2006年高考第一轮复习数学:2.8 对数与对数函数

2006年高考第一轮复习数学:2.8  对数与对数函数
2006年高考第一轮复习数学:2.8  对数与对数函数

2.8 对数与对数函数

●知识梳理 1.对数

(1)对数的定义:

如果a b

=N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:

a b =N log a N =b (a >0,a ≠1,N >0).

两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a N

M =log a M -log a N .

③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =

b

N

a a log log (a >0,a ≠1,

b >0,b ≠1,N >0).

2.对数函数

(1)对数函数的定义

函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).

(2)对数函数的图象

y

O

x

y

l o g

x a 111

()) 底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .

③过点(1,0),即当x =1时,y =0.

④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.

●点击双基

1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是

1

1

x

y y y O

A B

C D

解析:f (x )=?

??<<-≥.10,log ,1,log 22x x x

x

答案:A

2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则

f -1(x )的值域为___________________.

解析:f -1(x )的值域为f (x )=lg (x +1)的定义域. 由f (x )=lg (x +1)的定义域为(-1,+∞), ∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)

3.已知f (x )的定义域为[0,1],则函数y =f [log 2

1(3-x )]的定义域

是__________.

解析:由0≤log 2

1(3-x )≤1

?log 2

11≤log 2

1(3-x )≤log 2

1

2

1

?

21≤3-x ≤1?2≤x ≤2

5. 答案:[2,2

5

4.若log x 7y =z ,则x 、y 、z 之间满足 A.y 7=x z B.y =x 7z C.y =7x z

D.y =z x

解析:由log x 7y =z ?x z =7y ?x 7z =y ,即y =x 7z . 答案:B

5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则 A.a <b <c

B.a <c <b

C.b <a <c

D.c <a <b

解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D ●典例剖析

【例1】 已知函数f (x )=?????<+≥,

4),1(,

4,)21(x x f x x

则f (2+log 23)的值为

A.3

1

B.6

1

C.

12

1

D.

24

1 剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(2

1

)3+log 23=24

1. 答案:D

【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.

解:∵|x |>0,

∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |?y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).

1

-1O x

y

评述:研究函数的性质时,利用图象更直观.

深化拓展

已知y =log 2

1[a 2x +2(ab )x -b 2x +1](a 、b ∈R +),如何求使y 为负值的x 的

取值范围?

提示:要使y <0,必须a 2x +2(ab )x -b 2x +1>1,即a 2x +2(ab )x -b 2x >0. ∵b 2x >0, ∴(b a )2x +2(b

a

)x -1>0. ∴(b a )x >2-1或(b a

)x <-2-1(舍去). 再分

b a >1,b a =1,b

a

<1三种情况进行讨论. 答案:a >b >0时,x >log b

a (2-1);

a =

b >0时,x ∈R ;

0<a <b 时,x <log b

a (2-1).

【例3】 已知f (x )=log 3

1[3-(x -1)2],求f (x )的值域及单调区间.

解:∵真数3-(x -1)2≤3,

∴log 3

1[3-(x -1)2]≥log 3

13=-1,即f (x )的值域是[-1,+∞).又3

-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2

单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.

特别提示

讨论复合函数的单调性要注意定义域. ●闯关训练 夯实基础

1.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于

A.

4

2

B.

2

2 C.4

1

D.2

1

解析:∵0<a <1,∴f (x )=log a x 是减函数. ∴log a a =3·log a 2a .∴log a 2a =3

1. ∴1+log a 2=31.∴log a 2=-3

2.∴a =4

2. 答案:A

2.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 A. 2

1

B.-2

1

C.2

D.-2

解析:y =log 2|ax -1|=log 2|a (x -a 1)|,对称轴为x =a 1,由a

1

=-2得a =-2

1.

答案:B

评述:此题还可用特殊值法解决,如利用f (0)=f (-4),可得0=log 2|-

4a -1|.∴|4a +1|=1.

∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-2

1

.

3.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为

A.1

B.2

C.3

D.log 23

解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3.

答案:C

4.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2. ∵x >0,∴x =2. 答案:2

5.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <2

3

.故1<a <2

3.

6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公

共定义域内比较|f (x )|与|g (x )|的大小.

解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.

(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;

(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<

x <0时,|f (x )|<|g (x )|.

培养能力

7.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是

x

y

x

y

x y

x

y

A

B

C D

解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此

可排除A 、D.

又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C

8.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;

(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b , ∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b , ∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2. 又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.

故f (x )=x 2-x +2,从而f (log 2x )=log 22x -log 2x +2=(log 2x -21

)2+4

7. ∴当log 2x =21即x =2时,f (log 2x )有最小值4

7.

(2)由题意?????<+->+-2

)2(log 2

2log log 2222

2x x x x ????<<-<<>?21102x x x 或0<x <1. 探究创新

9.(2004年苏州市模拟题)已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.

(1)求实数k 的值及函数f -1(x )的解析式;

(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )

的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.

解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点. ∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.

∴y = f -1(x )=log 3(x +3)(x >-3).

(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +x m +2m ≥3在x >0时恒成立,只要(x +x

m +2m )min

≥3. 又x +

x m ≥2m (当且仅当x =x m ,即x =m 时等号成立),∴(x +x

m

+2m )min

=4m ,即4m ≥3.∴m ≥16

9

. ●思悟小结

1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.

2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.

3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数

单调性在这类问题上的应用.

●教师下载中心 教学点睛

1.本小节的重点是对数函数图象和性质的运用.由于对数函数与指数函数互为反函数,所以它们有许多类似的性质,掌握对数函数的性质时,与掌握指数函数的性质一样,也要结合图象理解和记忆.

2.由于在对数式中真数必须大于0,底数必须大于零且不等于1,因此有关对数的问题已成了高考的热点内容.希望在讲解有关的例题时,要强化这方面的意识.

拓展题例

【例1】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,

原函数为y =lg 3

)2(2

--x x .

又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+3

1-x +2≥4,

∴当x =4时,y min =lg4.

【例2】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 2

1

,f 2(x )=x 2,

f 3(x )=2x ,f 4(x )=lo

g 2

1x 四个函数中,x 1>x 2>1时,能使2

1

[f (x 1)+f (x 2)]

<f (

2

2

1x x +)成立的函数是

A.f 1(x )=x 2

1

B.f 2(x )=x 2

C.f 3(x )=2x

D.f 4(x )=log 2

1x

解析:由图形可直观得到:只有f 1(x )=x 2

1为“上凸”的函数. 答案:A

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

高考数学-对数函数图像和性质及经典例题

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

高考数学指数指数函数

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 48476Λ个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表 示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x 是自变量,y 是x 的函数。 (2)图象:

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

高考数学指数指数函数

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x是自变量,y 是x 的函数。 (2)图象:

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

2015高考数学二轮复习热点题型专题九 指数函数

专题九 指数函数 【高频考点解读】 1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型. 【热点题型】 题型一 指数函数性质的考查 例1、求下列函数的定义域和值域. (1)y =????23-|x +1|;(2)y =2 x 2x +1 ;(3)y =. 【提分秘籍】 解决与指数函数的性质问题时应注意 (1)大小比较时,注意构造函数利用单调性去比较,有时需要借助于中间量如0,1判断. (2)与指数函数单调性有关的综合应用问题,要注意分类讨论思想及数形结合思想的应用. 【举一反三】 已知函数f (x )= . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.

【热点题型】 题型二指数函数的图象及应用 例2、(1)已知函数f(x)=(x-a)·(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象是() (2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.

【答案】(1)A(2)[-1,1] 【提分秘籍】 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. 2.y=a x,y=|a x|,y=a|x|(a>0且a≠1)三者之间的关系: y=a x与y=|a x|是同一函数的不同表现形式. 函数y=a|x|与y=a x不同,前者是一个偶函数,其图象关于y轴对称,当x≥0时两函数图象相同. 【举一反三】 当a≠0时,函数y=ax+b和y=b ax的图象只可能是下图中的( ) 【热点题型】 题型三分类讨论思想在指数函数中的应用 例3、设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

高考数学:指数函数

指数函数 一、选择题(共17小题;共85分) 1. 已知 a =(?12)?1 ,b =2?12 ,c =(12)?1 2 ,d =2?1,则此四数中最大的是 ( ) A. a B. b C. c D. d 2. 已知 a = √5?1 2 ,函数 f (x )=a x ,若实数 m ,n 满足 f (m )>f (n ) ,则 m ,n 的关系为 ( ) A. m +n <0 B. m +n >0 C. m >n D. m c >b B. a >b >c C. c >a >b D. c >b >a 6. 函数 y =(12) 2x?x 2 的值域为 ( ) A. [1 2,+∞) B. (?∞,1 2] C. (0,1 2] D. (0,2] 7. 若函数 y =a x ?(b +1)(a >0,a ≠1) 的图象在第一、三、四象限,则有 ( ) A. a >1 且 b <1 B. a >1 且 b >0 C. 00 D. 0y 1>y 2 B. y 2>y 1>y 3 C. y 1>y 2>y 3 D. y 1>y 3>y 2 9. 若 x >y >1,0y b B. x a b y 10. 函数 f (x )=a x?1+4(a >0,且 a ≠1)的图象过一个定点,则这个定点坐标是 ( ) A. (5,1) B. (1,5) C. (1,4) D. (4,1) 11. 下列各式比较大小正确的是 ( ) A. 1.72.5>1.73 B. 0.6?1>0.62 C. 0.8?0.1>1.250.2 D. 1.70.3<0.93.1 12. 已知实数 a ,b 满足等式 2017a =2018b ,下列五个关系式:① 00,且 a ≠1)的图象经过点 P (2,1 ),则 f (?1) 等于 ( )

中职数学指数函数与对数函数试卷

精品资料 欢迎下载 第四章《指数函数与对数函数》测试卷 一、填空题 1. ( ) A 、118 4 23? B 、314 4 23? C 、213 4 23? D 、8 4 23? 2. =??4 36482( ) A 、4 B 、8152 C 、2 72 D 、8 3. 函数()f x = ( ) A.(1,3) B. [-∞,3] C. [3,+∞] D. R 4. 3log 81= ( ) A 、2 B 、4 C 、2- D 、-4 5. 指数函数的图象经过点)27,2 3(,则其解析式是 ( ) A 、x y 3= B 、x y )3 1(= C 、x y 9= D 、x y )9 1(= 6. 下列函数在区间(0,+∞)上是减函数的是 ( ) A 、12y x = B 、3 1x y = C 、2y x -= D 、2 y x = 7. 将25628 =写成对数式 ( ) A 、2256log 8= B 、28log 256= C 、8256log 2= D 、2562log 8= 8. 将ln a = b (a >0) 写成指数式 ( ) A 、10 b = a B 、e b = a C 、 a b = e D 、 e a = b 9. 求值2 2ln log 16lg 0.1e +-等于( ) A 、5 B 、6 C 、7 D 、8 10. 如果32log (log )1x =,那么x =( ) A 、8 B 、9 C 、2 D 、3 11. 函数x x f lg 21)(-= 的定义域为( ) A 、(,10) -∞ -(10,)+∞ B 、(-10,10) C 、(0,100) D 、(-100,100) 12. 3 0.7、3log 0.7、0.7 3 的大小关系是( ) A 、30.730.73log 0.7 << B 、30.730.7log 0.73<< C 、 30.7 3log 0.70.73<< D 、 0.73 3log 0.730.7<< 二、填空题: 1.用不等号连接: (1)5log 2 6l o g 2 ,(2)若n m 33>,则m n ;(3)35.0 36.0 2. 若43x =, 3 4 log 4=y ,则x y += ; 3. 方程x x 28 )3 1 (3 2--=的解集为______________; 4. 若x x f 2)2(=,则=)8(f ; 三、解答题 1.. 解下列不等式: (1)0)3(log 3<-x (2)14 3log

高三数学复习教案:指数与指数函数教案

第二章 指数函数与对数函数及函数的应用 一、知识网络 二、课标要求和最新考纲要求 1、指数函数 (1)通过具体实例(如细胞的分裂,考古中所用的14 C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 2、对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3、知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。 4、函数与方程

(1)了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。 (2)理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数. 5、函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 (3)能利用给定的函数模型解决简单的实际问题。 三、命题走向 函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势. 考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想. 指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。 预测2010年对本节的考查是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考查函数的性质。同时它们与其它知识点交汇命题,则难度会加大。

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

高考数学 对数与对数函数

第八节 对数与对数函数 [知识能否忆起] 1.对数的概念 (1)对数的定义: 如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.当a =10时叫常用对数.记作x =lg_N ,当a =e 时叫自然对数,记作x =ln_N . (2)对数的常用关系式(a ,b ,c ,d 均大于0且不等于1): ①log a 1=0. ②log a a =1. ③对数恒等式:a log a N =N . ④换底公式:log a b =log c b log c a . 推广log a b =1 log b a ,log a b ·log b c ·log c d =log a d . (3)对数的运算法则: 如果a >0,且a ≠1,M >0,N >0,那么: ①log a (M ·N )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log am M n =n m log a M . 2.对数函数的概念 (1)把y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)函数y =log a x (a >0,a ≠1)是指数函数y =a x 的反函数,函数y =a x 与y =log a x (a >0,a ≠1)的图象关于y =x 对称. 3.对数函数的图象与性质

图象 性质 定义域:(0,+∞) 值域:R 过点(1,0),即x =1时,y =0 当x >1时,y >0当01时,y <0当00 在(0,+∞)上是增函数 在(0,+∞)上是减函数 [小题能否全取] 1.(教材习题改编)设A ={y |y =log 2x ,x >1},B =? ??? ?? y |y =??? ?12x ,00},B =? ??? ??y |120,a ≠1)的图象经过定点A ,则A 点坐标是( ) A.????0,2 3 B.???? 23,0 C .(1,0) D .(0,1) 解析:选C 当x =1时y =0. 3.函数y =lg |x |( ) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递减 D .是奇函数,在区间(0,+∞)上单调递增 解析:选B y =lg |x |是偶函数,由图象知在(-∞,0)上单调递减,在(0,+∞)上单调递增. 4.(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________.

高考数学-指数与指数函数讲义.doc

指数与指数函数 一?填空题 1. 已知f(x)=(a2-1)x是减函数,则a的取值范围是________. 2. (-1.8)0+(1.5)-2× 2 3 3 3 8 ?? ? ?? -(0.01)-0.5+ 3 2 9=________. 3. 指数函数y=? ? ?? ?b a x的图象如图所示,则二次函数y=ax2+bx的顶点横坐 标的取值范围是________. 4. 已知0≤x≤2,则y= 1 2 4325 x x - -?+的最大值为________. 5. 已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则g(x)=a x+b的图象是________. 6. (2011·新沂一中模拟)已知f(x)= ()1 1,0 2 ,0 x a x a x a x ? -++< ? ? ?≥ ? 是(-∞,+∞)上的减函数,那么实数a的取值范围是________. 7. 若函数f(x)?g(x)分别是R上的奇函数?偶函数,且满足f(x)-g(x)=e x,则有________. ①f(2) ??, 则f(2 010)=________.

二?解答题 10. 计算 ÷ 3a -73a 13; (2)2 3338-??- ??? +120.002--10(5-2)-1+(2-3)0; (3)已知1 1224m m -+=,求33221122m m m m -- -+的值. 11. 函数f (x )= 2-x x -1 的定义域为集合A ,关于x 的不等式22ax <2a +x (a ∈R )的解集为B , 求使A ∩B =A 的实数a 的取值范围. 12. (2011·丹阳中学期中)设函数f (x )=ka x -a -x (a >0且a ≠1)是奇函数. (1)求k 的值; (2)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集; (3)若f (1)=32 ,且g (x )=a 2x +a -2x -2mf (x )在[1,+∞)上的最小值为-2,求m 的值

相关文档
最新文档