核酸化学习题

核酸化学习题
核酸化学习题

核酸化学习题

This model paper was revised by the Standardization Office on December 10, 2020

核酸的化学

一、是非题

1.嘌呤碱分子中含有嘧啶碱结构。

2.核苷由碱基和核糖以C—N糖苷键相连。

3.核苷酸是由核苷与磷酸脱水缩合而成,所以说核苷酸是核苷的磷酸酯。

4.核苷酸的碱基和糖相连的糖苷键是C—O型。

5.核糖与脱氧核糖的差别是糖环的2’位有无羟基。

6.核苷酸的等电点的大小取决于核糖上的羟基与磷酸基的解离。

7.在DNA双链之间,碱基配对A-T形成两对氢键,C-G形成三对氢键,若胸腺嘧啶C-2位的羰基上的氧原于质子化形成OH, A-T之间也可形成三对氢键。

8.任何一条DNA片段中,碱基的含量都是A=T,C=G。

9.DNA碱基摩尔比规律仅适令于双链而不适合于单链。

10.用二苯胺法测定DNA含量必须用同源的DNA作标准样品。

11.DNA变性后就由双螺旋结构变成线团结构。

12.Tm值低的DNA分子中(A-T)%高。

13.Tm值高的DNA分子中(C-G)%高。

14.由于 RNA不是双链,因此所有的 RNA分子中都没有双螺旋结构。 15.起始浓度高、含重复序列多的 DNA片段复性速度快。

16.DNA的复制和转录部必须根据碱基配对的原则。

17.某氨基酸tRNA反密码子为GUC,在mRNA上相对应的密码子应该是CAG。

18.细胞内DNA的核苷酸顺序都不是随机的而是由遗传性决定的。

19.RNA链的5 ′核苷酸的3′羟基与相邻核苷酸的5′羟基以磷酸二酯键相连。

20.假如某DNA样品当温度升高到一定程度时,OD260提高30%,说明它是一条双链 DNA。

21.脱氧核糖核苷中的糖环3′位没有羟基。

22.若双链DNA中的一条链碱基顺序为:pCpTpGpGpApC,则另一条链的碱基顺序为:pGpApCpCpTpG。

23. 若种属A的DNA Tm值低于种属B,则种属A的DNA比种属B 含有更多的A-T碱基对。

24.原核生物和真核生物的染色体均为DNA与组蛋白的复合体。

25.生物体内,天然存在的DNA分子多为负超螺旋。

26. mRNA是细胞内种类最多、含量最丰富的RNA。

27.核酸变性或降解时,出现减色效应。

28. DNA样品A与B分别与样品C进行杂交实验,得到的杂交双链结构如下图:

那么说明样品A与C的同源性比样品B与C的同源性高。

29、在所有病毒中,迄今为止还没有发现既含有RNA又含有DNA 的病毒。

30、核糖核酸酶和脱氧核糖核酸酶分别作用于RNA和DNA中的磷酸二酯键,均属于特异性的磷酸二酯酶。

31、核糖体不仅存在于细胞质中,也存在于线粒体和叶绿体中。

二、填空题

1.核苷酸是由___、____和磷酸基连接而成。

2.在各种RNA中__含稀有碱基最多。

3.T m值高的DNA分子中___的%含量高。T m值低的DNA分子中___%含量高。

4.真核生物的DNA存在于____,其生物学作用是____________。

5.细胞内所有的RNA的核苷酸顺序都是由它们的______决定的。

6.将双链DNA放置在pH2以下或pH12以上,其OD260___,在同样条件下单链 DNA的OD260______。

7.B型结构的DNA双螺旋,两条链是____平行,其螺距为____每个螺旋的碱基对数为____。

8.DNA抗碱的原因是___________。

9.从E.coli中分离的DNA样品内含有20%的腺嘌呤(A),那么T=___%,G+C=___%。

10.某DNA片段的碱基顺序为GCTACTAAGC,它的互补链顺序应为_______。

11.当温度逐渐升到一定高度时,DNA双链_______称为变性。当温度逐渐降低时,DNA的两条链________,称为_

_____。

12.tRNA的二级结构呈____形,三级结构的形状像______。

双螺旋中只存在________________种不同碱基对。T总是与

________________配对,C总是与________________配对。

14.两类核酸在细胞中的分布不同,DNA主要位于________________中,RNA主要位于________________中。

15.核酸在260nm附近有强吸收,这是由于________________。

16.变性DNA的复性与许多因素有关,包括________________,

________________,________________,________________,

________________等。

17.常用二苯胺法测定________________含量,用苔黑酚法测

________________含量。

18.维持DNA双螺旋结构稳定的主要因素是________________,

_______________。

的三级结构为________________形,其一端为________________,另一端为________________。

三、选择题

1.DNA的T m与介质的离子强度有关,所以DNA制品应保存在:

A、高浓度的缓冲液中

B、低浓度的缓冲液中

C、纯水中

D、有机试剂中

3.热变性后的DNA:

A、紫外吸收增加

B、磷酸二酯键断裂

C、形成三股螺旋

D、(G-C)%含量增加

4.DNA分子中的共价键有:

A、碱基与脱氧核糖 1位碳(C-1′)之间的糖苷键。

B、磷酸与脱氧核糖2位碳上的羟基(2′-OH)之间的酯键。

C、碱基与脱氧核糖 2位碳(C-2′)之间的糖音键。

D、磷酸与脱氧核糖1位碳上的羟基(2′-OH)之间的酯键。

5.发生热变性后的DNA复性速度与:

A、DNA的原始浓度有关。

B、催化复性的酶活性有关。

C、与DN A的长短无关。

D、与DNA分子中的重复序列无关。

6.下面关于核酸的叙述除哪个外都是正确的:

A、在嘌呤和嘧啶碱之间存在着碱基配对。

B、当胸腺嘧啶与腺嘌呤配对时,甲基不影响氢键形成。

C、碱溶液能水解RNA,不能水解DNA。

D、在DNA分子中由氢键连接的碱基平面与螺旋轴平行。

7.核酸分子中的共价键包括:

A、嘌呤碱基第9位N与核糖第1位C之间连接的β-糖苷键

B、磷酸与磷酸之间的磷酸酯键

C、磷酸与核糖第1位C之间连接的磷酸酯键

D、核糖与核糖之间连接的糖苷键

8.下列哪种物质不是由核酸与蛋白质结合而成的复合物:

A、病毒

B、核糖体

C、E.coli的蛋白质生物合成70S起始物

D、线粒体内膜

9.分离出某种病毒核酸的碱基组成为:A=27%,G=30%,C=22%,T=21%,该病毒应该为:

A、单链DNA

B、双链DNA

C、单链RNA

D、双链RNA

10、左图中,哪一点代表双链DNA的Tm值

E.都不对

11、下列突变中,哪一种致死性最大

A.胞嘧啶取代腺嘌呤

B.腺嘌呤取代鸟嘌呤

C.插入三个核苷酸

D.插入一个核苷酸

E.丢失三个核苷酸

12、双链DNA热变性后

A.粘度下降

B.沉降系数下降

C紫外吸收下降

D.都不对

13、爱滋病病毒HIV是一种什么病毒

A.双链DNA病毒

B.单链DNA病毒

C.双链RNA病毒

D.单链RNA病毒

14、RNA经NaOH水解,其产物是:

'-核苷酸

'-核苷酸

'-核苷酸

'-核苷酸和3'-核苷酸的混合物 15、反密码子UGA所识别的密码子是:

四、问答与计算:

1.用RNase T1限制降解tRNA得到一个长度为13个核苷酸的片段,再用RNaseT1完全降解得到下列产物:(a)ApCpApGp;(b)pGp;

(c)ApCpU;(d)ApApUpApGp。用RNasec I完全降解得到下列产

物:(a)ApGpApApUp;(b)pGpApCp;(c)U;(d) ApGpApCp ,请写出该片段的顺序。

样品在水浴中加热到一定温度,然后冷至室温测其OD260,请问在下列情况下加热前与退火前后OD260的变化如何

(a)加热的温度接近该DNA的T m值;

(b)加热的温度远远超过该DNA的T m值。

3.有一核酸溶液通过实验得到下列结果:加热使温度升高.该溶液的紫外吸收增加。迅速冷却紫外吸收没有明显的下降;该核酸溶液应

该是什么溶液

4.如果E.coli染色体DNA的75%用来编码蛋白质.假定蛋白质的平均分子量为60×103。请问:若E.coli染色体大约能编码2000种

蛋白质。求该染色体DNA的长度是多小该染色体DNA的分子量大约

是多少(以三个碱基编码一个氨基酸,氨基酸平均分子量为120,

核苷酸平均均分子量为640计算。)

5.假定每个基因有900对核苷酸,并且有三分之一的DNA不编码蛋白质,人的一个体细胞(DNA量为×109对核苷酸),有多少个基因

如果人体有1013个细胞.那么人体DNA的总长度是多少千米等于

地球与太阳之间距离(×109千米)的多少倍

6.根据同源蛋白质的知识,说明为什么编码同源蛋白质的基因(DNA 片段)可以杂交

7.有一噬菌体的突变株其DNA长度为15μm,而野生

型的DNA长度为17μm,问该突变株的DNA中有多少个碱基缺失

8.试述三种主要的RNA的生物功能(与蛋白质生物合成的关系)。

9.试述下列因素如何影响DNA的复性过程。(1)阳离子的存在(2)低于Tm

的温度(3)高浓度的DNA链

10.一条DNA编码链的序列为写出:由此

转录得到的mRNA序列

11.解释下列名词:(1)DNA超螺旋;2)DNA的增色和减色效应;(4)mRNA的帽子结构;(5)反密码子。

核酸化学

1.4.3 第三章核酸化学 第三章核酸化学 学习目标 知识目标 (1)阐述核酸的元素组成、组成成分及组成单位。 (2)描述DNA、mRNA、tRNA和rRNA的结构特点。 (3)阐述核酸的变性、复性、杂交等基本概念,并列举其应用。 (4)了解核酸的性质、体内重要的游离核苷酸及其衍生物的功能。 (5)概括核酸提取的有关原理和注意事项。 能力目标 (1)至少会用一种方法完成核酸的含量测定。 (2)具备核酸类药物在使用、储存和运输中的基本技能。 核酸是生物体的基本组成物质,是重要的生物大分子,从高等的动物、植物到简单的病毒都含有核酸。核酸是遗传信息的载体。 1869年,年轻的瑞士科学家Miescher从脓细胞核中分离出一种含有C、H、O、N和P的物质,当时称为核素。因发现核素显酸性,后又改称为核酸,意即来自细胞核的酸性物质。随后,Hoppe-Seyler从酵母中分离出一种类似的物质,即现在的RNA。自那之后,核酸研究并非非常顺利。直到1909年,美国生物化学家Owen发现核酸中的糖分子是由5个碳原子组成的核糖。1930年,他又发现Miescher在绷带上发现的核酸中的糖分子比

Hoppe-Seyler发现的“酵母核酸”中的糖分子少了1个氧原子,因此将这种糖分子称为脱氧核糖,含两种不同糖分子的核酸分别称为脱氧核糖核酸(DNA)和核糖核酸(RNA)。1934年,Owen将核酸水解,证明核酸的基本组成单位是核苷酸。同时,在这一时期还证明了核苷酸是由碱基、戊糖和磷酸组成。20世纪50年代初,Chargaff发现DNA的嘌呤和嘧啶组成有其特殊规律。1953年,Watson和Crick提出了DNA的双螺旋结构模型。从此,核酸的研究经历了基因克隆、人类3×109个碱基对(base pair,bp)的基因测序,开始进入基因组学研究阶段。 1.4.3.1 第一节核酸的化学组成 第一节核酸的化学组成 一、核酸的元素组成 组成核酸的元素有C、H、O、N、P 5种,其中磷的含量在各种核酸中变化范围不大,平均含磷量为9%~10%。因而,可通过测定生物样品中磷的含量来计算样品中核酸含量。 二、核酸的基本组成单位——核苷酸 核酸在核酸酶的作用下水解为核苷酸,因此核酸的基本组成单位是核苷酸。为区别多、寡核苷酸,故将核苷酸也称为单核苷酸。核苷酸完全水解可释放出等摩尔量的碱基、戊糖和磷酸。 知识链接 核苷酸的利用

化学物质与核酸的相互作用

化学物质与核酸的相互作用 基因突变的类型:碱基替换、移码和大段损伤 化学诱变剂:烷化剂类、碱基类似物* 、移码诱变剂、脱氨基诱变剂 化学致癌物质:烷化剂类、多环芳烃类、芳香胺类、偶氮染料、亚硝基化合物、生物毒素、重金属 小分子药物与DNA 的相互作用 1.共价结合 2.非共价结合 (1)外部静电作用 (2)沟区结合 (3)嵌入作用 3.剪切作用 碱基置换是某一碱基配对性能改变或脱落而引起的突变。此时首先在DNA复制时会使互补链的相应位点配上一个错误的碱基,即发生错误配对。 移码是DNA中增加或减少了一对或几对不等于3的倍数的碱基对所造成的突变。 大段损伤是DNA链大段缺失或插入。这种损伤有时可跨越两个或数个基因,涉及数以千计的核苷酸。 能够提高生物体突变频率的物质即为诱变剂。大多数诱变剂在诱发生物体发生突变的同时造成生物体的大量死亡。 化学诱变剂

1.烷化剂类 烷化剂类化合物是能与一个或几个核酸碱基起化学反应,从而引起DNA复制时碱基配对的转换而发生遗传变异的化学物质。这是一类在微生物诱变育种中普通使用的化学诱变剂烷化剂类诱变剂诱发突变的原理是由于这些诱变剂分子中有一个或多个活性烷基,它们能够转移到DNA分子中电子云密度极高的化点上去置换氢原子进行烷化反应。如在DNA 分子中最可能的烷化位点似乎是鸟嘌呤的N-7、N-3位、腺嘌呤的N-3位、胞嘧啶的N-3位等。胸腺嘧啶不能发生烷化作用。 2.碱基类似物 某些化学诱变剂是与天然碱基化学结构十分接近的类似物,它能掺入到DNA分子中而引起遗传变异,即碱基类似物诱变剂。 这类诱变剂包括5-溴尿嘧啶(5-BU)、5-氟尿嘧啶、5-氨基尿嘧啶、6-氯胸腺嘧啶、2-氨基嘌呤、6-氯嘌呤和8-氮鸟嘌呤等类似物。碱基类似物诱发基因突变是导致碱基对的转换,也可回复突变。 3.移码诱变剂 有些大分子能以静电吸附形式嵌入DNA单链的碱基之间或DNA双螺旋结构的相邻多核苷酸链之间,称嵌入剂。它们多数是多环的平面结构,特别是三环结构,其长度为0.68nm,恰好是DNA单链相邻碱基距离的两倍。 如果嵌入到新合成的互补链上,就会使之缺少一个碱基,如果嵌入到模板链的两碱基之间就会使互补链插入一个多余的碱基。无论多或少1个碱基都会造成移码。 如表阿霉素在较低浓度(50 g/ml)作用30min,即可显示明显的嵌合效应且不可逆转。 这类诱变剂包括吖啶黄、吖啶橙等吖啶类化合物。 4.脱氨基诱变剂

第三章 核酸化学

《动物生物化学》授课内容 内容 第三章核酸化学与结构 核酸(nucleic xcids)属生物大分子,是一切生物必不可少的组成物质。 DNA 脱氧核糖核酸(dexyribonucleic acid) RNA 核糖核酸(ribonucleic acid) 种类分布功能 DNA 原核生物:核质区 真核生物:95%在细胞核、 5%在线粒体和叶绿体遗传信息的载体 RNA tRNA 原核生物:细胞质携带、转移aa mRNA 真核生物:75%在细胞质肽链合成的模板 15%在线粒体和叶绿体 10%在细胞核 rRNA 核糖体主要成分 DNA主要分布细胞核,少量在线粒体、叶绿体; RNA主要分布细胞质,少量在线粒体和叶绿体; 所有细胞(真核、原核)都含有DNA 和RNA。 病毒只含一种核物质;有DNA病毒和RNA 病毒之分。 一般情况下,真核细胞的核酸与某种特殊蛋白质组合在一起,形成复合物。 DNA:贮存全部生物信息的载体(以核苷酸排列方式,对信息进行多层次、结构复杂的组合贮存)。 通过DNA自我复制进行完整的结构与信息遗传; 通过转录,把DNA信息转抄在指导合成的RNA上; 通过翻译,将RNA信息转抄在指导合成的蛋白质上; 以蛋白质结构与功能形式,表达出DNA生物信息的物质形态、结构特征与生物功能等。转录翻译 DNA RNA 蛋白质合成其他物质 mRNA 或行使功能复制tRNA rRNA

生物遗传的中心法则(1958年提出) 1、DNA是生物遗传信息的载体。 2、信息从DNA →RNA(主要指mRNA )→蛋白质的单向传 递过程; 3、信息从DNA →DNA的单向传递(复制)过程; *4、信息从模板RNA →DNA的单向传递(逆转录)后,再沿联 DNA →RNA(mRNA )→蛋白质进行单向传递。注:* 70年代克瑞克进行了修正。 1、RNA病毒以模板RNA为信息载体,这种RNA与三类RNA在构成上 基本相似,但功能不同:只能指导合成对应的DNA,再以DNA为 模板,合成mRNA等三类RNA,再指导合成蛋白质。 2、模板RNA具有相应的复制酶,可以进行自我复制。 遗传中心法则 复制 转录翻译 DNA RNA 蛋白质合成其他物质 mRNA 或行使功能反转录tRNA 模板RNA rRNA 复制 3.1 核酸化学组成 核酸分子的最基本组成单位是核苷酸(Nucloticle 简称Nt)。它又是由更小的单元所构成。 核糖有脱氧、非脱氧两种 核苷 核酸核苷酸碱基有四种碱基 磷酸 一、碱基(base)是核酸的特征性物质。 DNA和RNA均有四种: DNA 腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)胸腺嘧啶(T) RNA 腺嘌呤(A)鸟嘌呤(G)胞嘧啶(C)尿嘧啶(U) 嘌呤由嘧啶环和咪唑环组成。

生物化学第三章

《生物化学》第03章在线测试 《生物化学》第03章在线测试剩余时间:59:52 答题须知:1、本卷满分20分。 2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。 3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。 第一题、单项选择题(每题1分,5道题共5分) 1、下列哪种碱基只存在于RNA而不存在于DNA: A、尿嘧啶 B、腺嘌呤 C、胞嘧啶 D、胸腺嘧啶 2、某DNA分子中腺嘌呤的含量为20%,则胞嘧啶的含量应为: A、20% B、40% C、60% D、80% 3、DNA的Tm值较高是由于下列哪组核苷酸含量较高所致: A、G+A B、C+G C、A+T D、A+C 4、核酸对紫外线的最大吸收峰在哪一波长附近 A、280nm B、260nm C、220nm D、340nm 5、某一DNA片段,其中一股的碱基序列为5ˊ-AACGTT-3ˊ,另一股应为 A、5ˊ-TTGCAA-3ˊ B、5ˊ-AACGTT-3ˊ C、5ˊ-UUGCAA-3ˊ D、5ˊ-AACGUU-3ˊ 第二题、多项选择题(每题2分,5道题共10分) 1、DNA二级结构的维系力有: A、氢键 B、盐键 C、碱基堆积力

D、磷酸二酯键 E、疏水键 2、ATP是: A、直接供能物质 B、RNA合成原料 C、DNA合成原料 D、蛋白质合成原料 E、参与物质代谢调节 3、Tm是表示DNA的: A、螺旋温度 B、水解温度 C、复性温度 D、融解温度 E、变性温度 4、DNA和RNA的区别表现在下列哪些方面? A、戊糖组分 B、碱基组分 C、紫外吸收的波长 D、生物学功能 E、二级结构 5、参与体内合成RNA的核苷三磷酸有 A、UTP B、CTP C、dTTP

第三章核酸的化学及结构习题

第三章核酸的化学及结构 一、名词解释 1.DNA的变性:DNA变性是指核酸双螺旋碱基对的氢键断裂,双链变成单链, 从而使核酸的天然构象和性质发生改变。变性时维持双螺旋稳定性的氢键断裂,碱基间的堆积力遭到破坏,但不涉及到其一级结构的改变; 2.DNA复性:变性DNA在适当条件下,使彼此分离的两条链重新由氢键链接而 形成双螺旋结构的过程; 3.分子杂交:将不同来源的DNA经热变性、冷群,使其复性,在复性时,如这 些异源DNA之间在某些区域有相同的序列,则形成杂交DNA分子; 4.增色效应:天然DNA在发生变性时,氢键断裂,双键发生解离,碱基外露, 共轭双键更充分暴露,变性DNA在260nm的紫外吸收值显著增加的现象;& 5.减色效应:在一定条件下,变性核酸可以复性,此时紫外吸收值又回复至原 来水平的现象; 6.回文结构:在真核细胞DNA分子中,脱氧核苷酸的排列在DNA的两条链中 顺读与倒读序列是一样的(即脱氧核苷酸排列顺序相同),脱氧核苷酸以一个假想的轴成为180°旋转对称(即使轴旋转180°两部分结构完全重叠起来)的结构; 7.T m:DNA热变性的过程不是一种“渐变”,而是一种“跃变”过程,即变性 作用不是随温度的升高缓慢发生,而是在一个很狭窄的临界温度范围内突然引起并很快完成,就像固体的结晶物质在其熔点时突然熔化一样。通常把DNA

在热变性过程中紫外吸收度达到最大值的1/2时的温度称为“熔点”或熔解温度(melting temperature),用符号T m表示; 8.Chargaff定律:不同生物种属的DNA碱基组成不同,同一个体不同器官、不 同组织的DNA具有相同的碱基组成,含氨基的碱基(腺嘌呤和胞嘧啶)总数等于含酮基的碱基(鸟嘌呤和胸腺嘧啶)总数,即A+C=T+G;嘌呤的总数等于嘧啶的总数,即A+G=C+T; 9. 碱基配对:腺嘌呤与胸腺嘧啶成对,鸟嘌呤与胞嘧啶成对,A和T之间形成两个氢键,C和G之间形成三个氢键; ~ 10. 内含子:基因的插入序列或基因内的非蛋白质编码; 11. 正超螺旋:盘绕方向与双螺旋方向相同,此种结构使分子内部张力加大,旋得更紧; 12. 负超螺旋:盘绕方向与双螺旋方向相反,使二级结构处于疏松状态,分子内部张力减小,利于DNA复制、转录和基因重组; 13. siRNA:(small interfering RNA干扰小RNA)是含有21~22个单核苷酸长度的双链RNA,通常人工合成的siRNA是碱基对数量为22个左右的双链RNA; 14. miRNA:(microRNA,) 是一类含19~25单核苷酸的单链RNA,在3’端有1~2个碱基长度变化,广泛存于真核生物中,不编码任何蛋白,本身不具有开放阅读框架,具有保守型、时序性和组织特异性; <

生物化学3-核酸作业参考答案

Chapter 4 Nucleic acids 专业________ 学号_________ 姓名________ 成绩________ 一、填空题(20分,每空0.5分) 1. 核酸可分为和两大类,前者主要存在于真核细胞的和原核细胞的部位,后者主要存在细胞的部位。(DNA,RNA,细胞核,拟核区,细胞质) 2. 构成核酸的基本单位是,由,和连接而成。(核苷酸, 碱基,戊糖,磷酸) 3. 在各种RNA中,含量最多,含稀有碱基最多,半寿期最短。 (rRNA,tRNA,mRNA) 4. 维持DNA的双螺旋结构稳定的作用力有,,。(碱基堆积力,氢 键,离子键) 5. 组成DNA的两条多核苷酸链是的,两链的碱基序列,其中与 配对,形成两对氢键,与配对,形成三对氢键。(反向平行,互补配对,A,T,C,G) 6. 当温度逐渐升高到一定的高度时,DNA双链,称为。当“退火”时,DNA的 两条链,称为。(打开,变性,重新配对,复性) 7. 核酸在复性后260nm波长的紫外吸收,这种现象称为效应。(变性, 减小,减色) 8. tRNA的二级结构呈形,三级结构的形状象。(三叶草。倒“L”) 9. 富含的DNA比富含的DNA具有更高的溶解温度。(GC,AT) 10.DNA的双螺旋结构模型是和于1953年提出的。(Watson,Crick) 11.DNA的T m值大小与三个因素有关,它们是,,。(GC对, DNA均一性,溶液离子强度) 12.PCR是通过、和三个步骤循环进行DNA扩增的。(变性, 退火,延伸) 二、选择题(20分) 1. 细胞内游离核苷酸分子的磷酸基团通常连接在糖的什么位置上?()a a. C5’ b. C3’ c. C2’ d. C1’ 2. 关于双链DNA碱基含量的关系哪个是错误的?( )b a. A=T b. A+T=G+C c. C=G d. A+G=C+T 3. 下列关于DNA的叙述哪项是错误的?( )b a. 两条链反向平行 b. 所有生物中DNA均为双链结构 c. 自然界存在3股螺旋DNA d. 分子中稀有碱基很少 4. Southern印记法是利用DNA与下列何种物质之间进行分子杂交的原理?()d a. RNA b. 蛋白质 c. 氨基酸 d. DNA 5. RNA分子中常见的结构成分是()b a. AMP、CMP和脱氧核糖 b. GMP、UMP和核糖 c. TMP、AMP和核糖 d. UMP、CMP和脱氧核糖 6. 热变性的DNA()a

核酸化学

第六章核酸化学 一:填空题 1. 核酸在260nm附近有强吸收,这是由于________________。 2.二十世纪五十年代,Chargaff等人发现各种生物体DNA碱基组成有________________的特异性,而没有________________的特异性。 3.DNA双螺旋中只存在________________种不同碱基对。T总是与________________配对,C总是与________________配对。 4.核酸的主要组成是________________,________________和________________。 5.两类核酸在细胞中的分布不同,DNA主要位于________________中,RNA主要位于 ________________中。 6.核酸分子中的糖苷键均为________________型糖苷键。核苷酸与核苷酸之间通过________________键连接形成多聚体。 7. 双链DNA中若________________含量多,则Tm值高。 8. DNA样品的均一性愈高,其熔解过程的温度范围愈________________。 9. .DNA所处介质的离子强度越低,其熔解过程的温度范围越________________,熔解温度越 ________________,所以DNA应保存在较________________浓度的盐溶液中,通常为 ________________mol/L的NaCl溶液。 10.给动物食用标记的________________,可使DNA带有放射性,而RNA不带放射性。 11. 硝酸纤维素膜可结合________________链核酸。将RNA变性后转移到硝酸纤维素膜上再进行杂交,称________________印迹法。 12.双链DNA热变性后,或在pH2以下,或pH12以上时,其________________,同样条件下, 单链DNA的________________。 13. 变性DNA的复性与许多因素有关,包括________________,________________, ________________,________________,________________等。 14 DNA复性过程符合二级反应动力学,其值与DNA的复杂程度成________________比。 15. ,FAD和CoA都是________________的衍生物。 16. .维持DNA双螺旋结构稳定的主要因素是________________,其次,大量存在于DNA分子中的弱作用力如________________,________________和________________也起一定作用。 17. .tRNA的三级结构为________________形,其一端为________________,另一端为 ________________。 18. 测定DNA一级结构的方法主要有Sanger提出的________________法和Maxam,Gilbert提出的 ________________法。 19.双链DNA螺距为3.4nm,每匝螺旋的碱基数为10,这是________________型DNA的结构。 20.RNA分子的双螺旋区以及RNA-DNA杂交双链具有与____________型DNA相似的结构,外型较为________________。 21. 引起核酸变性的因素很多,如:________________,________________和________________等。 22. T.Cech和S.Altman因发现________________而荣获1989年诺贝尔化学奖。 二:是非题 1.[ ]脱氧核糖核苷中的糖环3′位没有羟基。 2.[ ]若双链DNA中的一条链碱基顺序为:pCpTpGpGpApC,则另一条链的碱基顺序为:pGpApCpCpTpG。 3.[ ]若种属A的DNA Tm值低于种属B,则种属A的DNA比种属B含有更多的A-T碱基对。 4.[ ]原核生物和真核生物的染色体均为DNA与组蛋白的复合体。

核酸的化学

第二章核酸的结构与功能 第一节核酸的概念和化学组成 一、核酸的发现及研究进展 1、最早1868年,瑞士科学家Miescher从绷带脓细胞中发现含磷2.5%的化合物,称为核素。 2、1881年,Altmann从小牛胸腺、酵母中得到,它不含Pro,命名为核酸。 3、1914年,把小牛胸腺中得到的核酸称胸腺核酸(动物核酸),把从酵母中分离得到的核酸称酵母核酸(植物核酸)。 又根据戊糖分为脱氧核糖核酸——DNA和核糖核酸——RNA 4、1944年,Avery研究肺炎球菌转化实验,证明DNA是遗传物质的结论。 最初是1928年,Gniffith以肺炎球菌作为转化的材料。 肺炎球菌光滑型(S型):菌落光滑、有荚膜、有毒性。 粗糙型(R型):菌落粗糙、无荚膜、无毒性。 活体转化,四组实验: ①活S型菌—→Rat—→die ②活R型菌—→Rat—→live ③加热杀死的S型菌—→Rat—→live ④加热杀死的S型菌—→Rat—→die 活R型菌 说明R型菌可以转化为活S型菌,加热杀死的S型菌中有一种物

质可使活R型菌转化为S型菌。 1944年美国科学家Avery做了大量实验确定这种物质是DNA (转化因子)。 5、1953年,沃森和克里克提出DNA的双螺旋模型结构,不但阐明了DNA结构,而且对DNA的复制、遗传物质的传递、都作了重要的说明。 6、20世纪70年代,DNA重组技术应用——基因工程诞生。 7、2000~2002年人类基因组计划完成。 二、核酸的概念和重要性 核酸是由核苷酸组成的具有复杂三维结构的大分子物质,包括DNA和RNA。DNA主要分布在细胞核中;RNA分布在细胞质和细胞核中,主要有三种信使RNA(mRNA)、核蛋白体(rRNA)、转运(tRNA)。真核生物中还有HnRNA和SnRNA,HnRNA是mRNA 的前体,SnRNA参与RNA的修饰加工等。DNA是遗传的物质基础。(一)核酸是遗传物质 细胞核内DNA含量恒定,不受外界环境的影响。生物遗传特征的延续和生物进化都由基因所决定的。基因是具有遗传效应的DNA 片段。 (二)核酸参与蛋白质的生物合成 mRNA是蛋白质合成材料,rRNA是核糖体的成分。 三、核酸在医药上的应用 1、RNA:来源与微生物发酵,动物内脏,可用于改善精神迟缓,

生物化学第三章 核酸的结构与功能

第三章核酸的结构与功能 一、核酸的化学组成: 1.含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。组成核苷酸的嘧啶碱主要有三种——尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。组成核苷酸的嘌呤碱主要有两种——腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。2.戊糖:核苷酸中的戊糖主要有两种,即β-D-核糖与β-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。3.核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。通常是由核糖或脱氧核糖的C1’ β-羟基与嘧啶碱N1或嘌呤碱N9进行缩合,故生成的化学键称为β,N糖苷键。其中由D-核糖生成者称为核糖核苷,而由脱氧核糖生成者则称为脱氧核糖核苷。由“稀有碱基”所生成的核苷称为“稀有核苷”。假尿苷(ψ)就是由D-核糖的C1’ 与尿嘧啶的C5相连而生成的核苷。 二、核苷酸的结构与命名: 核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。最常见的核苷酸为5’-核苷酸(5’ 常被省略)。5’-核苷酸又可按其在5’位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。 此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。 核苷酸通常使用缩写符号进行命名。第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。 三、核酸的一级结构: 核苷酸通过3’,5’-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。核酸具有方向性,5’-位上具有自由磷酸基的末端称为5’-端,3’-位上具有自由羟基的末端称为3’-端。 DNA由dAMP、dGMP、dCMP和dTMP四种脱氧核糖核苷酸所组成。DNA的一级结构就是指DNA分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。RNA由AMP,GMP,CMP,UMP四种核糖核苷酸组成。RNA的一级结构就是指RNA分子中核糖核苷酸的种类、数目、排列顺序及连接方式。 四、DNA的二级结构: DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick 两位科学家于1953年提出来的一种结构模型,其主要实验依据是

核酸化学习题及问题详解

核酸化学 (一)名词解释 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.发夹结构(hairpin structure) 12.DNA的熔解温度(melting temperature T m) 13.分子杂交(molecular hybridization) 14.环化核苷酸(cyclic nucleotide) (二)填空题 1.DNA双螺旋结构模型是_________于____年提出的。 2.核酸的基本结构单位是_____。 3.脱氧核糖核酸在糖环______位置不带羟基。 4.两类核酸在细胞中的分布不同,DNA主要位于____中,RNA主要位于____中。 5.核酸分子中的糖苷键均为_____型糖苷键。糖环与碱基之间的连键为_____键。核苷与核苷之间通过_____键连接成多聚体。 6.核酸的特征元素____。 7.碱基与戊糖间是C-C连接的是______核苷。 8.DNA中的____嘧啶碱与RNA中的_____嘧啶碱的氢键结合性质是相似的。 9.DNA中的____嘧啶碱与RNA中的_____嘧啶碱的氢键结合性质是相似的。 10.DNA双螺旋的两股链的顺序是______关系。 11.给动物食用3H标记的_______,可使DNA带有放射性,而RNA不带放射性。12.B型DNA双螺旋的螺距为___,每匝螺旋有___对碱基,每对碱基的转角是___。13.在DNA分子中,一般来说G-C含量高时,比重___,T m(熔解温度)则___,分子比较稳定。 14.在___条件下,互补的单股核苷酸序列将缔结成双链分子。 15.____RNA分子指导蛋白质合成,_____RNA分子用作蛋白质合成中活化氨基酸的载体。16.DNA分子的沉降系数决定于_____、_____。 17.DNA变性后,紫外吸收___,粘度___、浮力密度___,生物活性将___。 18.因为核酸分子具有___、___,所以在___nm处有吸收峰,可用紫外分光光度计测定。19.双链DNA热变性后,或在pH2以下,或在pH12以上时,其OD260______,同样条件下,单链DNA的OD260______。 20.DNA样品的均一性愈高,其熔解过程的温度范围愈______。 21.DNA所在介质的离子强度越低,其熔解过程的温度范围愈___,熔解温度愈___,所以DNA应保存在较_____浓度的盐溶液中,通常为_____mol/L的NaCI溶液。22.mRNA在细胞内的种类___,但只占RNA总量的____,它是以_____为模板合成的,又是_______合成的模板。 23.变性DNA 的复性与许多因素有关,包括____,____,____,____,_____,等。

核酸化学(习题附答案)

一、名词解释 1 解链温度(Tm值) 答案: 又称DNA的熔解温度,引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(Tm)或解链温度。 2 增色效应 答案: 当双链DNA解链(变性)为单链DNA时,碱基更加外露,紫外吸收增加的现象。 3 减色效应 答案: 当单链DNA又重新配对,形成双链DNA时,由于碱基之间电子的相互作用,紫外吸收又明显降低的现象。 4 DNA变性 答案: 一定条件下,双链DNA解链为单链DNA的现象。 5 DNA复性 答案: 除去变性因素后,互补的单链DNA重新结合为双链DNA的现象。 6 分子杂交 答案: 变性后的单链DNA与具有一定同一性序列的DNA链或RNA分子结合形成双链的DNA-DNA或DNA-RNA杂交分子的过程。 二、填空题 1 第二信使的英文是。 答案: Second 2 核苷酸的组成成分有、和。 答案: 磷酸,碱基,戊糖 3 核苷由和组成,通过键连接而成。 答案: 碱基,戊糖,N-C糖苷键 4 单核苷酸由和组成,单核苷酸是的酯。 答案: 核苷,磷酸,核苷,磷酸 5 组成核酸的基本单位是。 答案: 核苷酸 6 组成核酸的戊糖有和两种,根据所含戊糖的不同可将核酸分为和两大类。 答案: 核糖,脱氧核糖,核糖核酸(RNA),脱氧核糖核酸(DNA) 7 DNA主要存在于并与结合而集中在染色体。 答案: 细胞核(基因组),蛋白质 8 RNA主要存在于,根据其功能又可分为、和三种。答案: 细胞质,r RNA,m RNA,t RNA 9 DNA的二级结构是结构。 答案: 双螺旋 10 核酸分子中单核苷酸之间靠键相连接,而互补的碱基之间靠键相配对。答案: 磷酸二酯键,氢键 11 在DNA中碱基互补的规律是和。 答案: A=T,G≡C 12 在RNA局部双螺旋中碱基互补的规律是和。 答案: A=U,G≡C 13 在ATP中有个高能磷酸键。 答案: 2

人教版高中化学选修5 蛋白质和核酸

课时跟踪检测(十六)蛋白质和核酸 1.化学与生产、生活、社会密切相关,下列说法错误的是() A.葡萄糖、麦芽糖均能与银氨溶液反应 B.甘氨酸和丙氨酸缩合最多可以形成四种二肽 C.富含蛋白质的豆浆煮沸后即可得人体所需的氨基酸 D.油脂在氢氧化钾溶液中水解可制得汽车洗涤用的液体肥皂 解析:选C葡萄糖、麦芽糖结构中均含有醛基,故均可与银氨溶液反应,A项正确;甘氨酸和丙氨酸缩合形成二肽可为①两甘氨酸缩合、②两丙氨酸缩合、③甘氨酸羧基与丙氨酸氨基缩合、④丙氨酸羧基与甘氨酸氨基缩合,故最多形成四种二肽,B项正确;富含蛋白质的豆浆煮沸后只是蛋白质的变性,并不会水解为氨基酸,C项错误;油脂在氢氧化钾溶液中水解可得高级脂肪酸钾,为液体肥皂的有效成分,故油脂在氢氧化钾溶液中水解可制得汽车洗涤用的液体肥皂,D项正确。 2.甘氨酸在NaOH溶液中存在的形式是() < 解析:选D在NaOH溶液中甘氨酸分子中的羧基与氢氧根离子发生中和反应。 3.下列过程不属于化学变化的是() A.在蛋白质溶液中,加入饱和硫酸铵溶液,有沉淀析出 B.皮肤不慎沾上浓硝酸而呈现黄色 C.在蛋白质溶液中,加入硫酸铜溶液,有沉淀析出 D.用稀释的福尔马林溶液%~%)浸泡植物种子 解析:选A A项在蛋白质溶液中加入饱和硫酸铵溶液,是盐析过程,析出的蛋白质性质并无变化,即没有新物质生成,加水后,析出的蛋白质仍能溶解,A项不是化学变化;B 项皮肤不慎沾上浓硝酸显黄色属于蛋白质的颜色反应,是化学变化;C项在蛋白质溶液中加入硫酸铜溶液,析出沉淀是因为蛋白质变性,是化学变化;D项用稀释的福尔马林溶液杀死种子上的细菌和微生物,即使这些生物体的蛋白质发生变性反应,是化学变化。 4.下列关于蛋白质的叙述错误的是() A.加热能杀死流感病毒是因为病毒的蛋白质受热发生变性 B.在豆浆中加少量石膏,能使豆浆凝结为豆腐 | C.蛋白质水解的最终产物是氨基酸

核酸的化学组成与基本单位

核酸的化学组成与基本单位核酸经水解可得到很多核苷酸,因此核苷酸是核酸的基本单位。核酸就是由很多单核苷酸聚合形成的多聚核苷酸。核苷酸可被水解产生核苷和磷酸,核苷还可再进一步水解,产生戊糖和含氮碱基(图15-1)。 核苷酸中的碱基均为含氮杂环化合物,它们分别属于嘌呤衍生物和嘧啶衍生物。核苷酸中的嘌呤碱(purine)主要是鸟嘌呤(guanine,G)和腺嘌呤(adenine,A),嘧啶碱(pyrimidine)主要是胞嘧啶(cytosine,C)、尿嘧啶(uracil,U)和胸腺嘧啶(thymine,T)。DNA和RNA都含有鸟嘌呤(G)、腺嘌呤(A)和胞嘧啶(C);胸腺嘧啶(T)一般而言只存在于DNA中,不存在于RNA中;而尿嘧啶(U)只存在于RNA中,不存在于DNA中。它们的化学结构请参见图示。 核酸中五种碱基中的酮基和氨基,均位于碱基环中氮原子的邻位,可以发生酮式一烯醇式或氨基 亚氨基之间的结构互变。这种互变异构在基因的突变和生物的进化中具有重要作用。 有些核酸中还含有修饰碱基(modified component),(或稀有碱基,unusual com ponent),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也

不均一。DNA中的修饰碱基主要见于噬菌体DNA,如5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶hm5C;RNA中以tRNA含修饰碱基最多,如1-甲基腺嘌呤(m1A),2,2一二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。 嘌呤和嘧啶环中含有共轭双键,对260nm左右波长的紫外光有较强的吸收。碱基的这一特性常被用来对碱基、核苷、核苷酸和核酸进行定性和定量分析。 核酸中的戊糖有核糖(ribose)和脱氧核糖(deoxyribose)两种,分别存在于核糖核苷酸和脱氧核糖核苷酸中。为了与碱基标号相区别,通常将戊糖的C原子编号都加上“′”,如C1′表示糖的第一位碳原子。 戊糖与嘧啶或嘌呤碱以糖苷键连接就称为核苷,通常是戊糖的C1′与嘧啶碱的N1或嘌呤碱的N9相连接。 核苷中戊糖的羟基与磷酸以磷酸酯键连接而成为核苷酸。生物体内的核苷酸大多数是核糖或脱氧核糖的C5′上羟基被磷酸酯化,形成5′核苷酸。核苷酸在5′进一步磷酸化即生成二磷酸核苷和三磷酸核苷。以核糖腺苷酸为例,除AMP外,还有二磷酸腺苷(ADP,adenosine 5′-diphosphate)和三磷酸腺苷(ATP,adenosine 5′-triphosphate)两种形式。核苷酸的二磷酸酯和三磷酸酯多为核苷酸有关代谢的中间产物或者酶活性和代谢的调节物质,以及作为核苷酸有关代谢的中间产

核酸化学习题及答案

核酸化学 (一)名词解释 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.发夹结构(hairpin structure) 12.DNA的熔解温度(melting temperature T m) 13.分子杂交(molecular hybridization) 14.环化核苷酸(cyclic nucleotide) (二)填空题 1.DNA双螺旋结构模型就是_________于____年提出的。 2.核酸的基本结构单位就是_____。 3.脱氧核糖核酸在糖环______位置不带羟基。 4.两类核酸在细胞中的分布不同,DNA主要位于____中,RNA主要位于____中。 5.核酸分子中的糖苷键均为_____型糖苷键。糖环与碱基之间的连键为_____键。核苷与核苷 之间通过_____键连接成多聚体。 6.核酸的特征元素____。 7.碱基与戊糖间就是C-C连接的就是______核苷。 8.DNA中的____嘧啶碱与RNA中的_____嘧啶碱的氢键结合性质就是相似的。 9.DNA中的____嘧啶碱与RNA中的_____嘧啶碱的氢键结合性质就是相似的。 10.DNA双螺旋的两股链的顺序就是______关系。 11.给动物食用3H标记的_______,可使DNA带有放射性,而RNA不带放射性。 12.B型DNA双螺旋的螺距为___,每匝螺旋有___对碱基,每对碱基的转角就是___。 13.在DNA分子中,一般来说G-C含量高时,比重___,T m(熔解温度)则___,分子比较稳定。 14.在___条件下,互补的单股核苷酸序列将缔结成双链分子。 15.____RNA分子指导蛋白质合成,_____RNA分子用作蛋白质合成中活化氨基酸的载体。 16.DNA分子的沉降系数决定于_____、_____。 17.DNA变性后,紫外吸收___,粘度___、浮力密度___,生物活性将___。 18.因为核酸分子具有___、___,所以在___nm处有吸收峰,可用紫外分光光度计测定。 19.双链DNA热变性后,或在pH2以下,或在pH12以上时,其OD260______,同样条件下,单链 DNA的OD260______。 20.DNA样品的均一性愈高,其熔解过程的温度范围愈______。 21.DNA所在介质的离子强度越低,其熔解过程的温度范围愈___,熔解温度愈___,所以DNA 应保存在较_____浓度的盐溶液中,通常为_____mol/L的NaCI溶液。 22.mRNA在细胞内的种类___,但只占RNA总量的____,它就是以_____为模板合成的,又就是 _______合成的模板。 23.变性DNA 的复性与许多因素有关,包括____,____,____,____,_____,等。 24.维持DNA双螺旋结构稳定的主要因素就是_____,其次,大量存在于DNA分子中的弱作用 力如_____,______与_____也起一定作用。 25.tRNA的二级结构呈___形,三级结构呈___形,其3'末端有一共同碱基序列___其功能就是 ___。

生物化学课后答案3核酸

3 核酸 1.①电泳分离四种核苷酸时,通常将缓冲液调到什么pH?此时它们是向哪极移动?移动的快慢顺序如何? ②将四种核苷酸吸附于阴离子交换柱上时,应将溶液调到什么pH? ③如果用逐渐降低pH的洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离,其洗脱顺序如何?为什么? 解答:①电泳分离4种核苷酸时应取pH3.5 的缓冲液,在该pH时,这4种单核苷酸之间所带负电荷差异较大,它们都向正极移动,但移动的速度不同,依次为:UMP>GMP>AMP>CMP;②应取pH8.0,这样可使核苷酸带较多负电荷,利于吸附于阴离子交换树脂柱。虽然pH 11.4时核苷酸带有更多的负电荷,但pH过高对分离不利。③当不考虑树脂的非极性吸附时,根据核苷酸负电荷的多少来决定洗脱速度,则洗脱顺序为CMP>AMP> GMP > UMP,但实际上核苷酸和聚苯乙烯阴离子交换树脂之间存在着非极性吸附,嘌呤碱基的非极性吸附是嘧啶碱基的3倍。静电吸附与非极性吸附共同作用的结果使洗脱顺序为:CMP> AMP > UMP >GMP。 2.为什么DNA不易被碱水解,而RNA容易被碱水解? 解答:因为RNA的核糖上有2'-OH基,在碱作用下形成2',3'-环磷酸酯,继续水解产生2'-核苷酸和3'-核苷酸。DNA的脱氧核糖上无2'-OH基,不能形成碱水解的中间产物,故对碱有一定抗性。 3.一个双螺旋DNA分子中有一条链的成分[A] = 0.30,[G] = 0.24,①请推测这一条链上的[T]和[C]的情况。②互补链的[A],[G],[T]和[C]的情况。 解答:①[T] + [C] = 1–0.30–0.24 = 0.46;②[T] = 0.30,[C] = 0.24,[A] + [G] = 0.46。 4.对双链DNA而言,①若一条链中(A + G)/(T + C)= 0.7,则互补链中和整个DNA分子中(A+G)/(T+C)分别等于多少?②若一条链中(A + T)/(G + C)= 0.7,则互补链中和整个DNA分子中(A + T)/(G + C)分别等于多少? 解答:①设DNA的两条链分别为α和β则:Aα= Tβ,Tα= Aβ,Gα= Cβ,Cα= Gβ,因为:(Aα+ Gα)/(Tα+ Cα)= (Tβ+ Cβ)/(Aβ+ Gβ)= 0.7,所以互补链中(Aβ+ Gβ)/(Tβ+ Cβ)= 1/0.7 =1.43;在整个DNA分子中,因为A = T,G = C,所以,A + G = T + C,(A + G)/(T + C)= 1;②假设同(1),则Aα+ Tα= Tβ+ Aβ,Gα+ Cα= Cβ+ Gβ,所以,(Aα+ Tα)/(Gα+ Cα)=(Aβ+ Tβ)/(Gβ+ Cβ)= 0.7 ;在整个DNA分子中,(Aα+ Tα+ Aβ+ Tβ)/(Gα+Cα+ Gβ+Cβ)= 2(Aα+ Tα)/2(Gα+Cα)= 0.7 5.T7噬菌体DNA(双链B-DNA)的相对分子质量为2.5×107,计算DNA链的长度(设核苷酸对的平均相对分子质量为640)。 解答:0.34 ×(2.5×107/640)= 1.3 × 104nm = 13μm。 6.如果人体有1014个细胞,每个体细胞的DNA含量为6.4 × 109个碱基对。试计算人体DNA的总长度是多少?是太阳―地球之间距离(2.2 × 109 km)的多少倍?已知双链DNA 每1000个核苷酸重1 ×10-18g,求人体DNA的总质量。

基于核酸适配体化学发光检测新技术(精)

基于核酸适配体化学发光检测新技术 核酸适配体是近年来发展起来的一类经体外人工合成筛选出的单链寡核苷酸,能高效、特异性地结合各种生物目标分子,故它的出现为化学生物学界和生物医学界提供了一种新的高效快速识别的研究平台。目前生物分子检测通常采用抗原抗体特异相互作用识别模式,但由于受到抗体易失活、制备时间较长等因素的影响,在一定程度上限制了抗体检测技术的广泛应用。相比之下,核酸适配体自身稳定性好、制备合成相对简单、快速、易获得、易功能化修饰与标记,且在生物传感器设计中应用灵活等优点,近几年在生物分析检测方面备受关注。目前已经成为临床诊断、环境监测、药学研究等许多领域中的研究热点。化学发光(CL)分析法具有不需光源,避免了杂散光的干扰,仪器设备简单、操作简便,具有极高的灵敏度,较宽的检测范围,可实现全自动化等特点,正逐渐成为分析检测中极为有用的工具,随着与众多学科交叉研究和应用领域的扩展,目前已成功地应用在药学、生物学、分子生物学、临床医学和环境学等诸多领域。在本论文中,我们采用化学发光分析法,利用核酸适配体对目标分子的高分辨识别,发展了多种具有创新意义的化学发光适配体生物传感器,也实现了同一份样品中双组分的同时检测。整个论文由以下五部分构成:第一章:绪论本绪论由两节构成,第一节介绍了核酸适配体技术检测生物分子的研究进展,包括了三部分。第一部分中简单介绍了核酸适配体的制备、特点、优势以及在分析领域中的应用;第二部分中介绍了基于核酸适配体识别模式的单组分检测技术的研究进展及其意义,主要内容包括:光检测、电化学检测以及其他检测方法,并列举了近年来分析领域中的部分典型示例;第三部分中介绍了基于核酸适配体识别模式的多组分检测技术的研究进展及其意义,也列举了近年来它们在该分析领域中的部分典型示例。第二节阐述了化学发光多组分酶检测研究进展以及本课题研究的目的、意义、主要研究内容以及创新之处,即核酸适配体在化学发光领域中应用与展望。第二章:基于核酸适配体的化学发光无标记检测腺苷的新技术由于目标分子在适配体上精确的结合位点与构象变化通常并不十分清楚,直接导致合适标记核酸适配体存在一定的难度,因此,适配体的无标记型检测技术已成为近年来的研究热点,尤其在生物检测、环境监控等领域无标记简单快速检测具有非常重要的意义。本章以腺苷为研究对象,采用羧基修饰的磁性微球作为分离载体,基于3,4,5-三甲氧基苯甲酰甲醛(TMPG)与鸟嘌呤(G)碱基之间的瞬时化学发光衍生反应,实现了生物小分子腺苷的无标记检测。本章包括以下两种腺苷检测原理的设计,具体实验步骤如下:(1)活化磁性微球,固定捕获探针序列;(2)方法A:一定量的适配体先与不同量的腺苷特异性结合,随后剩余的自由腺苷适配体与捕获探针序列在磁性微球表面进行杂交反应,从而连接在磁性微球上;方法B:适配体先与捕获探针序列进行杂交反应,随后加入不同量的腺苷,导致部分适配体序列脱离磁性微球表面,与溶液中腺苷形成复合物;(3)磁性分离后,TMPG直接检测结合在磁性微球表面的适配体中G碱基产生的CL信号,进行腺苷间接定量。结果表明:该两种方法均具有准确可靠、重现性和选择性好的特点。第一种方法的最低腺苷检测限为8×10~(-8)M,腺苷浓度在4×10~(-7)-1×10_(-5)M范围内,CL 信号呈线性增加(R~2=0.9852);第二种方法的腺苷浓度在4×10~(- 2)5×10(_5)M范围内,CL信号呈线性增加(R~=0.9764)。综合而言:本章发展的无标记检测生物小分子腺苷的CL新技术,具有简单,快速,灵敏度高等特点,有望在临床诊断、药学研究以及环境监测等领域发挥作用。第三章:基于核酸适配体

相关文档
最新文档