 关键词:镁铝尖晶石;透明瓷;镁铝尖晶石性能;镁铝尖晶石制备 MgAl2O4 transparent ceramic preparation and Properties Research Abstract This paper reviewed the research progress in MgAl2O4transparent ceramic preparation; then introduces the research study and transmittance properties of ladle slag resistance of mg Al spinel transparent ceramics erosion, also introduces the different preparation of magnesia alumina spinel, spinel and application in various fields, and has made the forecast to its development prospects. Keywords: Magnesia alumina spinel; Transparent ceramics; Magnesia alumina spinel properties; Preparation of magnesia alumina spinel

二氧化锆陶瓷的制备及性能分析

特种陶瓷综合论文 院(部、中心)材料科学与工程学院 姓名 x x x 学号 xxx 专业材料科学与工程班级 xx 课程名称特种陶瓷材料综合论文 设计题目名称氧化锆陶瓷的制备及性能分析 起止时间 成绩 指导教师 xxx大学教务处制

目录 一、氧化锆的基本性质及应用 (1) 1.1氧化锆的基本性质 (1) 1.2氧化锆的应用 (1) 二、氧化锆粉料的制备 (1) 2.1常用微粉 (2) 2.2 超细粉制备 (2) 三、氧化锆陶瓷的成型 (4) 3.1 热压铸成型 (4) 3.2 干压成型 (4) 3.3 等静压成型 (6) 3.4注浆成型 (6) 3.5流延成型 (6) 3.6凝胶注模成型 (7) 四、氧化锆陶瓷的烧结 (7) 4.1 真空烧结炉 (8) 4.2实验室烧结炉 (10) 五、氧化锆陶瓷的性能测试 (11) 5.1体积密度、吸水率和气孔率的测定 (11) 5.2 抗压强度的测定 (12) 5.3 三点抗弯强度 (12) 5.4 SEM 测试分析 (12)

一、氧化锆的基本性质及应用 1.1氧化锆的基本性质 氧化锆是自然界中以斜锆石存在的一种矿物,是一种耐高温、耐磨损、耐腐蚀的无机非金属材料。它的熔点高达2700摄氏度。白色重质无定形粉末,无臭、无味。溶于2份硫酸和1份水的混合液中,微溶于盐酸和硝酸,慢溶于氢氟酸,几乎不溶于水。有刺激性。相对密度5.85。熔点 2680℃。沸点4300℃。硬度次于金刚石[1]。能带间隙大约为5-7eV 。一般常含有少量的氧化铪。化学性质不活泼,且高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐高温材料、陶瓷绝缘材料和陶瓷遮光剂。纯的ZrO 2在常压下共有三种晶型:从低温到高温一次为单斜相、四方相、和立方相。氧化锆晶型转变如下:[2] 221170℃2370℃t 2 950℃m ZrO ZrO c ZrO --- 1.2氧化锆的应用 主要用于压电陶瓷制品、日用陶瓷、耐火材料及贵重金属熔炼用的锆砖、锆管、坩埚等。也用于生产钢及有色金属、光学玻璃和氧化锆纤维。还用于陶瓷颜料、静电涂料及烤漆[3]。 氧化锆还是一种很优秀的高科技生物材料。生物相容性好,优于各种金属合金,包括黄金。氧化锆全瓷牙具有极高的密合性,且对牙龈无刺激、无过敏反应,很适合应用于口腔。导热性能极低,仅为黄金的十七分之一,更有利于牙髓的保护。质量轻,密度仅为黄金的四分之一,患者佩戴更舒适。 二、氧化锆粉料的制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多。氧化锆的提纯主要有氯化和热分解法、碱

镁铝尖晶石砖性能特点

铝镁尖晶石砖以镁铝尖晶石为基质,以抗热震性优于镁砖而见长,被广泛应用于砌筑炼钢碱性平炉和电炉的炉顶等,关于这种晶石砖的特点大家是否了解呢,下面简单的给大家介绍一下。 1、镁铝砖的热震稳定性好,可承受水冷20~25次,甚至更高。这是它最突出的优点,比普通镁砖好得多。研究认为,镁铝砖热震稳定性好,是由于镁铝尖晶石和方镁石都属于立方晶系,沿各个晶轴方向的热膨胀大小都相同,故温度波动时膨胀和收缩都比较均匀,产生的热应力较小。 2、镁铝砖的主要性能也比镁砖稍强。由于镁铝尖晶石本身的熔点较高,故镁铝砖的荷重软化温度比镁砖有所改善,达到1620~1690℃。 3、镁铝尖晶石保护方镁石颗粒免受熔渣侵蚀的能力比钙镁橄榄石强,故镁铝砖抵抗碱性熔渣以及氧化铁熔渣的能力较镁砖有所加强。 镁铝砖具有以上优良性能,故在我国已广泛用做炼钢平炉,炼铜反射炉等高温熔炼炉炉顶的砌筑材料,取得了延长炉子寿命的效果。大型平炉可达300炉左右,中小型平炉在1000炉以上。

接下来再给大家说下铝镁尖晶石砖的生产工艺: 镁铝砖的生产工艺与烧成镁砖大致相同,只是在配料中加入一定比例的工业氧化铝或特级铝矾土熟料。工业氧化铝的杂质含量比高铝矾土熟料低。配料中加入天然铝矾土熟料,可改善泥料的塑性,在同样条件下,砖坯体积密度较高。 工业氧化铝的加入量一般为5%~10%,通常按一定比例与镁砂共同细磨后,以细粉形式加入,这有利于在制品基质中形成分布均匀的镁铝尖晶石新晶相。也有采用预合成镁铝尖晶石再进行配料制砖的生产方法。配料时临界粒度大,有利于提高制品的抗热震性,但不利于制品的密度和强度,一般采用3mm。 粒度一般采用3~1mm与1~0.088mm且应控制3~2mm粗颗粒与小于0.088mm细粉的比例,来提高制品的抗热震性。镁铝砖的烧成温度要根据原料的纯度来确定,一般要比镁砖的烧成温度高30~50℃,高纯镁铝砖的烧成温度达1750~1800℃。 以上就是金京窑业带给大家的分享,希望对大家有所帮助,同时也感谢大家一直以来对金京窑业的关注与支持!

高性能钢包耐火材料用镁铝尖晶石

高性能钢包耐火材料用镁铝尖晶石 Raymond P.Racher Almatis Inc. 501West Park Road Leetsdale,PA15056,USA Robert W.McConnell Almatis Inc 4701Alcoa Road Bauxite,AR72011USA Andreas Buhr Almatis GmbH, Olof-Palme-Str.37, D-60439Frankfurt/Main Germany 摘要 优质钢的生产要求钢在钢包中进行更多的处理。这对钢包用耐火材料有显著的影响,例如需要透气砖等高性能功能耐火材料。增加出钢温度,较长的停留时间,侵蚀性更强的二次冶炼等操作的改变要求耐火材料衬更薄,寿命更长。这些综合因素重新唤起了对镁铝尖晶石研究的兴趣。 镁铝尖晶石已经作为各种类型用于炼钢用耐火材料很多年了。本文阐述了尖晶石的生产、理化性能和使用性能,也讨论了尖晶石应用的进展情况。 1 引言 本文讨论了镁铝尖晶石的结构、性能和应用,尤其描述了镁铝尖晶石在生产洁净钢用耐火材料上的优点。 镁铝尖晶石由于强的抗渣侵蚀性、优良的抗热震性和高温强度高等特点,越来越多的被应用于炼钢用耐火材料。20世纪60年代中期最初生产的尖晶石耐火材料是通过氧化铝和镁砖中的方镁石的原位反应制备的,用于水泥窑的内衬。高质量的预合成尖晶石使得发展优质不定形耐火材料和耐火砖成为可能。 2 性能 2.1 结构

镁铝尖晶石是具有相同晶体结构的氧化物中的一种,这种晶体结构称为尖晶石结构。尖晶石组有二十多种氧化物,但只有很少数是常见的。尖晶石组的结构式是AB2O4,这里A代表二价金属离子,例如镁、铁、镍、锰和/或锌,B代表三价金属离子,例如铝、铁、铬或锰。除非特别指明,本文的尖晶石表示MgAl2O4,矿物尖晶石是二元系统MgO–Al2O3的唯一化合物。 尖晶石族矿物的明显特征是,它是一种组分可被替代的固溶体,尖晶石组分中一种或两种都可以被这组矿物中的其他组分大量的代替,而且是在晶体结构不改变或晶格没有任何变形的情况下。镁离子和铝离子都可被较小尺寸的其他离子代替,保持电化学平衡。因此尖晶石族矿物有很多种固溶体。另外,随温度的增加,MgAl2O4相区域增加,尤其是朝着氧化铝含量较高的方向增加。通过这个结构中金属离子和氧离子的空位保持电化学平衡。以后将讨论这一特征,它在尖晶石抗钢渣的侵蚀上起很重要的作用。 2.2 物理性能 镁铝尖晶石的熔点是2135℃,是熔点较高的耐火材料。表1是MgO、Al2O3和尖晶石相的体积密度、热膨胀系数和热导率的对比。这些相在热膨胀系数上的差别体现出尖晶石优异的抗热震性。MgO和Al2O3生成尖晶石时,密度下降,体积增加,这使我们想到了技术应用上,例如生产浇注料,在浇注料里,MgO和Al2O3原位反应生产尖晶石。在下面的文章里,我们将更加详细的讨论这些效应和它们对使用性能的影响。 表1尖晶石,MgO和Al2O3的热性能和物理性能[1] 尖晶石MgAl 2O 4 方镁石MgO刚玉Al 2 O 3 体密(g/cm3) 3.58 3.58 3.99 热导率(W/m·K) 5.97.1 6.3 热膨胀系数 (dL/L.K.10^6)7.613.58.8

陶瓷的制备方法实验报告

一.实习目的 掌握陶瓷主要工艺实验的原理、方法与一定的操作技能,通过陶瓷工艺综合实验了解陶瓷产品的设计程序与工艺过程,培养综合设计实验的能力,提高分析问题、解决问题和动手能力。 二.实习时间 2013年11月22日 三.实习地点 南信大尚贤实验室及江都金刚机械厂 四实习过程 1.陶瓷材料 A概念:用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。 B 分类:普通材料:采用天然原料如长石、粘土和石英等烧结而成,是典型 的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。 特种材料:采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成, 一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。 C性能: (1)力学特性:陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。(2)热特性:陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。 (3)电特性:大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。 (4)化学特性:陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。 (5)光学特性:陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。 2.实验材料 粘土:是多种微细的矿物的混合体,其矿物的粒径多数小于2μm,主要是由粘土矿物和其他矿物组成的并且具有一定特性的(其中主要是可塑性)土状岩石

镁铝尖晶石透明陶瓷的制备与性能研究

摘要 令狐采学 本文主要综述了镁铝尖晶石透明陶瓷制备的研究进展;分别介绍了镁铝尖晶石透明陶瓷的抗钢包渣侵蚀性能研究和透光性能研究,同时介绍了不同的镁铝尖晶石的制备,还有镁铝尖晶石在各领域的应用,并对其发展前景做了展望。 关键词:镁铝尖晶石;透明陶瓷;镁铝尖晶石性能;镁铝尖晶石制备 MgAl2O4 transparent ceramic preparation and Properties Research Abstract This paper reviewed the research progress in MgAl2O4 transparent ceramic preparation; then introduces the research study and transmittance properties of ladle slag resistance of mg Al spinel transparent ceramics erosion, also introduces the different preparation of magnesia alumina spinel, spinel and application in various fields, and has made the forecast to its development prospects. Keywords: Magnesia alumina spinel; Transparent ceramics; Magnesia alumina spinel properties; Preparation of magnesia alumina spinel 1 绪论 尖晶石是一组分子组成为AB2O4的等轴晶系的系列化合物。在所有的尖晶石类结构中,氧原子是等同的,以立方密堆积排列[1]在镁铝尖晶石(MgAl2O4)中,由于氧原子比阳离子大得多,铝和镁的金属离子分别按一定的规律插入在O2-按最密堆积形成的八面体和四面体空隙中,并保持电中性[2]。

(整理)多孔碳化硅陶瓷制备及性能测试袁兴余

北方民族大学材料学院 选修实验结题报告书(创新研究型) 题目:多孔碳化硅陶瓷制备及性能测试 指导教师:韩非 姓名:袁兴余 学号:20083194 起止日期:2011.10.28-2011.12.20 北方民族大学材料学院 填表日期:2012年03月02日

一问题分析 众所周知,在全球经济发展的浪潮中,全球工业的飞速发展下,环境与资源是人类遇到的两大难题,节省资源,保护环境的要求越来越高,因此,适应这种形势发展的材料是十分需要的。 而多孔陶瓷正是适应了这种形势发展需要的材料,它能够提高效率、节约能源,尤其在环境保护方面发挥着越来越大的作用。19世纪末多孔陶瓷开始发展,初期只是用作铀提纯和细菌过滤的材料。然而随着控制细孔结构的技术不断提高,多孔陶瓷既能够具有陶瓷基体的优良性能,同时还具有更好的气孔率、气孔表面和可调节的气孔形状、孔径及其分布、气孔孔径在三维空间的连通和分布等,以及对应的良好的热、电、光、化学等性能。多孔陶瓷被广泛应用于化工、环保、能源、冶金、电子、石油、冶炼、纺织、制药、食品机械、水泥等领域并有广阔的发展前景,作为吸声材料、敏感元件和人工骨、齿根等材料,也受到人们越来越多的重视。现在,多孔陶瓷在烟尘过滤,泥污处理、污水净化、吸声降噪以及对各式各样的污染物的催化净化等领域的应用,也无不说明了多孔陶瓷在环境保护方面的重大意义。 多孔陶瓷的制备技术很重要,其结构和使用性能都受到其制备工艺的控制。制备多孔陶瓷的方法常用的有挤压成型法、发泡法、造孔剂法、溶胶凝胶法、有机泡沫浸渍法,随着多孔陶瓷研究的逐步深入,越来越多的新方法应用于制备多孔陶瓷中。新发展的有自蔓延高温合成法、超临界干燥法、原位反应法、相变造孔、阳极氧化法等,这些方法各有优点,适用于不同类型的多孔陶瓷制备,用于不同的场合。尽管多孔陶瓷制备技术已从初期的摸索逐步进入了应用阶段,但仍有很多问题有待解决:(l)各种制备技术对多孔陶瓷结构的精确控制。(2)合理协调孔隙度与强度两者之间的关系。(3)理化性质的表征方法有待进一步的发展完善。(4)加强学科间的交叉研究是十分必要的。(5)生产成本的进一步降低。(6)制造工艺较复杂,难以大规模生产。 本实验主要讨论多孔碳化硅陶瓷的制备及性能的测试,目的是为让大家了解多孔碳化硅陶瓷的基本结构、多孔碳化硅陶瓷制备方法和孔碳化硅陶瓷性能检测方法。通过对本实验制备的碳化硅多孔陶瓷进行性能检测与研究,为以后制备更加优良的多孔陶瓷提供备选方案,为多孔陶瓷进入工业领域打下基础。 1.多孔陶瓷具有以下特点? 答:(1)气孔率高。多孔陶瓷的重要特征是具有中较多的均匀可控的气孔。 (2)强度高。多孔陶瓷原材料一般由金属氧化物、二氧化硅、碳化硅等本身具有较高的强度,煅烧后颗粒边界部分发生融化而粘结,形成了具有较高强度的陶瓷。 (3)物理和化学性质稳定。多孔陶瓷材料可以耐酸、碱腐蚀,也能够承受高温、高压,自身洁净状态好,不会造成二次污染,是一种绿色环保的功能材料。 (4)过滤精度高,再生性能好。 2.碳化硅多孔陶瓷有哪些制备方法和优点? 答:A、添加造孔剂法

镁铝尖晶石质耐火材料

镁铝尖晶石质耐火材料 (西安建筑科技大学华清学院) 摘要:阐述了镁铝尖晶石质耐火材料的性能及合成,论述了镁铝尖晶石质耐火材料的应用及发展趋势。关键词:镁铝尖晶石质耐火材料;结构特点;应用;发展趋势 The Development and Application of Magnesia-alumina Spinel Refractories Abstract: The properties and synthesis ofmagnesia-alumina spinel refractories was expounded together with discussion on the application and developing trend of them. Key words: magnesia-alumina spinel refractories; structure characteristic; application; developing trend 1 前言 耐火材料是用作高温窑炉等热工设备的结构材料,以及工业用高温容器和部件的材料,并能承受相应的物理化学变化及机械作用。随着高温工业的发展,对炉衬耐火材料的生产和使用也提出了更高的要求。炉衬耐火材料不仅要求长期处在高温的工作环境,能经受高尘,强腐蚀性炉气及炉渣的冲刷和侵蚀,还要经受温度骤变、机械和物料的撞击、磨损以及各种应力的综合影响。为满足高温工业的需要,炉衬耐火材料产品的使用性能还需进一步提高。而镁铝尖晶石质耐火材料的研究与开发正适应了这一发展趋势。 2 镁铝尖晶石质耐火材料的结构特点 镁铝尖晶石优良的高温性能,使其成为耐火材料中重要的组成部分。从MgO-Al2O3二元系相图(图1)可以看出,Mg-Al2O3是此二元系统的一个中间化合物,熔点为2 135 ℃。方镁石从1 500 ℃开始固溶于尖晶石中,且随着温度的升高固溶量增加。当温度达到1 995 ℃时,溶解度达到最大值10 %。刚玉在高温下也可以固溶在镁铝尖晶石中,且固溶量随着温度的升高而增加,在1 900 ℃以上时,固溶量可以达到20 %以上。 图1 MgO-Al2O3二元系相平衡图【1.2】 在镁铝尖晶石构造中,Al O、Mg O之间都是较强的离子键,且静电键强度相等,结构牢固【3】。因此,镁铝尖晶石晶体的饱和结构【4,5】使其具有良好的热震稳定性能、耐化学侵蚀性能和耐磨性能,能够在氧化或还原气氛中保持较好的稳定性。但是在合成镁铝尖晶石时,会伴有5%~8%的体积膨胀,而且其再结晶能力差,很难合成致密的镁铝尖晶石

相关文档
最新文档