汽车塑料外饰件的设计.doc

汽车塑料外饰件的设计.doc
汽车塑料外饰件的设计.doc

汽车塑料外饰件的设计

二.汽车外饰件简介

汽车外饰件主要指前后保险杠、轮口、进气格栅、散热器面罩、防擦条等通过螺栓和卡扣或双面胶连接在车身上的部件。在车身外部主要起装饰保护作用,及开启等功能。汽车外饰件在车身上主要位置及大致形状见图一。

1.前保险杠,后保险杠,散热器面罩,前后轮口,侧饰条,防擦条,后视镜,进气格栅,背门饰板,车门外开手柄,扰流板,行李箱手柄

三.汽车塑料外饰件设计标准

由于汽车的特殊功能,外饰件设计必须坚持标准化,系列化,通用化的“三化”设计原则,同时满足合理性,先进性,维修方便性,可靠性,经济性,制造工艺性“六性”要求。

3.1产品“三化”设计

根据设计车型将要投放国家地区的不同,设计过程中必须全面贯彻执行当地的法规标准。在造型设计之初产品设计师须学习了解相关法规标准并以此为依据进行设计。这主要包括前保险杠上牌照安装孔间距尺寸规定,是否需欲留雾灯安装孔,外部突出物表面圆角及开口尺寸等相关要求。

另外有关散热器面罩迎风面积是否满足发动机,空调制冷要求,需在设计发布前得到相关部门认可。

充分考虑系列化产品的发展,零件安装固定尽量采用统一的螺栓螺母及卡扣等连接件,或通用其他车型的固定件,提高零件通用化程度,保证维修安装的方便性。

3.2材料的确定

3.2.1材料种类确定

塑料的种类繁多,目前汽车上广泛采用的主要是一些TPO,PP,ABS,PA6/PA66。根据汽车外饰件不同的功能,使用工况,大致如下:

汽车外饰件材料一览表

3.2.2材料标准确定

同一类材料执行不同材料标准,其试验项目,成品性能,模具设计均有差异。根据产品将要投放国家地区的不同,汽车材料工程师可确定材料具体执行的标准,或请原材料供应商提供相关资料。

现代轿车外饰件一般多为注塑喷漆或皮纹件,喷漆件为保证与车身颜色及漆面质量的一致,在选材时必须考虑喷涂系统。例如北美车身油漆多采用高温烘烤系统,外饰件选材时相应亦须选择可高温烘烤的原料。皮纹件选材时须特别考虑原料的颜色及耐候性能是否满足设计要求。

四.汽车塑料外饰件安装

外饰件一般均通过螺栓卡扣等连接件与车身本体或相邻件诸如翼子板或车门等相连。为保证汽车外型的美观和防盗,所有外饰件安装点设计尽量隐藏在四门两盖内,但同时为方便维修拆卸,设计时更需考虑在更换零件时尽可能少拆或不拆周边零件。

车身外饰件安装方式和安装点数量与外饰件形状、外形尺寸及其功能有直接关系。

4.1安装方式

最简单的安装即用螺栓、螺母。大部分外饰件均用此方式,如图二所示P点。在设计安装面时应考虑安装工具所占空间,并尽量采用相同和常见的标准件,方便调整及维修。

一些小型非开启件常采用销定位胶粘接的连接方式,如防擦条(图一零件6)。

采用双面胶粘接的件为使零件与车身装配后配合紧密,设计时预先在零件上留出一凹槽面定的粘胶位置,为保证粘接强度,双面胶粘双面胶厚度一般为1mm至1.2mm,宽8mm至10mm,零件上凹槽为双面胶厚度的一半,如右图为防擦条基本结构。

有些外饰件如散热器面罩(图一零件8),侧饰条(图一零件5)常无法用螺栓连接,又不宜采用胶粘接的形式,则常常利用零件自身结构与其他件相连,或通过卡扣直接装在车身上。如图二所示保险杠和散热器面罩的配合。两件可在分装线上先分装成一体或由供应商直接提供分总成。

4.2安装点数量

外饰件安装点数量与零件的大小有直接关系,其安装点位置直接影响装配质量,主要是间隙和面差。其中前后保险杠又是外饰件中最主要也是最直接影响整车效果的零件。以前保险杠为例,上下左右安装点是支撑整个零件的核心,至少保证上部中间两点,左右各一点,下部不可少于四点。同时为防止零件下沉,中部及侧边需有支撑支架或托板,见图二。

五.汽车塑料外饰件结构设计

塑料件设计不仅要满足使用要求,而且要符合塑料的成型工艺特点,并且尽可能使模具结构简单。这样,可使成型工艺稳定,保证制品的质量,又可使生产成本降低。

外饰件的结构设计主要包括形状、壁厚、脱模角度、加强筋、支撑面、圆角、孔等。

5.1零件的形状

在造型师进行零件造型的同时,产品设计师更多考虑的则是零件的可制造性,可靠性等细节。

5.1.1可制造性

首先需分析确定零件的脱模方向,检查零件所有断面是否存在无法脱模的负角,尽量避免侧壁凹槽或与脱模方向垂直的孔,这样可简化模具结构,见图三。

零件边缘设计的好坏直接影响模具结构和制件的质量。图四是一些设计中常常碰到的典型断面。

5.1.2可靠性

尽量避免零件局部突出过大的悬臂结构,如图二前保险杠上部两安装点M区域刚性较差,装配后零件易变形。设计之初最好考虑两安装点连成一体或加宽凸缘,如图虚线所示,或背面加筋等方法解决。

在与车身要求有配合的边界加凸缘可以减少零件的变形量,提高配合精度,保证质量,见图二A-A、B-B断面所示。

5.2零件的壁厚

零件的壁厚一般力求均匀,否则会因固化或冷却速度不同而引起收缩不均匀,产生内因力,导致零件产生翘曲变形或缩孔。图二散热器面罩基本断面,a为原结构,b为改进后结构,保持了料厚均匀一致,为提高模具寿命将局部不可见面削去。

汽车外饰件一般壁厚取2.5+0.25mm,大型件如保险杠取3+0.25mm至3.5+0.25mm。为避免壁厚的变化影响零件表面质量,设计时特别强调料厚变化需保证足够的过渡区,如下图示。

T2-T1=T3

如果T3 1.0mm, D=25mm

如果T3 2.0mm, D=75mm

如果T3 2.5mm, D=100mm 推荐方案错误设计

5.3脱模角度

塑料件设计必须考虑脱模角度,避免脱模角度为零或负角。脱模角度越大,零件越容易脱模,但容易造成零件厚度不均,影响制造精度。图二散热器面罩断面,基本壁厚为3mm,如果脱模角度选择3?,其最大壁厚处达7mm,最终零件表面会收缩,变形,并且浪费材料,减少迎风面积,甚至影响水箱冷却。

一般脱模角度与零件深度有关,最小和最大脱模角度可参考表二。但皮纹件脱模角度相对非皮纹件需大些,具体与皮纹深度有关,一般每0.025皮纹深度需1?脱模角度,皮纹深度增加时脱模角度随之加大。

表二:零件深度与脱模角度关系

5.4 加强筋

塑料件特别是大型零件如果仅仅有一定的壁厚是无法保证制件的形状和尺寸的,更谈不上一定的强度。因此必须在一些如孔,大曲面或安装点处加筋,以提高强度和刚性。

外饰件主要表面(CLASSA)一般不宜加筋,次表面(CLASSB)加筋时根部壁厚也不可大于壁厚的3/4,对表面质量要求低或非可见表面(CLASS C&D),其相关尺寸见下图:

有时由于结构的限制,需在主要表面(CLASSA)背后布置安装点等,如图五为轮口安装点结构,此时为防止表面缩印,安装点壁厚尽量薄或局部开口,由于安装时此部位应力集中,为防止断裂,常加一些小筋。

5.5支撑面

若用整个面作为零件的支撑面,稍有变形就会影响与车身的配合。因此实际常采用凸边或局部凸起的支角作为支撑面,而且对一些需紧密配合的零件设计时常采用如右图所示结构。

5.6圆角

外饰件表面不可有尖锐的楞线,凸出车身的外饰件圆角必须按相关标准设计,如我国GB11566《轿车外部突出物》对其有严格规定。

一般零件最小圆角取R0.5,但零件分型面避免有圆角,否则将增加制造成本和难度。

5.7孔

外饰件孔形状应尽量简单,孔与壁之间应保持一定距离,孔至边界最小至少是孔径的1.5倍。

6.结束语

现代汽车开发设计是汽车发展的核心,其本身又是一个技术高度密集的产业,强调各专业人员的团

队协作。作为汽车设计的一部分,塑料外饰件的设计亦不例外,更是造型师,产品工程师,材料工程师,零件供应商以及方方面面各专业合作的结晶。本人作为产品工程师,在多年的设计工作中更是深有体会,以上几个方面是本人在设计中积累的一点经验和体会,希望与各位交流探讨。

超声波塑料件的结构设计

精心整理 .1塑料件的结构 塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为2-6kgf/cm2。所以塑料件必须保证在加压情况下基本不变形。 1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑 ○1加厚塑料件 ○2 ○3 1.3尖角 加R 1.4 ○1 ○2 1.5塑料件孔和间隙 如被焊头接触的零件有孔或其它开口,则在超声波传递过程中会产生干扰和衰减(如图4所示),根据材料类型(尤其是半晶体材料)和孔大小,在开口的下端会直接出现少量焊接或完全熔不到的情况,因此要尽量预以避免。 1.6塑料件中薄而弯曲的传递结构

被焊头接触的塑件的形状中,如果有薄而弯曲的结构,而且需要用来传达室递超声波能量的时候,特别对于半晶体材料,超声波震动很难传递到加工面(如图5所示),对这种设计应尽量避免。 1.7 1.8 对称设计。 在焊头表面有损伤纹,或其形状与塑料件配合有少许差异的情况下,焊接时,会在塑料件表面留下伤痕。避免方法是:在焊头与塑料件表面之间垫薄膜(例如PE膜等)。 焊接线的设计 焊接线是超声波直接作用熔化的部分,其基本的两种设计方式:

○1能量导向 ○2剪切设计 2.1能量导向 能量导向是一种典型的在将被子焊接的一个面注塑出突超三角形柱,能量导向的基本功能是:集中能量,使其快速软化和熔化接触面。能量导向允许快速焊接,同时获得最大的力度,在这种导向中,其材料大部分流向接触面,能量导向是非晶态材料中最常用的方法。 能量导向柱的大小和位置取决于如下几点: ○1材料 ○2 ○3 图70.25mm。 能量导向经常采用(例如手机电池等),如图8所示。 2.2能量导向设计中对位方式的设计

汽车塑料外饰件的设计

汽车塑料外饰件的设计 二.汽车外饰件简介 汽车外饰件主要指前后保险杠、轮口、进气格栅、散热器面罩、防擦条等通过螺栓和卡扣或双面胶连接在车身上的部件。在车身外部主要起装饰保护作用,及开启等功能。汽车外饰件在车身上主要位置及大致形状见图一。 1.前保险杠,后保险杠,散热器面罩,前后轮口,侧饰条,防擦条,后视镜,进气格栅,背门饰板,车门外开手柄,扰流板,行李箱手柄 三.汽车塑料外饰件设计标准 由于汽车的特殊功能,外饰件设计必须坚持标准化,系列化,通用化的“三化”设计原则,同时满足合理性,先进性,维修方便性,可靠性,经济性,制造工艺性“六性”要求。 3.1产品“三化”设计 根据设计车型将要投放国家地区的不同,设计过程中必须全面贯彻执行当地的法规标准。在造型设计之初产品设计师须学习了解相关法规标准并以此为依据进行设计。这主要包括前保险杠上牌照安装孔间距尺寸规定,是否需欲留雾灯安装孔,外部突出物表面圆角及开口尺寸等相关要求。 另外有关散热器面罩迎风面积是否满足发动机,空调制冷要求,需在设计发布前得到相关部门认可。 充分考虑系列化产品的发展,零件安装固定尽量采用统一的螺栓螺母及卡扣等连接件,或通用其他车型的固定件,提高零件通用化程度,保证维修安装的方便性。 3.2材料的确定 3.2.1材料种类确定 塑料的种类繁多,目前汽车上广泛采用的主要是一些TPO,PP,ABS,PA6/PA66。根据汽车外饰件不同的功能,使用工况,大致如下: 汽车外饰件材料一览表

3.2.2材料标准确定 同一类材料执行不同材料标准,其试验项目,成品性能,模具设计均有差异。根据产品将要投放国家地区的不同,汽车材料工程师可确定材料具体执行的标准,或请原材料供应商提供相关资料。 现代轿车外饰件一般多为注塑喷漆或皮纹件,喷漆件为保证与车身颜色及漆面质量的一致,在选材时必须考虑喷涂系统。例如北美车身油漆多采用高温烘烤系统,外饰件选材时相应亦须选择可高温烘烤的原料。皮纹件选材时须特别考虑原料的颜色及耐候性能是否满足设计要求。

塑料制品的结构设计规范

塑料制品的结构设 计规范 1

双林汽车部件股份有限公司 企业技术规范 塑料制品的结构设计规范 -10-20发布 -10-XX实施双林汽车部件股份有限公司发布

塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。§1 塑料制品设计的一般程序和原则 1.1 塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案, 绘制制品草图( 形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件, 包括塑料制品设计说明书和技术条件等。 1.2 塑料制品设计的一般原则 1、在选料方面需考虑: (1) 塑料的物理机械性能, 如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等; (2) 塑料的成型工艺性, 如流动性、结晶速率, 对成型温度、压力的敏感性等; (3) 塑料制品在成型后的收缩情况, 及各向收缩率的差异。 2、在制品形状方面: 能满足使用要求, 有利于充模、排气、补缩, 同时能适应高效冷却硬化( 热塑性塑料制品) 或快速受热固化( 热固性塑料制品) 等。 3、在模具方面: 应考虑它的总体结构, 特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺, 以便使制品具有较好的经济性。 4、在成本方面: 要考虑注射制品的利润率、年产量、原料价格、使用寿

命和更换期限, 尽可能降低成本。 §2 塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象, 收缩的大小用收缩率表示。 %1000 0?-= L L L S 式中S ——收缩率; L 0——室温时的模具尺寸; L ——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1) 成型压力。型腔内的压力越大, 成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2) 注射温度。温度升高, 塑料的膨胀系数增大, 塑料制品的收缩率增大。但温度升高熔料的密度增大, 收缩率反又减小。两者同时作用的结果一般是, 收缩率随温度的升高而减小。 (3) 模具温度。一般情况是, 模具温度越高, 收缩率增大的趋势越明显。 (4) 成型时间。成型时保压时间一长, 补料充分, 收缩率便小。与此同时, 塑料的冻结取向要加大, 制品的内应力亦大, 收缩率也就增大。成型的冷却时间一长, 塑料的固化便充分, 收缩率亦小。 (5) 制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加, 而非结晶型塑料中, 收缩率的变化又分下面几种情况: ABS 和聚碳酸酯等的收缩率不受壁厚的影响; 聚乙烯、 丙烯腈—苯乙烯、 丙烯酸类等塑料的收缩率随壁厚的增加而增加; 硬质聚氯乙烯的收缩率随壁厚的增加而减小。

汽车塑料件的皮纹

1 汽车塑料件的皮纹 前言 伴随着汽车行业的发展趋势,消费者对汽车内外饰件的精细化和个性化关注程度越来越高。塑料件的皮纹作为影响汽车内外饰风格的最重要因素之一,涉及到美学、触感、以及安全性,并能一定程度地削弱产品外观缺陷,提升内外饰件的品质和价值,显示了其参与市场竞争的重要作用。 1 皮纹的概念要素 皮纹是指生于生物表皮的天然纹路,通常指在人类或其他动物如牛、鹿、鳄鱼等皮肤表面自然的纹路;也可泛指在植物如树木表皮、断面、叶片等表面的纹理;随着现代设计概念的扩展,发展到其他天然或 人工物品表面的纹理,如石材纹路、织物纹路、电火花纹路等。 本文中的“皮纹”,即是指塑料产品表面的纹饰。塑料产品由于材质不同,表面的排列、组织、构造不同,因而产生粗糙、光滑、软硬感,表现为皮纹不同。 1.1 皮纹按风格分包括以下三个方面: 1)特征性,指纹路单元的形状可以用几何形态或象形形态来描述。常见形态如线状、块状、线块结合和荔枝形状等等,如图1皮纹单元的块状结构。纹路单元的形状大小、方 纹 动物皮纹 其他皮纹 植物皮纹

向、排列组合方向和单元组合的疏密程度都对皮纹的宏观风格有重要影响。 2)方向性,有些皮纹的纹线特征有明显的方向性,如图2示,可以看出这种皮纹纹线明显的脉络走向。有些规则单元特征的皮纹就没有方向性,如图3示。汽车用皮革的皮纹没有方向性的较少。 3)层次性,皮革上的花纹基本都是立体皮纹,立体皮纹具有层次性,在微观上表现为皮纹在深度方向上由2~5个不同深度数值的层组成;在宏观上表现为皮革表面的粒面饱满圆润,层次丰富起伏,特征 过渡自然,给人的视觉冲击比 较柔和,可借助50倍数的放 大镜来察看层次。如图1即为 典型的多层次皮纹。 皮纹的块状特征和层次感皮纹的脉络方向Array皮纹的规则单元 1.2皮纹按大小来分可分为以下三种: (1)粗皮纹:是真实世界已有皮纹仿真演化而来,纹路接近真实纹理,比较细腻,有层次感,可以提高整车内饰档次,一般纹理深度在80~150um 之间。粗皮纹一般用作汽车内饰的主皮纹,有很强的整体协调感,需要整车内饰统合设计考虑。 (2)细皮纹:是一种精致细腻的纹路,类似砂石表面的状态,加工工艺也很多,主要有火花纹,喷沙纹等,细皮纹一般是单层次皮纹,纹理深度在0~80um之间。细皮纹可以单独局部装饰也可和多种其他纹路进行搭配。 (3)几何皮纹:是呈现几何规则的纹理,在汽车上主要体现科技、力量、潮流等概念,一般纹理深度在80~150um之间。几何纹有极强的方向性及规则性,大面积使用会大大提高 其加工难度,价格也较高。 1

汽车内外饰(塑料)产品结构设计的一般原则及精度

汽车内外饰(塑料)产品结 构设计的一般原则及精度 一形状和结构的简化 制品的形状和结构的复杂显然增加了模具结构的复杂性,加大了模具制造的难度,最终将影响产品性能的不稳定性和经济成本。而从工艺角度考虑,形状和结构设计得越简单,熔体充模也就越容易,质量就越有保证。 理想的产品简洁化设计应当是:①有利于成型加工;②有利于降低成本,节约原材料;③有利于体现简洁、美观的审美价值;④符合绿色设计的原则。 以下是简化设计的一些建议和提示。 (1) 结构简单,形状对称,避免不规则的几何图形; (2) 避免制件侧孔 和侧壁内表面的凹凸 形状设计,制件侧壁孔 洞和侧壁内表面的凹 凸形状对某些成型工 艺来说是困难的,需要 在制品成型后进行二 次加工。

例如对于注塑件 来说,模具结构 上就要采用比较 复杂的脱模机构 才能对制件进行 脱模。通常,侧向孔要用侧向的分型和 抽芯机构来实现,这无疑会使模具结构 变得复杂。为了避免在模具结构设计上 增加复杂性,可以对这类制品进行设计 上的改进,图5-16所示是避免侧向抽芯 的设计。 (3) 尺寸设计要考虑成型的可能性, 不同的成型工艺对制件的尺寸设计,包 括尺寸大小,尺寸变化会有一定的限制。 二、壁厚均一的设计原则 在确定壁厚尺寸时,壁厚均一是一 个重要原则。该原则主要是从工艺角度以及由工艺导致的质量方面的问题而提出来的。均匀的壁厚可使制件在成型过程中,熔体流动性均衡,冷却均衡。壁薄部位在冷却收缩上的差异,会产生一定的收缩应力,内应力会导致制件在短期之内或经过一个较长时期之后发生翘曲变形。图5-17是由壁厚不均匀造成制件翘曲变形的一个例子,图5-18是在不均

汽车塑料件产品项目规划方案

汽车塑料件产品项目 规划方案 规划设计/投资方案/产业运营

报告说明— 该汽车塑料件产品项目计划总投资17314.32万元,其中:固定资产投资13916.10万元,占项目总投资的80.37%;流动资金3398.22万元,占项目总投资的19.63%。 达产年营业收入28996.00万元,总成本费用23028.35万元,税金及附加305.65万元,利润总额5967.65万元,利税总额7096.42万元,税后净利润4475.74万元,达产年纳税总额2620.68万元;达产年投资利润率34.47%,投资利税率40.99%,投资回报率25.85%,全部投资回收期5.37年,提供就业职位586个。 汽车轻量化是未来节能减排工作的重中之重,因此在全球汽车制造业中呈现出汽车塑料化的趋势。随着汽车塑料化趋势成型,汽车塑料件的应用推广有望提速,整个行业将迎来高速发展,前景广阔。根据新思界产业研究分析师测算,一辆轿车自重减少10%,燃油消耗量相应降低6%~8%,二氧化碳排放量则可减少5%-6%。所以,在节能减排中,汽车轻量化是无可争议的热门话题。在此背景下,具有密度低特点的塑料材料,成为减轻车体重量的有效途径。在同等大小的汽车零配件中,塑料产品比钢材在质量上普遍可减轻30%~40%,具有相当明显的轻量化优势。除此外,塑料材料还有设计空间大、制造成本低、功能广泛等优势。因此,在技术不断取得突破下,汽车塑料产品应用逐渐增多。从外装饰件到内装饰件,从功能件到结

构件,甚至出现了全塑车身,塑料产品在汽车的覆盖范围越来越广,汽车塑料件行业迈向高速发展。

第一章项目总论 一、项目概况 (一)项目名称及背景 汽车塑料件产品项目 (二)项目选址 某临港经济开发区 对各种设施用地进行统筹安排,提高土地综合利用效率,同时,采用先进的工艺技术和设备,达到“节约能源、节约土地资源”的目的。undefined (三)项目用地规模 项目总用地面积51719.18平方米(折合约77.54亩)。 (四)项目用地控制指标 该工程规划建筑系数71.37%,建筑容积率1.10,建设区域绿化覆盖率7.02%,固定资产投资强度179.47万元/亩。 (五)土建工程指标

注塑零件设计要求

注塑件设计要点 1、开模方向和分型线 2、脱模斜度 3、零件壁厚 4、加强筋 5、圆角和孔 6、抽芯机构及避免 7、塑件的变形 8、一体铰链 9、嵌件 10、气辅注塑 11、综合考虑工艺性和零件性能

注塑件设计要点 1、利用注塑工艺生产产品时,由于塑料在模腔中的不均匀冷却和不均匀收缩以及产品结构设计的不合理,容易引起产品的各种缺陷: 缩印、熔接痕、气孔、变形、拉毛、顶伤、飞边。 2、为得到高质量的注塑产品,我们必须在设计产品时充分考虑其结构工艺性,下面结合注塑产品的主要结构特点分析避免注塑缺陷的方法。 2.1开模方向和分型线 每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响。 2.1.1开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一 致,以避免抽芯减少拼缝线,延长模具寿命。 2.1.2例如:保险杠的开模方向一般为车身坐标χ方向,如果开模方向设计成与χ轴 不一致,则必须在产品图中注明其夹角。 2.1.3开模方向确定后,可选择适当的分型线,以改善外观及性能。 2.2脱模斜度 2.2.1适当的脱模斜度可避免产品拉毛。光滑表面的脱模斜度应大于0.5度,细皮纹表 面大于1度,粗皮纹表面大于1.5度。 2.2.2适当的脱模斜度可避免产品顶伤。 2.2.3深腔结构产品设计时外表面斜度要求小于内表面斜度,以保证注塑时模具型芯 不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料密度强度。 2.3产品壁厚 2.3.1各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷 却时间过长,产生缩印等问题,应考虑改变产品结构。 2.3.2壁厚不均会引起表面缩印。 2.3.3壁厚不均会引起气孔和熔接痕。 2.4加强筋 2.4.1加强筋的合理应用,可增加产品刚性,减少变形。 2.4.2加强筋的厚度必须小于产品壁厚的1/3,否则引起表面缩印。 2.4.3加强筋的单面斜度应大于1.5°,以避免顶伤。 2.5圆角

塑料件结构设计基本原则

塑料件结构设计基本原则

可怜的机械狗之塑料件结构设计基本原则(一) 一,产品结构设计前言 正式进入话题之前,咱先抱怨两句,机械工程的待遇可真不咋地,奉劝想要进入机械行业的童鞋们三思后行。待遇低,工作环境差就算了,可美女咋也凤毛麟角呢!都说机械好就业,工作稳定,可那初始工资真是没得说,就说自己刚毕业时,每月2000块,去厂房里做装配工,铁块在手里滚来滚去,整天脏兮兮的,还累的跟狗一样。可相比较其他呢,那些学计算机的,学财务,学管理的,那待遇真是没法比,想我当时就是因为看这个专业名字好听,就跳坑里了。虽然这个说,可梦想仍在,咱还是要向着那里走着,一点一点地走。 进入正题,在玩具,消费类电子产品,大小家电,汽车等相关行业中,都离不开产品的结构设计,各种有形的产品,配件等都必须先确定其外形,所以是产品结构设计是产品研发阶段的核心之一。就拿消费类电子产品来说,结构,硬件,软件是产品研发的三个主要工作团体,而硬件与结构又是结合最紧密的。 一般公司要研发一款产品,首先是市场部签

发开发指令,经过部门评审后,研发部开始进行结构外观建模,然后再进行建模评审,评审通过后,才开始内部的结构设计,然后才是做手板,开模,试模,试产,量产等。而其中的内部结构设计就是产品结构设计师最主要的工作内容。在我国,工业外观设计跟结构设计是分开的,就是说决定产品初步外观的并不是机构工程师,而是工业设计师,他们会依照市场调差和基本的性能需要去绘制产品的外观,这个当然需要一定绘画艺术和审美能力。可怜大多说人都怀疑作为理工科的结构工程师欠缺这些细胞,可事实好像也是这样。最近接手国外的一个充电器产品,是他们已经做好了3D图,要我们来开模生产,可是拿到手后根本开不了膜,不符合开模要求,当然做个样品可以用3D打印做出来,可想要大批量的还是要靠传统模具。这体现了结构工程师的作用了,尽可能保证产品用料,外观,性能,工艺,装配的最佳化,就是在各个环节省钱省时省力,想想就够累的啊! 二,塑料件料厚 我们接触的很多产品是塑料件,其大部分塑料件都是通过塑胶模具注塑成型,而料厚是塑料

塑料件的设计指南

1. 工程塑料的性能简介: 1.1有些固态物质具有分子排布有序,致密堆积的特性,如食用盐,糖,石英, 矿物质和金属。其它表现为固态物质,并不形成有规则的晶体排列方式。它们只是冷却成为无序的或随机的分子团,称为无定型聚合物。非晶体物质不是真正的 固体,最普通的例子就是玻璃,它们只是过冷的,极端粘稠的液体。 塑料树脂可以分为结晶型和无定型的。结晶型是相对的概念,由于聚合物的分子 链大而复杂,所以不能够向无机化合物那样有完美的晶体排列次序。不同的聚合 物有不同的结晶表现,如高密度的聚乙烯有点结晶性,尼龙的会更强一些,聚甲醛(POM)的更强。 1.2 结晶型与无定型塑料的区别 熔解/凝固 结晶型会有一个熔点,熔解是需要熔解热,成型时会稳定性和硬度会迅速提高, 所以结晶型塑料的成型周期比较短。 无定型物质的温度随着所加入的热量而增加,而且越来越呈现为液态。成型的周 期也比较长。 收缩 结晶型塑料的收缩率会比较大,无定型的比较小 结晶型塑料收缩率 聚甲醛(POM) 2.0 尼龙66 1.5 聚丙烯 1.0~2.5 无定型塑料收缩率 聚碳酸脂(PC) 0.6-0.8 ABS 0.4-0.7 PMMA 0.7 聚苯乙烯 0.4 由于收缩率小,无定型塑料有更好的尺寸稳定性,想我们通用的PC、ABS和PC+ABS 的最小公差可以规定为+/_0.002% 1.3 塑料的其他性能 不同的塑料聚合物以及添加一些助剂之后塑料会有不同的性能。如添加玻纤(一般20%~40%)之后能够显著增加制成品的强度;GE的LEXAN PC和 CYCOLOY PC+ABS的HF是高流动级,对于手机这类薄壳设计的注塑加工的难度 有显著的改善;添加阻燃剂之后能够达到UL94 5V/V0级阻燃要求。 1.4 塑料选择 手机里面比较通用的塑料选择是: PC H F-1023IM,GE A BS+PC CYCOLOY 1200HF,手机外壳:GE P C E XL1414,SAMSUNG GE ABS+PC CYCOLOY 2950、2950HF,其中GE P C E XL1414价格较贵大概是GE A BS+PC 、2950HF是阻燃级别CYCOLOY 1200HF的两倍,GE ABS+PC CYCOLOY 2950 ,GE 1200HF, GE CX7240(超电池壳:GE PC EXL1414,SAMSUNG PC HF-1023IM 薄电池底壳0.2mm) 电镀件:奇美 PA-727,少数使用奇美PA-757、GE CYCOLAC EPBM 电池卡扣或者运动件:POM 2. 手机塑料件的平均肉厚为 1.0mm~1.2mm。较大面(如主副屏贴LENS处可以做 到0.5mm),局部可以做到0.35mm。

塑料产品设计规范

塑料产品设计规范 塑料制品设计特点﹕ 塑料产品的设计与其它材料如钢,铜,铝,木材等的设计有些是类似的;但是,由于塑料材料组成的多样性,结构﹑形状的多变性,使得它比起其它材料有更理想的设计特性;特别是它的形状设计,材料选择,制造方法选择,更是其它大部分材料无可比拟的.因为其它的大部分材料,其设计者在外形或制造上,都受到相当的限制,有些材料只能利用弯曲﹑熔接等方式来成形.当然,塑料材料选择的多样性,也使得设计工作变得更为困难,如我们所知,目前已经有一万种以上的不同塑料被应用过,虽然其中只有数百种被广泛应用,但是,塑料材料的形成并不是由单一材料所构成,而由一群材料族所组合而成的,其中每一种材料又有其特性,这使得材料的选择,应用更为困难. 塑料制品设计原则﹕ 1.依成品所要求的机能决定其形状﹐尺寸﹐外观﹐材料 2.设计的成品必须符合模塑原则﹐既模具制作容易﹐成形及后加工容易﹐但仍保持成品的机能 塑料制品设计程序: 为了确保所设计的产品能够合理而经济,在产品设计的初期,在外观设计者﹐机构工程师,制图员,模具制造者,成形厂以及材料供应厂之间的紧密合作是必须的,因为没有一个设计者,能够同时拥有如此广泛的知识和经验,而从不同的事业观点所获得的建议,将是使产品合理化的基本前提;除此之外, 一个合理的设计考虑程序也是必须的;以下将就设计的一般程序作出说明: 一.确定产品的功能需求,外观. 在产品设计的初始阶段,设计者必须列出对该产品的目标使用条件和功能要求;然后根据实际的考虑,决定设计因子的范围,以避免在稍后的产品发展阶段造成可能的时间和费用的漏失.下表为产品设计的核对表,它将有助于确认各种的设计因子. 产品设计的核对表 一般数据: 1.产品的功能? 2.产品的组合操作方式? 3.产品的组合是否是可以靠着塑料的应用来简化? 4.在制造和组合上是否可能更为经济有效? 5.所需要的公差? 6.空间限制的考虑? 7.界定产品使用寿命? 8.产品重量的考虑? 9.有否承认的规格? 10.是否已经有相类似的应用存在? 结构考虑: 1.使用负载的状态? 2.使用负载的大小? 3.使用负载的期限? 4.变形的容许量? 环境: 1.使用在什么温度环境? 2.化学物品或溶剂的使用或接触? 3.温度环境? 4.在该种环境的使用期限? 外观: 1.外形 2.颜色 3.表面加工如咬花,喷漆等. 经济因素: 1.产品预估价格? 2.目前所设计产品的价格? 3.降低成本的可能性? 二.绘制预备性的设计图: 当产品的功能需求,外观被确定以后,设计者可以根据选定的塑料材料性质,开始绘制预备性的产品图,以作为先期估价,检讨以及原则模型的制作.

汽车外饰件行业发展概况

汽车外饰件行业发展概况 ①行业概况 汽车外饰件是用于汽车车身外面,用于保护车身和美化车体的外观件,兼具防护与美观功能。按照汽车外饰件的安装部位划分,汽车外饰件可分为车辆前后外饰件(如前后护杠、防翻架、泵把、包围套件、中网等),车辆侧方外饰件(如踏板、侧杠、挡泥胶、门把装饰件、车身饰条等)和车辆顶部外饰件(如行李架、行李框、行李箱等)。 在汽车工业发展较早的欧美日韩澳等国家,汽车外饰升级通常是由追求个性化的车主提出需求方案,再交给汽车改装工厂进行技术设计、生产和安装。汽车厂商一有新车下线,便会随之产生出一系列的外饰升级方案和相应的产品。汽车个性化外饰升级已经在部分发达国家形成了独特的汽车文化,汽车外饰件升级也形成了产业化,并成为汽车后市场产业链中的一个重要组成部分。 美国作为全球最大的汽车消费市场,其个性化的汽车外饰件已形成了产值规模巨大的新兴行业。因美国独特的汽车文化影响,其个性化汽车外观升级主要追求夸张的外观造型和有冲击力的视觉效果。澳大利亚在全球汽车外饰件市场中起着举足轻重的作用,其汽车外饰产品广泛出口到非洲、中东等地,已然成为国际

汽车外饰件的分销站点,是国际汽车外饰贸易链条中重要的一环。同时,澳大利亚本土的汽车外饰件需求也相当旺盛,由于地广人稀,越野文化盛兴,且公路上野生动物频繁出没,澳大利亚本地的汽车外饰件以金属材质的防护型外饰件为主,尽显粗犷风格。日本进行汽车个性化升级吸收了欧美国家的特点,追求夸张外观。作为亚洲汽车外饰升级技术最发达的国家,日本拥有最先进的机械技术,其外饰后装升级后的汽车具有追求实用性的特点,某种意义上达到了汽车制造行业的水平。德国的汽车工业起步较早,汽车外饰件升级的历史也非常悠久,汽车外饰件行业较为规范,很多汽车公司都有自己认证的个性化外饰升级厂。 在我国,随着私人汽车保有量的增长,汽车个性化外饰升级的潮流也逐渐兴起。我国最初的汽车外饰件是广东自上世纪九十年代从香港引进,先在以广州、深圳为代表的广东地区以及北京、四川等地生根发芽,并逐渐向长三角及环渤海湾地区发展,最终风靡全国。最早的汽车外饰件主要效仿美国粗犷的金属越野风格,以金属材质外饰件为主,后来根据国内消费者的审美观改变,2011 年至今轻量化且更贴合车身的塑料材质外饰件已成为国内的主流。如今,国内车主对汽车个性化外饰升级的认同和参与热情与日俱增。 ②行业特性 A、汽车外饰件在国内外的流行趋势迥异 由于国内外在汽车使用方面的环境差异,导致汽车外饰件产品的流行趋势迥

塑料产品结构设计准则

产品结构设计准则--壁厚篇 基本设计守则 壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。 最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。 对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。 此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。 平面准则 在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。下图可供叁考。

汽车塑料外饰件的应用现状与发展趋势

汽车塑料外饰件的应用现状与发展趋势 塑料以其加工性优良,使用性能优异及可降低成本,特别是减重等一系列的优势,正越来越多地代替金属应用于汽车零部件的制造中,其中包括汽车外饰件。 图1 依维柯卡车的面罩,采用DCPD材料制造 塑料以其加工性优良、使用性能优异及可降低成本,特别是减重等一系列的优势,正越来越多地代替金属用于汽车零部件的制造中,其中包括汽车外饰件。本文介绍了多种热塑性塑料和热固性塑料及工艺应用于汽车外饰件的现状,并指出了它们的发展趋势。 随着塑料材料技术的发展和制造工艺的不断进步,越来越多的汽车外饰件开始使用塑料材料而非金属来制造。塑料外饰件在乘用车中典型的应用包括保险杠、散热器格栅、翼子板、车灯壳体、后视镜壳体、天窗系统、门把手、车身装饰板、发动机盖、行李箱盖、后背门及硬顶等。使用的塑料材料包括聚丙烯、聚乙烯、聚氨酯、尼龙、ABS、聚碳酸酯以及纤维增强复合材料。塑料外饰件在商用车中的应用主要以纤维增强热固性复合材料为主,应用部件包括保险杆、面罩、脚踏板、高顶、导流罩及导流

板等。应用在乘用车中的塑料部件占车身总重量的比例平均已经达到8%~12%,但应用于外饰件的比例仅占车身总重的1%~2%。 热塑性塑料在外饰件中的应用主要是利用其成型加工方面的优势,容易实现复杂的造型,生产效率和质量的一致性高,同时塑料通过合成和改性,能够在某些方面达到比较高的性能,如高韧性和耐划伤等。热固性复合材料由于具有高的热稳定性,通过增强后能够提供更高的力学性能,主要应用于结构功能部件,最有代表性的是乘用车行李箱盖、背门、尾翼及硬顶等。在面积较大的部件制造中,主要选用纤维增强热固性复合材料。 图2 宝马6系行李箱盖,采用SMC材料及工艺,由Polytec Group制造 非纤维增强塑料制造的汽车外饰件的主要成型工艺是注塑成型,后涂装涉及到电镀、油漆喷涂等工艺。由于塑料材料在耐温和喷涂工艺方面与金属材料有很大不同,大部分塑料外饰件的表面涂装都是与白车身分开独立进行的,但可在线喷涂的塑料材料技术也是一个重要的发展方向。相比之下,纤维增强热固性塑料制造的汽车外饰件的成型工艺种类较多,包括SMC模压成型、ZMC注塑成型以及RTM工艺等。在乘用车部件中,更多地使用到生产效率高、可达到A级表面的SMC成型工艺,因为纤维增强热固性复合材料具有更高的热稳定性,容易实现与白车身在线喷涂。在国内比较有代表性的产品包括克莱斯勒切诺基213的背门、雪铁龙富康两厢车背门。

汽车设计中常用塑料材料及其合理选择方法

汽车设计中常用塑料材料及其合理选择方法 一、高分子材料的主要特征介绍 热塑性塑料 热塑性塑料是指在特定的温度范围内,能反复加热软化和冷却硬化的材料。高聚物由长分子链组成。热塑性高聚物的分子链有线型的或支链的结构。用相对平均分子质量来表征和测定高聚物分子链的长度。分子量越大,固态高聚物的力学强度越好,黏流态高聚物的黏度更高。 聚合物的聚集态结构 表2-2是一些碳链聚合物和杂链聚合物的结构 聚合物内分子链与分子链之间的聚集状态,即聚集态结构,也是聚合物的主要结构参

数。按照分子间的排列状况,可以将固态聚合物的聚集态分为结晶态、无定形态(即非结晶态),结晶态是指线型的和支链型的大分子,能够在三维方向上规则整齐的排列形成晶体结构。具有结晶结构的,或者能形成结晶结构的聚合物称为结晶性聚合物。 与此相反,分子链排列呈无序状态,则定义为无定形态。凡是在任何条件下都不能结晶的称为无定形聚合物。在晶体形成过程中,可能有一部分大分子或大分子链段没有机会结晶,成为聚合物中的无定形部分。结晶部分在聚合物中所占的比例称为结晶度。即便在同一品种的聚合物也因有结构上的差异而影响结晶度。例如低密度聚乙烯,由于其具有较多的支链,使链的规整性收到破坏,因而结晶度低于线型的高密度聚乙烯。 结晶度和无定形态是两 种不同的聚集状态,因此,导 致性能上的较大差异也是必 然的。 由于分子链在较高温度 下有自由卷曲的倾向,当对其 施加外历时,分子链便会伸 展。许许多多伸展的链沿力的 作用方向进行有序的排列,就 形成了取向态,将已经形成取 向态的聚合物降低温度,使其 冻结,取向结构便会保留于制 品中。 取向态和结晶态都以高 分子的排列有序为特征,所不 同的是,结晶态是三维有序, 并且是在合适的外界条件下 自发生成的;而取向态只是一 维或二维有序。如果作用力来 自于一个方向,则分子链单向 取向。 塑料的物态 聚合物在不同的温度条 件下可处于三种物理状态,即 玻璃态、高弹态和黏流态。大 部分塑料以温室下的玻璃态为特征。所谓玻璃态是指塑料在这一状态下呈刚性,质硬如玻璃受外历时变形很小而且是可逆的。塑料在这一状态下作为刚性材料使用,是合乎逻辑的。

浅谈汽车塑料件的结构设计原则

浅谈汽车塑料件的结构设计原则 摘要现阶段,我国汽车产业发展迅速,塑料制品更为广泛的被应用于汽车的外形设计及内饰,塑料件的类型及结构趋于多元化。塑料在汽车领域的应用已渗透至汽车的整体性能,减少了汽车的自重量与燃料耗费。 关键词汽车;塑料件;结构设计;原则 前言 随着汽车工业向轻量化方向的发展,塑料在汽车上的用量日益增加,利用塑料质量轻、性能好、尺寸稳定、吸振、设计自由度大等特点,现代汽车用塑料结构件取得了长足的发展,并且是今后的重点发展方向之一,本文主要介绍了在实际的汽车塑料件产品开发中,塑料件常见结构设计原则。 1 汽车塑料化趋势 在同等大小的汽车零配件中,塑料产品比钢材在质量上普遍可减轻30%~40%,具有相当明显的轻量化优势。除此外,塑料材料还有设计空间大、制造成本低、功能广泛等优势。因此,在技术不断取得突破下,汽车塑料产品应用逐渐增多。从外装饰件到内装饰件,从功能件到结构件,甚至出现了全塑车身,塑料产品在汽车的覆盖范围越来越广,汽车塑料件行业迈向高速发展。与此同时,塑料制品在汽车中的用量,逐漸成为衡量一国汽车工业发展水平的标志之一。全球范围来看,德国、日本在汽车中使用的塑料制品量大幅领先其他国家。据统计,德国每辆汽车平均使用塑料制品近300kg,日本每辆汽车平均使用塑料为100kg。相比较而言,我国每辆汽车使用塑料制品最多的也仅有70kg,未来还有很大提升空间。从数据可以看出,即便汽车工业发达的德国,塑料制品的使用量仍较为有限。归咎其因,在于汽车塑化推广存在很大障碍。一方面,高强度及高性价比的材料供给存在难题。相比金属,塑料疲劳期更短,在高温或接触汽油时老化现象严重,同时在传力部位的应用强度不够。另外,在技术限制下,汽车塑料产品成本居高不下。另一方面,汽车塑化还面临着生产改造成本、回收等问题。换言之,在利益最大化考量下,汽车厂商对汽车塑料件认可度并不高。在技术不断突破、材料品质和工艺持续提升下,汽车塑料件存在的问题将逐步得以解决,并通过政府、车企、零部件供应商、材料生产商等多方努力,迈向大规模推广应用阶段,未来发展前景可期[1]。 2 汽车塑料件壁厚设计原则 合理的确定塑件的壁厚是很重要的。塑件的壁厚首先决定于塑件的使用要求:包括零件的强度、质量成本、电气性能、尺寸稳定性以及装配等各项要求,一般壁厚都有经验值,参考类似即可确定(如熨斗一般壁厚2mm,吸尘器大体为2.5mm),其中注意点如下:

塑料件通用设计规范

塑料件通用设计规范 (发布日期:2011-05-7) 1范围 本规范适用于空调器产品中使用的塑料件,其他产品可参考使用。 2相关标准 2.1塑料材料标准 见企业标准05原材料 2.2塑料件公差标准 QJ/T 10628-1995 塑料制件尺寸公差 3常用塑料件的材料特性及选用 3.1常用塑料件的材料名称及主要特性 a)ABS:为丙烯腈(A)、丁二烯(B)和苯乙烯(S)共聚物,具有良好的综合机械性能,易于成型, 使用温度-40℃~100℃,广泛用作外观件和一般结构件。有耐候ABS、阻燃ABS、增强ABS、抗静电ABS,ABS/PC合金等; b)HIPS:改性聚苯乙烯,目前已部分取代ABS材料,对放射线的抵抗力在所有塑料中最强,使用温度 -30℃~80℃,HIPS表面硬度、冲击强度、弯曲强度较ABS有轻微的降低,脆性易裂,设计时应特别注意防止开裂。有阻燃HIPS、增强HIPS、高光HIPS; c)PP:聚丙烯,机械性能好,特别是刚性及延展率好,耐高温,可在120℃下长期使用,耐磨性稍差, 收缩率大,易产生缩孔、凹痕、变形等缺陷,注塑件尺寸精度难保证。有改性PP、耐候PP,PP+波纤; d)PC:聚碳酸酯,综合性能良好,透光率高,耐高温,可在130℃下长期使用,但耐疲劳强度低, 容易开裂,常用作透明件或装饰件。有阻燃PC、增强PC; e)PA:聚酰胺(尼龙),机械性能优良,是一种自润滑材料,长期使用温度不超过80℃,注塑件尺寸 精度难保证,易产生缩孔、凹痕、变形等缺陷,常用作传动件和耐磨件如轴承、齿轮、凸轮、滑轮、衬套、铰链等。 f)POM:聚甲醛,机械性能优异,长期使用温度为100℃,注塑件尺寸稳定性较好,可制造较精密的 零件,能替代钢、铜、铝、铸铁等金属材料制件。 3.2材料选用: a)外观件:选用机械性能良好、尺寸稳定性及外观质量好的塑料,有ABS、HIPS; b)内部一般结构件:选用机械性能良好、尺寸稳定性的塑料,有ABS、PS、PP; c)透光及装饰件:要求塑料具有较高的透光度及透明度,有ABS、PC、PVC、AS; d)耐磨擦件:选用机械性能优良的塑料,有POM、PA; e)电控电器结构件:要求阻燃,并具有一定的强度,有阻燃ABS、阻燃PP;

塑胶件设计规范

塑胶件设计规范:(限于目前常用的热塑性塑料件设计) 1.壁厚设计 根据零件功能及形状大小而定。注塑成型壁厚一般不大于4mm。常用材料壁厚如下,特殊要求的壁厚另行考虑。 热塑性塑料名称厚度范围典型厚度备注 ABS 1.5~4.5 2.5 拐角内圆角最小半径25%壁厚 PC 0.75~9.5 2.4 一般设计壁厚不超过3.1mm PP 0.6~7.6 2.0 一般设计壁厚不超过2.5mm PS 0.8~6.4 2.2 50%壁厚 PA 0.4~3.2 1.6 0.5mm POM 0.4~3.2 1.6 PMMA 0.6~6.4 2.4 PPO 0.8~9.5 2.0 SAN 0.8~6.4 1.6 PU 0.6~38 12.7 LDPE 0.5~6.4 1.6 HDPE 0.9~6.4 1.6 LCP 0.4~1.5 1.5 平面准则:尽量壁厚均匀一致。 因故不能做到,需做渐变过度, 过度的部分长高比例大于等于3:1 转角准则:壁厚均匀原则在 拐角处同样适用。

2.BOSS柱设计:(常用塑料) 设计原则,首先考虑连接强度。下表是对于一般结构件连接情况;对于重要外观件,BOSS 柱外径,在连接强度不高情况下,可以适当做小。 当连接有强度要求,又有外观要求时,需按下面参数设计,同时设计出火山口。 BOSS柱要求使用司筒顶出,斜度不大于0.25度。 说明:外径根据强度要求可以适当变化,以上值为要求 说明:PC柱比ABS更容易打爆,若出现此现象,外径可适当加大

材料螺钉内孔直径外径连接有效深度PP ST2.2 1.8±0.05 4 4.5 ST 2.6 2.1±0.05 4.8 5 ST2.9 2.3±0.05 5.5 6 ST 3.3 2.6±0.05 6.0 6.5 ST 3.5 2.8±0.05 6.5 7 ST 3.9 3.2±0.057.2 8 ST 4.2 3.4±0.057.8 8.5 ST 4.8 3.8±0.059 9.5 ST 5.5 4.4±0.0510 11 ST 6.3 5.1±0.0511.5 12.5 ST 8 6.4±0.0514.8 16 材料螺钉内孔直径外径连接有效深度 PA6,PA66,SAN /POM ST2.2 1.8±0.05 4 4.5 ST 2.6 2.2±0.05 4.8 5 ST2.9 2.4±0.05 5.5 6 ST 3.3 2.8±0.05 6.0 6.5 ST 3.5 3±0.05 6.5 7 ST 3.9 3.3±0.057.2 8 ST 4.2 3.5±0.057.8 8.5 ST 4.8 4±0.059 9.5 ST 5.5 4.6±0.0510 11 ST 6.3 5.3±0.0511.5 12.5 ST 8 6.8±0.0514.8 16 说明:PA6,PA66螺钉有效深度可以比上表值缩短15%。 火山口设计: 壁厚<2mm, A尺寸做0.75mm 2mm≤壁厚, A尺寸做60~70%壁厚

车外饰塑料零部件的耐温性试验2011.8.18

车外饰塑料零部件的耐温性试验 引言 近年来,随着汽车轻量化的呼声越来越高,塑料制品在汽车中的用量持续增长。目前,北美汽车中塑料的用量为平均每车118 kg左右,约占整车质量的10%,预计2010年将达到136 kg。如图1所示,是美国汽车使用的塑料品种比例分布,从图上可以看出,美国汽车工业应用较多的塑料有PU、PP、PVC、ABS、PA和PE等,主要用来制造前后保险杠、空调进气隔栅、底部导流板、前后灯、后视镜护罩、车轮护罩和车身饰条等,据了解,世界每年在汽车领域的聚丙烯消费量约在45万t左右,95%的欧洲汽车的前后保险杠是以聚丙烯为原材料制造的。这些塑料零部件除了满足汽车轻量、舒适、美观外的要求外,还必须满足汽车性能试验的要求。 耐温性能是评判塑料零部件质量与功能的重要指标之一,也是汽车零部件试验必检项目之一,特别是在一些环境比较恶劣、温度变化范围大、光照强烈的地区,如北美、北欧、热带赤道附近等,塑料零部件一旦失效,会对车辆的性能造成很大影响,所以车辆的耐温特性就更显重要。 本文讨论汽车塑料外饰件的耐温性能试验,其试验项目一般包括4种:耐寒性试验,耐热性试验,高低温循环试验,老化试验,介绍了这4种测试的机理、方法和性能要求,以期为后续的试验研究提供参考。 [快车下载]图1.gif: 1温度对塑料件的影响机理 温度影响材料性能主要是因为温度影响了材料的化学反应速率和光化学反应速度。材料在太阳光照射下,温度对日光的射线效应就会显现,化学反应总是随着温度的升高而加速。材料的温度每升高10℃,化学反应的速度就会翻倍。热化学反应会在较高温度下发生,而在低温下这种反应则很慢或不会发生。 塑料的耐热性表示在温度升高时材料抵抗自身物理或化学变化引起的变形,软化,尺寸改变,强度下降的能力。由于塑料材料大部分属于高分子材料,其耐热温度不高,不同材料的软化温度不同,而且塑料

塑胶件设计规范完整版

塑胶件设计规范 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

塑胶件设计规范:(限于目前常用的热塑性塑料件设计) 1.壁厚设计 根据零件功能及形状大小而定。注塑成型壁厚一般不大于4mm。常用材料壁厚如下,特殊要求的壁厚另行考虑。 热塑性塑料名称厚度范 围 典型厚 度 备注 ABS~拐角内圆角最小半径25%壁厚 PC~一般设计壁厚不超过3.1mm PP~一般设计壁厚不超过2.5mm PS~50%壁厚 PA~0.5mm POM~ PMMA~ PPO~ SAN~ PU~38 LDPE~ HDPE~ LCP~ 因故不能做到,需做渐变过度, 过度的部分长高比例大于等于3:1 转角准则:壁厚均匀原则在 拐角处同样适用。 2.BOSS柱设计:(常用塑料) 设计原则,首先考虑连接强度。下表是对于一般结构件连接情况;对于重要外观件,BOSS柱外径,在连接强度不高情况下,可以适当做小。 当连接有强度要求,又有外观要求时,需按下面参数设计,同时设计出火山口。 BOSS柱要求使用司筒顶出,斜度不大于度。 材料螺钉内孔直径外径连接有效深 度 ABS ABS+PC HIPS ±4 ST ±5±6 ST ± ST 3±7 ST ±8

火山口设计: 壁厚<2mm, A尺寸做0.75mm 2mm≤壁厚, A尺寸做60~70%壁厚 3.加强筋设计 加强筋厚度 一般设计,加强筋厚度不超过壁厚倍。 有外观要求时,加强筋厚度的不超过倍壁厚。 加强筋小部厚度不得小于0.6mm,PC料不得小于0.8mm。 加强筋斜度~2度 沟槽设计 由于结构原因,外观件加强筋根部厚度大于倍壁厚,加强筋根部两侧需做沟槽结构,参照BOSS柱火山口设计。 加强筋位置 根据结构需要布置,均匀分布,避免交叉。

相关文档
最新文档