脱硫系统简介

脱硫系统简介
脱硫系统简介

石灰石湿法脱硫分为:烟气系统,吸收塔系统,制备系统,废水处理系统,石膏脱水

系统,公用系统,工艺水系统,事故排放系统。

1.烟气系统:

烟道

烟道包括必要的烟气通道、冲洗和排放漏斗、膨胀节、法兰、导流板、垫片、螺栓材料以及附件。

进出口挡板门为电动单轴单百叶挡板门,在FGD系统运行时打开。旁路挡板为电动单

轴双叶片百叶窗式挡板门,在FGD系统运行时关闭。当FGD系统停运、事故或维修时,入口挡板和出口挡板关闭,旁路挡板全开,烟气通过旁路烟道经烟囱排放。

2.吸收塔的概述

吸收塔为空塔结构,钢结构圆柱体,内衬玻璃鳞片. 吸收塔系统就FGD系统的核心部分,其只要功能就吸收烟气中SO2,最终的反应产物是(CaSO4 .2H2O).同时也是可以吸收烟气中的其它污染物质,如飞灰、SO3、HCI、HF等。SO2吸收系统主要设备包括吸收塔,循环泵,氧化风机和石膏排浆泵。

吸收塔内可分为三个区域:吸收区、氧化区、中和区

吸收塔重要的参数包括:浆液PH值和浆液密度。最佳的PH值在5.2---5.8之间。

低于这个范围,则脱硫反应无法进行;高于这个范围,则氧化反应会停止,此时浆液池中产生了大量的亚硫酸盐CaSO3 . H2O,使得石灰石也无法溶解,同样也会阻碍脱硫反应的进行。遇到PH过高的情况时,可以暂时停止加入石灰石,使得PH

值降低,亚硫酸盐会再次转换成石膏。PH值过高的另一个缺点是石灰石同石膏一同排出吸收塔,造成石灰石的浪费,这将导致运行成本的增加。此外,石膏中混入太多的石灰石不利于石膏的综合利用。按照使用标准,干石膏内的石灰石含量应控制在2%以内。

烟气从吸收塔烟气净化区域底部进入,上升,被逆流而下的石灰石浆液冲洗净化。这些浆液来自吸收塔顶部的4个喷淋层。每个喷淋层喷洒吸收塔浆液池表面的浆液。每个喷淋层都备有一个单独的循环泵。吸收塔内除了喷淋层外,净化区没有其它管道。

悬浮浆液与烟气形成了一个强烈的气液混合接触区,在这个接触区内发生化学反应,

以石灰石作为吸收剂,脱除其中的SO2,同时生成了主要副产物石膏(CaSO4 .2H2O)。脱硫后的净烟气经过除雾器后通过吸收塔顶部出口排出。

吸收塔内由于循环浆液的水蒸发,烟气被冷却到饱和温度。吸收塔内的水消耗(水蒸发,参与化学反应以及排出的废水)是通过除雾器的冲洗水来补偿。

吸收塔上部布置二级水平除雾器。除雾器由燃聚丙烯材料制作,形式为Z型,两级除雾器均用工艺水冲洗。脱硫后,净烟气经过除雾器,除去烟气中携带的液滴。除雾器设有冲洗系统,依照指定的冲洗程序进行冲洗。除雾器的冲洗有两个作用:一方面防止除雾器堵塞,另一方面保持吸收塔浆池液位稳定在一定范围内。

如果吸收塔内浆池液位高,则延长两次冲洗时间间隔,以减少冲洗水量。但是为了防止除雾器堵塞,必须保证除雾器冲洗水量大于最小冲洗水量,即冲洗时间间隔必须小于最大的冲洗时间间隔。

吸收塔下部位为浆池,用于储存浆液,浆池通过3台侧入式搅拌器进行搅拌,防止固体沉淀。同时在浆池内设置的氧化喷管为吸收塔提供氧化空气,溶解后的SO2与石灰石以及吸收塔池内的氧化空气反应,最终生成的副产物就石膏晶体,以固体形式排出吸收塔浆池,通过石膏排浆泵送往脱水系统。

脱硫过程可以用下列化学反应方程式来描述:

(1)石灰石的溶解过程:

CaCO3+2H+→Ca2++CO2+H2O

(2)SO2的吸收过程:

SO2+H2O→ H2SO3

H2SO3→H+ + HSO3- (低PH值时)(吸收区下部)

H2SO3→ 2H+ + SO32-(高PH值时)(吸收区上部)

Ca2++2HSO3-→Ca(HSO3)2 +Ca2++SO32-→CaSO3

(3)反应产物的氧化:

Ca(HSO3)2+ CaCO3+O2→ 2CaSO4 + H2O+ CO2

2CaSO3+O2→2CaSO4

(4)结晶生成石膏:

CaSO4+2H2O→CaSO4.2H2O

吸收了SO2的石灰石---石膏浆液落入吸收塔反应池。氧化风机将氧化空气鼓入反应池中于浆液反应。氧化系统采用喷管式系统,氧化空气被注入到搅拌机桨叶的压力侧,被搅拌器产生的压力和剪切力分散为细小的气泡并均匀分布于浆液中。一部分HSO3-在吸收塔喷淋区被烟气中的氧气氧化,剩余部分的HSO3-的反应池中被氧化空气完全氧化。

4.石膏脱水系统

石膏脱水系统分为两个子系统,即一级脱水系统和二级脱水系统。一级脱水系统为单元制操作系统,包括两台石膏浆液排放泵(一运一备)、一台水力旋流器;二级脱水系统包括两台真空皮带机及相应的泵、箱体、管道、阀门等。由于吸收塔浆液池中石膏不断产生,为保持浆液密度在设计的运行范围内,需将石膏浆(20%固体含量)从吸收塔中抽出。为了避免石膏浆液在管道中沉淀,石膏排出泵采用部分回流方式满足石膏浆液在低负荷时需要的最低流速。石膏脱水系统包括以下设备:

石膏旋流器、带冲洗系统的真空皮带机、真空泵、带搅拌器的过滤液水箱、过滤液水泵、滤布冲洗水箱、滤布冲洗水泵、石膏浓浆分配箱、带搅拌器的废旋给料箱、废水旋流站、废水箱、石膏库。

4.1石膏旋流器

石膏浆液通过吸收塔石膏排放泵输送到安装在石膏脱水车间顶部的石膏旋流器。石膏旋流器具有双重作用;即石膏浆液预脱水和石膏晶体分级。进入石膏旋流器的石膏悬浮切向流动产生离心运动,细小的微粒从旋流器的中心向上流动形成溢流,溢流进入废旋给和料箱通过废旋给料泵打到废水旋流站,废水旋流站的溢流通过废水泵送至废水处理系统。石膏旋流器中重的固体微粒被向旋流器壁,并向下流动,形成含固浓

度为50%的底流,通过底部切换阀可切至过滤水箱也可切至浓浆分配箱到真空皮带脱水机进入二级脱水系统。为了保证石膏浆液旋流器的正常运行和脱水效果,石膏排出泵

由变频控制装置驱动,可对石膏旋流器压力进行调节。

4.2真空皮带脱水机

真空皮带脱水机和真空系统为并列系统,石膏旋流站底流浆液通过浓浆分配输送到

真空皮带脱水机,由真空皮带脱水系统脱水到90%固形物和小于10%水份。当脱水时,石膏饼经工业水冲洗降低其中的CI- 浓度。冲洗水排至滤液水箱。真空皮带脱水机滤出的滤液流至汽水分离器,并流至滤液水箱。

真空皮带脱水机的工作原理:含固量较高的料浆经进料装置被均匀分配到滤布上,通过真空泵的抽吸,使真空箱达到一个真空度,这样料浆与真空箱之间产生了压差,

使料浆中的液体进入真空箱,而大颗粒物质被阻留在滤布上,从而达到过滤、脱水、

干燥的目的。

4.3石膏卸料系统

脱水石膏通过皮带脱水机的翻卸落到石膏库。然后石膏库内的石膏通过铲车进行装卸

运输。

5.滤液处理

真空泵密封水收集到滤布冲洗水箱,用于冲洗滤布。滤布冲洗后的水收集在滤液水箱。来自废水旋流器的底流和顶流,来自真空皮带机的汽水分离器的滤液水收集到滤

液水箱,然后由滤液水泵打到吸收塔。

6.石灰石浆液供给系统

提供一个石灰石浆液箱和4台石灰石浆液泵。每个吸收塔配有一条石灰石浆液输送管,石灰石浆液通过管道输送到吸收塔。#1、2塔共用一条再循环管回到石灰石浆液箱,以防止浆液在管道沉淀。

6.1石灰石浆液箱

石灰石粉制浆系统设置一座石灰石浆液箱,安装在石灰石粉仓附近,主要功能是储存吸收塔运行所需要的石灰石浆液。

石灰石浆液箱是圆柱形,碳钢制作,内衬玻璃鳞片防腐。石灰石浆液箱顶部配有可供工作

人员行走的屋顶平台,和一个石灰石浆液箱搅拌器,用于混合均匀浆液,防止石灰石颗粒的沉积。搅拌器为顶入式,电机驱动,搅拌装置由2个叶片组成。

石灰石浆液制备车间设有浆液排水坑,溢出水,机封水、清洗用的冲洗水等都汇集在这个水坑内,并且通过排水泵输送至石灰石浆液罐。

6.2石灰石浆液泵

石灰石浆液通过石灰石浆液泵输送,浆液管线为两条循环管线,从石灰石浆液泵出口到#1#2、吸收塔,然后返回石灰石浆液箱。循环管线的作用是通过电动调门的调节可以灵活地往吸收塔输送最小流量和最大流量的石灰石浆液。正常运行时,两条循环管线都是连续运行的,只有在吸收塔停机时,循环管线再停止运行。在这种情况下需要用工艺水冲洗循环管路。当其中一台浆液泵停运时,可以切换至另一台浆液泵运行,从而可以实现不间断向吸收塔供浆。石灰石密度计装在#1、3石灰石浆液泵的出口母管上,用于监视石灰石浆液箱密度。

循环管线分有一支管,用于向吸收塔供浆,在石灰石浆液泵出口接有另一路支管用于石灰石浆液的取样。

为了对流量进行精确的调节,调节阀前需要一定的压力。为此,循环管线在支管后向上走高6m左右,利用这个高度差提供调节阀前所需的压力。

7.公用系统

公用系统包括工(业)艺水系统、仪用和杂用空气系统。

8.工艺(业)水系统

工艺水水源由电厂循环水提供,并输送到FGD的工艺水箱中。工艺水由工艺水泵从工艺水箱输送到各用水点(和工业水备用),用户为:系统内各浆液泵的管道冲洗水;各箱罐底部冲洗水;各供浆管线冲洗水;吸收塔石膏密度计、PH计管道冲洗水;氧化风减温水;氧化风管冲洗水;吸收塔液位计冲洗水;吸收塔烟道冷凝水排放管冲洗水。

除雾器也用工艺水冲洗。冲洗水由每台机组的除雾器冲洗水泵自动、定时地输送到除雾器。

工业水水源由生活消防水提供,工业水由工业水泵从工业水箱输送到各用水点(和工艺水备用),用户为:真空泵密封水;空泵工作水;滤布冲洗水箱补水。

9. 压缩空气系统

由于FGD系统用气量少,仅在FGD岛处设置一个仪用空气储气罐,输送到系统内各气动执行机构和真空皮带脱水机的纠偏装置使用。气源来自干灰输送空压机出口。石灰石粉仓布袋除尘器反吹风由杂用空压机出口提供。

10.排放系统

排放系统设有1个事故浆液箱,2个吸收塔排水坑,1个石灰石制备系统排水坑,石膏脱水系统设1个石膏脱水区排水泵。当需要排空吸收塔进行检修时,吸收塔内的浆液主要由吸收塔石膏排出泵排至事故浆液箱直至泵入口低液位跳闸,其余浆液依靠重力自流入吸收塔排水坑,再由吸收塔排水坑泵打入事故浆液箱。

由每个箱体和泵内排出的疏水也通过沟道分别集中到吸收塔排水坑、石灰石制备系统排水坑、石膏脱水排水坑。各个区域排水池泵根据池内液位自动起/停;各个区域的排水池搅拌器连续运行。各个区域排水池搅拌器也可通过FGD控制室内由操作员发出的手动启/停命令来运行。

烟气脱硫系统概述

烟气脱硫系统概述 烟气脱硫(Flue gas desulfurization,简称FGD )是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。 石灰石/石膏湿法FGD 工艺技术是目前最为先进、成熟、可靠的烟气脱硫技术,更由于其具有吸收剂资源丰富,成本低廉等优点,成为世界上应用最多的一种烟气脱硫工艺,也是我国行业内推荐使用的烟气脱硫技术。 我公司烟气脱硫系统采用石灰石—石膏就地强制氧化脱硫工艺。吸收塔采用单回路四层喷淋、二级除雾装置,脱硫剂为(CaCO 3)。在吸收塔内,烟气中的SO 2与石灰石浆液反应后生成亚硫酸钙,并就地强制氧化为石膏(CaSO 4·2H 2O ),石膏经二级脱水处理后外售或抛弃。其主要化学反应如下: CaCO 3+ SO 2+ H 2O CaSO 3·H 2O+CO 2 CaSO 3·H 2O+21O 2+2H 2O CaSO 4·H 2O+H 2O FGD 工艺系统主要有如下设备系统组成:烟气系统;吸收塔系统;石灰石浆液制备系统;石膏脱水系统;工艺水系统;氧化空气系统;压缩空气系统;事故浆液系统等。 工艺流程描述为: 由锅炉引风机来的热烟气进入喷淋吸收塔进行脱硫。在吸收塔内,烟气与石灰石/石膏浆液逆流接触,被冷却到绝热饱和温度,烟气中的SO2和SO3与浆液中的石灰石反应,

生成亚硫酸钙和硫酸钙,烟气中的HCL、HF也与烟气中的石灰石反应被吸收。脱硫后的烟气温度约50℃,经吸收塔顶部除雾器除去夹带的雾滴后进入烟囱。氧化风机将空气鼓入吸收塔浆池,将亚硫酸钙氧化成硫酸钙,过饱和的硫酸钙溶液结晶生成石膏,产生的石膏浆液通过石膏浆液排出泵连续抽出,通过石膏旋流器、真空皮带脱水机二级脱水后贮存在石膏间或者进行抛弃处理。

火电厂脱硫的几种方法

火电厂脱硫的几种方法(总12 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

火电厂脱硫的几种方法(1) 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD 技术中,按脱硫剂的种类划分,可分为以下五种方法:1、以CaCO3(石灰石)为基础的钙法,2、以MgO为基础的镁法,3、以Na2SO3为基础的钠法,4、以NH3为基础的氨法,5、以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。A、湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。B、干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。C、半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 1脱硫的几种工艺 (1)石灰石——石膏法烟气脱硫工艺

烟气脱硫DCS系统方案

XXXX项目——烟气脱硫DCS系统方案及报价 XXXX有限公司

目录 系统简介 (3) DCS系统硬件介绍 (4) DCS软件介绍 (8) DCS系统技术规格 (10) 本控制系统统构成 (22) 本控制系统规模及功能 (13) 系统配置清单及供货范围 (19) 检测及质量保证 (20) 技术服务和培训 (22) 其它 (23) 系统报价 (25) 内容截止于第25页

一、系统概述 (一)、系统简介: ●德国Wago DCS系统是基于多种总线的控制系统,其代表产品就是基于以太网的控 制系统。 ●其设计特点是融入了DCS系统和FCS系统的优势。 ?WaGo控制系统典型结构图 显示器 PROFIBUS DeviceNet CANopen ?WagoDCS控制系统的特点 ●最佳的模块化结构 1-,2-,和4-,8-通道功能被容纳在一个I/O模块里。 ●现场总线节点可以独立于现场总线而设计 ●DCS现场总线适配器支持所有重要的现场总线 ●一个DCS控制器可以包括带有不同电位,电源和信号的数字量/模拟量的输入输出 模块。 ●电源模块带有熔断器或者不带熔断器。如果需要错误信息可以通过总线传输。 ●快捷方便的接线方式,具有高可靠性。 (二)、总线型分散控制系统的硬件特点:

1.Wago 分散控制系统的可组合节点硬件: 1-1 750-841ETHERNET 控制器: 该控制器支持所有I/O 模块自动配置、生产成包括数字量模块、模拟量模块及特殊功能 模块的本地过程映像,模拟量模块和特殊功能模块以字或者字节的形式传输数据,而数字量模块以位的形式传输数据。 - 开关量输入模块 - 开关量输出模块 - 模拟量输入模块 - 模拟量输出模块 - 特殊功能模块

烟气脱硫脱硝行业介绍.docx

1.烟气脱硫技术 由于我国的大部分煤炭、铁矿资源中含硫量较高,因此在火力发电、钢铁、建材生产过程中由于高温、富氧的环境而产生了含有大量二氧化硫的烟气,从而给我国大气污染治理带来了极大的环保压力。 据国家环保部统计,2012年全国二氧化硫排放总量为2117.6万吨,其中工业二氧化硫排放量1911.7万吨,而分解到三个重点行业分别如下:电力和热力生产业为797.0万吨、钢铁为240.6万吨、建材为199.8万吨,三个行业共计1237.4万吨达到整个工业二氧化硫排的64.7%。“十一五”期间,我国全面推行烟气脱硫技术以后,我国烟气脱硫通过近十年的发展,积累了大量的工程实践经验,其中最常用的为湿法、干法以及半干法烟气三种脱硫技术。

1.1湿法脱硫技术 1.1.1石灰石-石膏法 这是一种成熟的烟气脱硫技术,在大型火电厂中,90%以上采用湿式石灰石—石膏法烟气脱硫工艺流程。该工艺采用石灰石(即氧化钙)浆液作为脱硫剂,与烟气中的二氧化硫发生反应生产亚硫酸钙,亚硫酸钙与氧气进一步反应生产硫酸钙。硫酸钙经过过滤、干燥后形成脱硫副产品石膏。 这项工艺的关键在于控制烟气流量和浆液的pH值,在合适的工艺条件下,即使在低钙硫比的情况下,也能保持较高的脱硫效率,通常可以达到95%以上。但是该工艺流程复杂且需要设置废水处理系统,因而工程造价高、占地面积大。同时,由于石灰石浆液的溶解性较低,即使通过调节了浆液pH值提高了石灰石的溶解度,但是在使用喷嘴时由于压力的变化,仍然容易发生堵塞喷嘴的情况并且易磨损设备,因而大幅度增加了脱硫设施后期的运营维修费用。 同时由于脱硫烟气中的粉尘成分复杂,在采用石灰石-石膏法时生成的脱硫石膏的杂质含量较多,在石灰石资源丰富的我国,这种品质有限的脱硫石膏很难具有利用价值,通常只能采用填埋进行处理。为了解决这一问题,有企业采用白云石(即氧化镁)作为脱硫剂来替代石灰石,从而使脱硫副产品由石膏变为了七水硫酸镁,而七水硫酸镁由于其水溶性高易于提纯,因而可以制成为合格品质的化学添加剂或化肥使用,其经济价值要远高于脱硫石膏。但是与其相关对的是脱硫剂白云石的成本也远高于石灰石,给企业后期运营成本也带来较大的压力。

脱硫系统简介

石灰石湿法脱硫分为:烟气系统,吸收塔系统,制备系统,废水处理系统,石膏脱水 系统,公用系统,工艺水系统,事故排放系统。 1.烟气系统: 烟道 烟道包括必要的烟气通道、冲洗和排放漏斗、膨胀节、法兰、导流板、垫片、螺栓材料以及附件。 进出口挡板门为电动单轴单百叶挡板门,在FGD系统运行时打开。旁路挡板为电动单 轴双叶片百叶窗式挡板门,在FGD系统运行时关闭。当FGD系统停运、事故或维修时,入口挡板和出口挡板关闭,旁路挡板全开,烟气通过旁路烟道经烟囱排放。 2.吸收塔的概述 吸收塔为空塔结构,钢结构圆柱体,内衬玻璃鳞片. 吸收塔系统就FGD系统的核心部分,其只要功能就吸收烟气中SO2,最终的反应产物是(CaSO4 .2H2O).同时也是可以吸收烟气中的其它污染物质,如飞灰、SO3、HCI、HF等。SO2吸收系统主要设备包括吸收塔,循环泵,氧化风机和石膏排浆泵。 吸收塔内可分为三个区域:吸收区、氧化区、中和区 吸收塔重要的参数包括:浆液PH值和浆液密度。最佳的PH值在5.2---5.8之间。 低于这个范围,则脱硫反应无法进行;高于这个范围,则氧化反应会停止,此时浆液池中产生了大量的亚硫酸盐CaSO3 . H2O,使得石灰石也无法溶解,同样也会阻碍脱硫反应的进行。遇到PH过高的情况时,可以暂时停止加入石灰石,使得PH 值降低,亚硫酸盐会再次转换成石膏。PH值过高的另一个缺点是石灰石同石膏一同排出吸收塔,造成石灰石的浪费,这将导致运行成本的增加。此外,石膏中混入太多的石灰石不利于石膏的综合利用。按照使用标准,干石膏内的石灰石含量应控制在2%以内。 烟气从吸收塔烟气净化区域底部进入,上升,被逆流而下的石灰石浆液冲洗净化。这些浆液来自吸收塔顶部的4个喷淋层。每个喷淋层喷洒吸收塔浆液池表面的浆液。每个喷淋层都备有一个单独的循环泵。吸收塔内除了喷淋层外,净化区没有其它管道。

烟气脱硫基本原理及方法

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。

目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

四种脱硫方法工艺简介

一、石灰石/石灰-石膏法脱硫工艺 一)、工作原理 石灰石/石灰-石膏法烟气脱硫采用石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应从而被脱除,最终反应产物为石膏。 二)、反应过程 1、吸收 SO 2+ H 2 O—>H 2 SO 3 SO 3+ H 2 O—>H 2 SO 4 2、中和 CaCO 3+ H 2 SO 3 —>CaSO 3 +CO 2 + H 2 O CaCO 3+ H 2 SO 4 —>CaSO 4 +CO 2 + H 2 O CaCO 3+2HCl—>CaCl 2 +CO 2 + H 2 O CaCO 3+2HF—>CaF 2 +CO 2 + H 2 O 3、氧化 2CaSO 3+O 2 —>2 CaSO 4 4、结晶 CaSO 4+ 2H 2 O—>CaSO 4 〃2H 2 O 三)、系统组成 脱硫系统主要由烟气系统、吸收氧化系统、石灰石/石灰浆液制备系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。 四)、工艺流程 锅炉/窑炉—>除尘器—>引风机—>吸收塔—>烟囱 来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。系统一般装3-5台浆液循环泵,每台循环泵对应一层雾化喷淋层。当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。吸收SO 2 后的浆液进入循环氧化区,在循环氧化区中,亚硫酸钙被鼓入的空气氧化成石膏晶体。同时,由吸收剂制备系统向吸收氧化系统供给新鲜的石灰石浆液,用于补充被消耗掉的石灰石,使吸收浆液保持一定的pH值。反应生成物浆液达到一定密度时排至脱硫副产品系统,经过脱水形成石膏。 五)、工艺特点 1、脱硫效率高,可保证95%以上; 2、应用最为广泛、技术成熟、运行可靠性好; 3、对煤种变化、负荷变化的适应性强,适用于高硫煤; 4、脱硫剂资源丰富,价格便宜; 5、可起到进一步除尘的作用。 六)、应用领域 燃煤发电锅炉、热电联产锅炉、集中供热锅炉、烧结机、球团窑炉、焦化炉、玻璃窑炉等烟气脱硫。 友情提示:该工艺应用最为广泛,技术成熟,对烟气负荷、煤种变化适应性好,脱硫效率高,对于高硫煤和环保排放要求严格的工况尤为适合,但系统相对复杂,投资费用较高,烟囱需要进行防腐处理。

电厂脱硫脱硝培训试题

电厂烟气脱硫试题 一、选择题(每小题2分,共20分,选出唯一正确的选项) 1湿法石灰石石膏脱硫过程的化学反应主要包括() A、SO2的吸收 B、石灰石的溶解 C、亚硫酸钙的氧化与二水硫酸钙的结晶 D、石膏脱水 2湿法石灰石石膏脱硫系统主要组成不包括() A、烟气系统与吸收系统 B、石灰石浆液制备系统与石膏脱水系统 C、工艺水和压缩空气系统 D、事故浆液系统与吸收剂再生系统 3湿法石灰石石膏脱硫技术主要采用的吸收塔型式中最为流行的是() A、喷淋空塔 B、填料塔 C、液柱塔 D、鼓泡塔 4湿法石灰石石膏脱硫工艺的主要特点有() A、脱硫效率高但耗水量大 B、钙硫比低且吸收剂来源广及格低 C、煤种适应性好 D、副产品不易处理易产生二次污染 5下面属于湿法石灰石石膏脱硫系统中采用的主要防腐技术有() A、玻璃鳞片或橡胶衬里 B、陶瓷/耐酸转 C、碳钢+橡胶衬里/合金 D、碳钢+玻璃鳞片/合金 6 我国的湿法石灰石石膏脱硫系统将逐渐取消GGH对净化后烟气再热的原因不包括() A、强制燃烧低硫煤 B、GGH本身的腐蚀令人头疼 C、脱硫技术的巨大进步 D、从经济性考虑 7湿法石灰石石膏脱硫系统会停止运行(保护动作停)的原因中不包括() A、入烟温高于设定的160℃或者锅炉熄火 B、循环泵全部停或者6kv电源中断 C、进出口挡板未打开和增压风机跳闸 D、出现火灾事故或者除雾器堵塞 8 脱硫效率低的故障现象可能发生的原因中不包括() A、SO2测量不准 B、pH值测量不准 C、液气比过低 D、除雾器结垢 9. 按有无液相介入对烟气脱硫技术进行分类,大致可分为() A、湿法、半干法、干法、电子束法和海水法 B、钙法、镁法、氨法和钠法 C、炉前法、炉中法和炉后法 D、物理法、化学法、生物法和物理化学法

烟气脱硫系统构成

烟气脱硫系统构成 1、脱硫废水处理系统 根据招标文件的要求,脱硫废水处理系统处理后的排水出水水质要达到《国家污水综合排放标准》(GB8978-1996)中第二类污染物最高允许排放浓度中的一级标准。 脱硫废水的水质:脱硫废水的水质与脱硫工艺、烟气成分、灰及吸附剂等多种因素有关。脱硫废水的主要超标项目为悬浮物、PH值、汞、铜、铅、镍、锌、砷、氟、钙、镁、铝、铁以及氯根、硫酸根、亚硫酸根、碳酸根等。 2、供水和排放系统 排放系统:FGD岛内设置一个公用的事故浆液箱,事故浆液箱的容量应该满足单个吸收塔检修排空时和其他浆液排空的要求,并作为吸收塔重新启动时的晶种。 供水系统:从电厂供水系统引接至脱硫岛的水源,提供脱硫岛工业和工艺水的需要。 3、浆液制备与供给系统 由汽车运来的脱硫原料卸至浆液制备区域的地斗,通过斗提机送入贮仓(贮仓的容量按需要的耗量设计),贮仓出口由皮带称重给料机送入湿式磨机,研磨后的脱硫原料进入磨机浆液循环箱,经磨机浆液循环泵送入旋流器,合格的浆液自旋流器溢流口流入浆液箱,不合格的从旋流器底流再送入磨机入口再次研磨。 4、O2吸收系统 烟气由进气口进入吸收塔的吸收区,在上升过程中与浆液逆流接触,烟气中所含的污染气体绝大部分因此被清洗入浆液,与浆液中的悬浮微粒发生化学反应而被脱除,处理后的净烟气经过除雾器除去水滴后进入烟道。 5、烟气系统 从锅炉来的热烟气经增压风机增压后进入烟气换热器(GGH)降温侧,经GGH冷却后,烟气进入吸收塔,向上流动穿过喷淋层,在此烟气被冷却到饱和温度,烟气中的SO2被浆液吸收。除去SOX及其它污染物的烟气经GGH加热至80℃以上,通过烟囱排放。

脱硫吸收塔SO2吸收系统

共享知识分享快乐 第三章SO 2吸收系统 3. 1、系统简介 SO2吸收系统是整个脱硫装置的核心系统,对烟气除去SO等有害成分的过程主要在这个系统完 成。本系统主要是由吸收塔、浆液循环泵、除雾器、吸收塔搅拌器及氧化风机等组成。石灰石- 石膏湿法烟气脱硫是由物理吸收和化学吸收两个过程组成。在物理吸收过程中SQ溶解于吸收剂 中,只要气相中被吸收气体的分压大于液相呈平衡时该气体分压时,吸收过程就会进行,吸收过程取决于气-液平衡,满足亨利定律。由于物理吸收过程的推动力很小,所以吸收速率较低。 而化学吸收过程使被吸收的气体组分发生化学反应从而有效地降低了溶液表面上被吸收气体的 分压,增加了吸收过程的推动力,吸收速率较快。FG[反应速率取决于四个速率控制步骤,即SQ 的吸收、HSO氧化、石灰石的溶解和石膏的结晶。 3.2、吸收反应原理 3.2.1、物理过程原理 SQ吸收是从气相传递到液相的相间传质过程。对于吸收机理以双膜理论模型的应用较广, 双膜理论模型如图所示。图中p表示SQ在气相主体中的分压,p表示在界面上的分压,c和e 则分别表示SC2组分在液相主体及界面上的浓度。把吸收过程简化为通过气膜和液膜的分子扩 散,通过两层膜的分子扩散阻力就是吸收过程的总阻力。 气体吸收质在单位时间内通过单位面积界面而被吸收剂吸收的量称为吸收速率。根据双膜 理论,在稳定吸收操作中,从气相传递到界面吸收质的通量等于从界面传递到液相主体吸收质 的通量。吸收传质速率方程一般表达式为:吸收速率=吸收推动力x吸收系数,或者吸收速率=吸收推动力/吸收阻力。吸收系数和吸收阻力互为倒数。

共享知识分享快乐 3.2.2 、化学过程原理 321.1 、SQ、SQ和HCI 的吸收: 烟气中的SQ和SQ与浆液液滴中的水发生如下反应: —+ SQ + H2Q T HSQ3 + H SQ3 + H2Q T H 2SQ HCI 遇到液滴中的水即可迅速被水吸收而形成盐酸。 3.2.1.2 、与石灰石反应 浆液水相中的石灰石首先发生溶解,吸收塔浆池中石灰石溶解过程如下 CaCQ3 + H 2Q t Ca2+ + HCQ3—+ QH— 水中石灰石的溶解是一个缓慢的过程,其过程取决于以下几个因素: a. 固态石灰石颗粒的颗粒尺寸。颗粒细小的石灰石粉要比颗粒粗大的石灰石粉溶解要快。 b. 石灰石的反应率。活性石灰石的溶解率要比没有活性的石灰石溶解率要快。 c.吸收塔浆液的pH值。pH值越低,石灰石溶解得越快。 高的pH值对酸性气体的脱除效率有利,但是不利于石灰石的溶解。 的脱除效率,但是有利于石灰石的溶解。 SQ2、SQ3、HCI 等与石灰石浆液发生以下离子反应: 2+ — Ca2+ + HCQ3—+ QH—+ HSQ3—+ + 2H + 2+ — t Ca 2+ + HSQ + CQ 2 f +2H2Q 氧化反应:2HSQ3—+ Q2 t2SQ42—+ 2H + Ca2+ + HCQ3—+ QH —+ SQ42— + 2H +t Ca 2+ + SQ 42— + CQ2 f +2H2Q Ca2+ + HCQ3—+ QH—+ 2H+ + 2CI —t Ca 2+ + 2CI —+ CQ2f+ 2H 2Q 经验显示,吸收剂浆液的pH值控制在5.5?6.0之间,pH值为5.6时最佳,此时酸性气 体的脱除率和石灰石的溶解速度都很高。吸收塔浆液池中的pH值是通过调节石灰石浆液的投放 量来控制的,而加入塔内的新制备石灰石浆液的量取决于预计的锅炉负荷、SQ含量以及实际的吸收塔浆液的pH值。 3.2.1.3 、氧化反应通入吸收塔浆液池内的氧气将亚硫酸氢根氧化成硫酸根: —2—+ 2HSQ3—+ Q2 t 2SQ42—+ 2H + 3.2.1.4 、石膏形成: Ca2+ + SQ 42—+ 2H 2Q t CaSQ4 ? 2H2Q 石膏的结晶主要发生在吸收塔浆液池内,浆液在吸收塔内的停留时间、通入空气的体积和方式 低的pH值不利于酸性气体

烟气脱硫技术方案

烟气脱硫工程设计方案 二〇〇九年七月

目录 第一章概述 (1) 1.1 设计依据 (1) 1.2 设计参数 (1) 1.3 设计指标 (1) 1.4 设计原则 (1) 1.5 设计范围 (2) 1.6 技术标准及规范 (2) 第二章脱硫工艺概述 (4) 2.1 脱硫技术现状 (4) 2.2 工艺选择 (5) 2.3 本技术工艺的主要优点 (9) 2.4 物料消耗 (10) 第三章脱硫工程内容 (13) 3.1 脱硫剂制备系统 (12) 3.2 烟气系统 (12) 3.3 SO 吸收系统 (13) 2 3.4 脱硫液循环和脱硫渣处理系统 (15) 3.5 消防及给水部分 (17) 3.6 浆液管道布置及配管 (17) 3.7 电气系统 (17) 3.8 工程主要设备投资估算及构筑物 (18) 第四章项目实施及进度安排 (19) 4.1 项目实施条件 (19) 4.2 项目协作 (19) 4.3 项目实施进度安排 (19) 第五章效益评估和投资收益 (20)

5.1 运行费用估算统 (21) 5.2 经济效益评估 (21) 5.3 环境效益及社会效益 (21) 第六章结论 (22) 6.1 主要技术经济指标总汇 (22) 6.2 结论 (22) 第七章售后服务 (23) 附图1 脱硫系统工艺流程图24

第一章概述 1.1设计依据 根据厂方提供的有关技术资料及要求为参考依据,并严格按照所有相关的设计规范与标准,编制本方案: §《锅炉大气污染物排放标准》GB13271-2001; §厂方提供的招标技术文件; §国家相关标准与规范。 1.2设计参数 本工程的设计参数,主要依据招标文件中的具体参数,其具体参数见表1-1。 表1-1 烟气参数 1.3设计指标 设计指标严格按照国家统一标准治理标准和业主的招标文件的要求,设计参数下表1-2。 表1-2 设计指标 1.4设计原则 §认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准。 §选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。

脱硫系统存在问题与解决方案

目录 1.脱硫概述 2.脱硫系统存在的问题 3.脱硫系统已改造的项目 4.脱硫系统以后下一步打算 一:脱硫概述 上都电厂现有4×600MW空冷机组,编号为1号机(炉)、2号机(炉)、 3号机(炉)、4号机(炉).烟气脱硫工程FGD按4台机组统一规划。工程对1-4号炉进行100%烟气脱硫,锅炉额定出力为2070t/h。分二期工程建造。一、二期脱硫工程相继于2006年11月和2007年12月投运。一期工程由博奇公司以总承包的方式设计、安装,一期脱硫工程采用比较成熟的日本川崎石灰水-石膏湿式烟气脱硫工艺,采用一炉一塔脱硫装置。脱硫率不小于95%。二期工程由三融公司以总承包的方式设计、安装,二期脱硫工程采用比较成熟的德国比晓芙石灰水-石膏湿式烟气脱硫工艺,采用一炉一塔脱硫装置。脱硫率不小于95%。一二期脱硫自投产以来从设计到安装都存在一些问题,经过对设备及系统的改造和治理,脱硫系统基本可以运行。但是要达到安全、经济、稳定运行还有一定的差距,还需我们进一步对设备及系统进行改造和治理。

现在我们厂1-4号脱硫维护均由博奇公司承包,材料由上都电厂供应,电厂负责监督和考核。 承包方在脱硫岛EPC围提供1-4号炉整套石灰石—石膏湿法全烟气脱硫装置及1-4号炉公用设施(石灰石浆液制备、石膏脱水处理、供电系统和DCS控制系统等)的设计安装,1-4号炉公用设施的土建工程一次建成。脱硫系统至少包括以下部分: —烟气(再热)系统 —湿式吸收塔系统装置 —石灰石称重、卸料、破碎、储存系统 —石灰石浆液制备系统 — FGD石膏脱水及贮存系统 —石膏浆液排空及回收系统 —工艺水供应系统 —废水排放系统 —脱硫岛围的钢结构、楼梯和平台 —保温和油漆 —检修起吊设施

电厂烟气脱硫试题【最新版】

电厂烟气脱硫试题 一、选择题(每小题2分,共20分,选出唯一正确的选项) 1湿法石灰石石膏脱硫过程的化学反应主要包括() A、SO2的吸收 B、石灰石的溶解 C、亚硫酸钙的氧化与二水硫酸钙的结晶 D、石膏脱水 2湿法石灰石石膏脱硫系统主要组成不包括() A、烟气系统与吸收系统 B、石灰石浆液制备系统与石膏脱水系统 C、工艺水和压缩空气系统

D、事故浆液系统与吸收剂再生系统 3湿法石灰石石膏脱硫技术主要采用的吸收塔型式中最为流行的是() A、喷淋空塔 B、填料塔 C、液柱塔 D、鼓泡塔 4湿法石灰石石膏脱硫工艺的主要特点有() A、脱硫效率高但耗水量大 B、钙硫比低且吸收剂来源广及格低 C、煤种适应性好 D、副产品不易处理易产生二次污染

5下面属于湿法石灰石石膏脱硫系统中采用的主要防腐技术有() A、玻璃鳞片或橡胶衬里 B、陶瓷/耐酸转 C、碳钢+橡胶衬里/合金 D、碳钢+玻璃鳞片/合金 6我国的湿法石灰石石膏脱硫系统将逐渐取消GGH对净化后烟气再热的原因不包括() A、强制燃烧低硫煤 B、GGH本身的腐蚀令人头疼 C、脱硫技术的巨大进步 D、从经济性考虑

7湿法石灰石石膏脱硫系统会停止运行(保护动作停)的原因中不包括() A、入烟温高于设定的160℃或者锅炉熄火 B、循环泵全部停或者6kv电源中断 C、进出口挡板未打开和增压风机跳闸 D、出现火灾事故或者除雾器堵塞 8脱硫效率低的故障现象可能发生的原因中不包括() A、SO2测量不准 B、pH值测量不准 C、液气比过低 D、除雾器结垢 9. 按有无液相介入对烟气脱硫技术进行分类,大致可分为()

CAD发电厂烟气脱硫 6.14修改版

Hunan Institute of Technology 课程设计 某发电厂烟气除尘脱硫工艺设计 系部:安全与环境工程学院 学生姓名:吴佳斌屈仁安陈磊孙祥 指导教师:杨丽 专业:环境工程 班级:环境1201班 完成时间:2015年6月

设计从某发电厂烟气脱硫技术着手,主要根据国家大气污染物排放标准,设计适合中国国情的湿法除尘脱硫技术。通过对比分析脱硫除尘工艺:湿法、半干法、干法和脱硫吸收器等确定了湿式石灰石/石灰一石膏法工艺为某发电厂烟气除尘脱硫工艺设计。该工艺投资少、占地面积小、运行费用低、系统运行可靠性高、除尘脱硫效率高,完全达到了国家环保标准。本文首先对烟气除尘方式及设备作了确定;然后对各种脱硫方式及其研究现状进行了简单的介绍;对简易石灰石/石膏湿法脱硫系统进行了简单的设备选型计算及选型,并对系统进行了总体布置设计。 关键字烟气除尘脱硫;湿式石灰石/石灰一石膏法

前言 (1) 1 概述 (2) 1.1 设计简介 (2) 1.2 废气中所含污染物种类、浓度及温度 (2) 1.3 设计规模 (2) 1.4 设计范围 (2) 1.5 设计指标 (2) 2 工艺总体方案设计 (3) 2.1 总体设计准则 (3) 2.2 废气处理方法选择 (3) 2.2.1 脱硫方法 (3) 3 烟气系统设计 (4) 3.1 工艺介绍 (4) 3.2 设计原则 (4) 4 烟气脱硫工艺设计 (4) 4.1 SO2吸收系统 (4) 4.1.1 工艺介绍 (4) 4.1.2 设计原则 (5) 4.1.3 设备选型 (5) 5 平面布置与高程布置 (8) 6 结语 (10) 参考文献 (11)

烟气脱硫系统施工方案

23130T/H+13240T/H锅炉烟气脱硫改造工程 施 工 方 案

目录 一、编制依据 二、工程概况和特点 三、施工组织及进度计划 四、作业条件 五、机工具配备 六、设备及材料要求 七、安装工艺和作业程序 八、质量保证体系及技术组织措施 九、安全目标、安全保证体系及技术组织措施 十、施工现场HSE保证措施 十一、施工现场的组织管理措施 十二、计划、统计和信息管理

一、编制依据 二、工程概况 本工程采用三炉两塔的配置方式。烟气脱硫装置整套系统由以下子系统组成:吸收塔系统、烟气系统、石灰石浆液系统、工艺水系统等。 脱硫塔塔本体高90m(含钢烟囱),直径10m,共2只。本脱硫吸收塔安装在水平烟道后部,原有石灰仓保留,水平烟道增加两个开口,用烟道与脱硫吸收塔连接。该工程还包含:事故浆液罐Φ10000mm 1只、石膏排除泵4台、石灰仓1只、吸收塔地坑搅拌器1只、吸收塔地坑泵1台、工艺水箱Φ3000mm 1只、工艺水泵 4台、氧化风机2台、浆液循环泵10台、废水箱Φ2200mm 1只、废水泵2台、滤液水池35003350033500 1只、滤液水泵 2台等。 三、施工组织及进度计划 3.1人力资源需求计划

3.2进度计划安排 3.1吸收塔本体制作计划在 2014 年 7 月底开工,其它分系统安装依据土建交安及设备供货情况安排开工。 四、作业条件 4.1 施工人员 所有施工人员必须经安全技术交底,并在交底单上签字。所有施工人员要熟悉图纸和有关技术要求内容;熟悉作业指导书中的质量要求和质量控制点。作业人员应具有施工经验,特殊工种作业人员(电焊工、起重工、架子工、电工)必须经过专业培训和考试,持有效证件上岗。电焊工上岗前必须进行上岗考核,合格后才允许上岗焊接作业。 4.2 施工场地条件及道路总平布置 厂区和施工区域内主要施工道路,采取永临结合的方式,由业主负责在工程开工前完成,路宽10米。施工道路按混凝土路结合碎石路、临时路结合永久路的思路布置。交通流量大、影响工程顺利实施、文明施工的道路用混凝土路面,其余用泥结碎石路面。 五、机工具配备 5.1机工具配备表

烟气脱硫技术方案

技术方案

2.工艺描述 。烟 24小时计)的吸收剂耗量设计。石灰石浆液制备罐设计满足工艺要求,配置合理。全套吸收剂供应系统满足FGD所有可能的负荷范围。 (3)设备 吸收剂浆液制备系统全套包括,但不限于此:

卸料站:采用浓相仓泵气力输送把石灰石送入料仓。 石灰石粉仓:石灰石粉仓根据确认的标准进行设计,出料口设计有防堵的措施;顶部有密封的人孔门,该门设计成能用铰链和把手迅速打开,并且顶部有紧急排气阀门; :其 能安全连续运行。 在烟气脱硫装置的进、出口烟道上设置密封挡板门用于锅炉运行期间脱硫装置的隔断和维护,旁路挡板门具有快速开启的功能,全开到全关的开启时间≤25s。系统设计合理布置烟道和挡板门,考虑锅炉低负荷运行的工况,并确保净烟气不倒灌。 压力表、温度计等用于运行和观察的仪表,安装在烟道上。在烟气系统中,设有人

孔和卸灰门。所有的烟气挡板门易于操作,在最大压差的作用下具有100%的严密性。我方提供所有烟道、挡板、FGD风机和膨胀节等的保温和保护层的设计。 (1)烟道及其附件 用碳 筋统一间隔排列。加强筋使用统一的规格尺寸或尽量减少加强筋的规格尺寸,以便使敷设在加强筋上的保温层易于安装,并且增加外层美观,加强筋的布置要防止积水。 烟气系统的设计保证灰尘在烟道的沉积不会对运行产生影响,在烟道必要的地方(低位)设置清除粉尘的装置。另外,对于烟道中粉尘的聚集,考虑附加的积灰荷重。 所有烟道在适当位置配有足够数量和大小的人孔门和清灰孔,以便于烟道(包括膨

胀节和挡板门)的维修和检查以及清除积灰。另外,人孔门与烟道壁分开保温,以便于开启。 烟道的设计尽量减小烟道系统的压降,其布置、形状和内部件(如导流板和转弯处 每个挡板的操作灵活方便和可靠。驱动挡板的执行机构可进行就地配电箱(控制箱)操作和脱硫自控系统远方操作,挡板位置和开、关状态反馈进入脱硫自控系统系统。 执行器配备两端的位置限位开关,两个方向的转动开关,事故手轮和维修用的机械联锁。 所有挡板/执行器的全开全关位配有四开四闭行程开关,接点容量至少为

脱硫系统防腐规范标准

脱硫系统防腐技术规书

1 概述 1.1 脱硫系统的塔、罐的地基、外壁、地脚螺栓以及脱硫现场的平台、支架、穿线管、接地线等腐蚀较为严重,已妨碍安全生产,需进行防腐处理。 本技术规书就是对脱硫系统进行防腐处理的技术要求做出规定。 1.2 本技术规书提出的是最低限度的技术要求,并未对一切技术要求做出详细规定,也未充分引述有关标准及规的条文。供方应保证提供符合本技术规书和相关国家有关安全、环保等强制性要求。 如果卖方没有以书面形式对本技术文件的条文提出异议,则意味着卖方提供的设备完全符合本技术文件的要求。如有异议,必须在投标文件技术偏离表中加以详细描述。 所有主材、辅材、油漆均由乙方提供,甲方只负责提供施工需要的电源。 1.3 在签订合同之后,需方有权提出因规标准和规程发生变化而产生的一些补充要求,具体项目由供、需双方共同商定。 1.4 本技术规所使用标准如与供方所执行的标准发生矛盾时,按较高要求标准执行。 2 有关标准 《涂装前钢质表面腐蚀和除锈等级》GB/T8923-88 《建筑工程施工质量验收统一标准》GB50300-2001 《钢结构防腐涂装工艺标准》GB508-1996 《钢结构工程施工及验收规》GB50205-2001 《电力建设施工及验收技术规》(火力发电厂化学篇)DLJ 58-81 《工业设备、管道防腐蚀工程施工及验收规》HGJ229—1991 《化工设备、管道外防腐设计规定》HG/T20679—1990 《防腐涂层涂装技术规》HG/T4077—2009

3 工程围 3.1 工作容 脱硫现场防腐工程工作容如下: (1)脱硫塔外壁1米以下(含地脚螺栓及基座); (2)亚铵罐、氨水罐外壁整体(含地脚螺栓及基座); (3)循环水罐外壁(含地脚螺栓及基座,需拆除保温,完工后恢复);(4)脱硫现场的钢制管道外壁及平台、支架; (5)过滤机支架; (6)脱硫现场所有泵的地基、穿线管、接地线; (7)三效蒸发系统的底部支架、出料泵平台、楼梯及扶手; (8)控制楼东部楼梯; (9)控制楼二楼干燥机外壁及下料管。 3.2 工作量统计 脱硫现场防腐工程工作量如下: (1)脱硫塔 混凝土基座面积:36.5㎡ 底部喷涂面积:30㎡ 地脚架面积:0.38㎡/组×55组=21㎡ (2)亚铵罐 混凝土基座面积:9.5㎡ 本体喷涂面积:86.6㎡ 地脚架面积:0.24㎡/组×8组=1.9㎡ (3)氨水罐、循环水罐 混凝土基座面积:14㎡ 本体喷涂面积:452.4㎡ 地脚架面积:0.16㎡/组×28组=4.5㎡

氨法脱硫工艺及操作运行简述

本工程项目是为动力中心配备一套完整的氨法脱硫工艺系统,一炉一塔配置,采用塔内结晶方式,塔外配置湿式电除尘器。主要工艺系统包括:烟气系统、脱硫塔系统、塔顶湿式电除尘器系统、吸收剂储存及供应系统、硫铵后处理系统、氯离子控制及油灰分离系统、事故排放系统等。 1工艺简介 1.1 烟气系统简介 脱硫烟气系统的主要作用是进行脱硫装置的投入和切除,为脱硫运行提供烟气通道。 烟气系统包括以下设备及其系统:烟道、净烟气挡板门,挡板门密封风系统、非金属补偿器、脱硫塔、湿式电除尘器等。 原烟气从脱硫入口烟道先进入反应塔浓缩段,对热烟气进行喷淋降温,同时热烟气对硫铵浆液进行蒸发浓缩。降温后的烟气经浓缩段除雾器后进入吸收段进行脱硫反应,经脱硫吸收后的烟气进入水洗段,通过水洗除去烟气中携带的微小硫铵晶体及氨逃逸,水洗后的净烟气进入塔外湿式电除尘器,经湿电出去剩余的粉尘、气溶胶、液滴后进入烟囱排放。 1.2 脱硫塔系统简介 烟气进入脱硫塔浓缩段后,经洗涤、降温至50-60 ℃后进入脱硫塔吸收段烟气自下而上与喷淋液逆流接触反应,生成的(NH4)2SO3 落入吸收液收集托盘进入循环浆液箱。为氧化循环浆液箱浆池内的亚硫酸氨,设置了氧化空气系统,本脱硫系统共配有六台氧化风机(四用两备)。氧化空气经氧化风分布管注入循环浆液箱浆池,对中间产物进行强制氧化生成脱硫副产品硫铵

(NH4)2SO4。氨气通过氧化风管、氧化喷枪供给系统。 经过脱硫吸收后的净烟气,进入水洗段,通过水洗喷淋通过部分气溶胶和氨逃逸,再进入湿电系统。循环浆液箱循环液经循环泵输送至喷淋层,在喷嘴处雾化成细小的液滴,自上而下地落下。在液滴落回吸收液收集托盘的过程中,实现了对烟气中的二氧化硫、三氧化硫、氯化氢和氟化氢等酸性成份的吸收过程。硫铵溶液经浓缩泵送入脱硫塔浓缩段,洗涤高温烟气,使烟气温度降到50-60 ℃,经浓缩泵循环喷淋,反复蒸发浓缩,最后形成固含量约10%-20%的硫铵溶液去硫铵缓冲箱。按设计条件,循环浆液箱的pH为 5.5 ~6,如果氨加入过量,脱硫塔喷淋液中游离氨较多,其pH值将大于6,造成浪费;如果供氨量不足,脱硫塔喷淋液中含硫酸氢铵,pH小于 5.5 ,此时脱硫效率将降低。因此,根据喷淋液的pH值,可调节氨的加入量。由浓缩段排出的硫铵溶液pH值在3~4左右。 为防止脱硫塔浓缩段浆液混入循环箱,造成循环箱浆液密度升高,脱硫效率下降,脱硫塔浓缩段设置一级除雾器,设置二层喷淋层冲洗、降温烟气,浆液自身得到蒸发浓缩,脱硫塔吸收段设置二级除雾器、二层喷淋层。由于浓缩段浆液中正常运行期间存在硫铵晶体,为防止硫铵晶体沉淀形成大晶块,同时也为给硫铵晶体颗粒与过饱和浆液充分接触从而长大创造条件,防止浆池中浆液密度不均匀,在浓缩段底部设置脉冲悬浮泵进行搅拌。 正常运行期间,通过CEM在S 线监测净烟气出口SO2含量、温度、压力等参数,并通过调节氨加入量、增减浆液循环泵投入量来控制脱硫效率、净烟气中SO2的含量、氨的逃逸率、脱硫塔浆液PH值等。 脱硫塔浓缩段出口温度高于70℃时报警,并自动打开事故冷却水排放

14种燃煤电厂烟气脱硫技术

14种燃煤电厂烟气脱硫技术 国内外已经建成的烟气脱硫设施以燃煤电厂居多,脱硫技术的研究也以电厂为主,石油炼化企业脱硫技术研究可在一定程度上借鉴电厂烟气脱硫已有的成熟技术。目前,按副产物的形态,烟气脱硫技术可分为湿法、干法、半干法三种。 湿法烟气脱硫技术(WFGD) 吸收剂在液态下与SO2反应,脱硫产物也为液态。该法脱硫效率高、运行稳定,但投资和运行维护费用高、系统复杂、脱硫后产物较难处理、易造成二次污染。 湿法烟气脱硫技术优点:湿法烟气脱硫技术为气液反应,反应速度快、脱硫效率高,一般均高于90%,技术成熟、适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的 80% 以上。缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高、系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 石灰石/石灰-石膏法 是利用石灰石或石灰浆液吸收烟气中的 SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaO3S)可以抛弃,也可以氧化为硫酸钙( CaSO4),以石膏形式回收。这是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到 90% 以上。 间接石灰石-石膏法 常见的间接石灰石-石膏法有: 钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理: 钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收 SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 柠檬吸收法

火电厂烟气脱硝工艺特点及工作原理概述

火电厂烟气脱硝工艺特点及工作原理概述 一、工作原理 电厂脱硫设备采用石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。脱硫处理技术在吸收塔内,吸收浆液与烟气触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应从而被脱除,最终反应产物为石膏。 二、系统组成 脱硫系统主要由烟气系统、吸收氧化系统、石灰石/石灰浆液制备系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分成。 三、工艺流程 锅炉/窑炉—>除尘器—>引风机—>吸收塔—>烟囱 来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。系统一般装3-5台浆液循环泵,每台循环泵对应一层雾化喷淋层。当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。吸收SO2后的浆液进入循环氧化区,在循环氧化区中,亚硫酸钙被鼓入的空气氧化成石膏晶体。同时,由吸收剂制备系统向吸收氧化系统供给新鲜的石灰石浆液,用于补充被消耗掉的石灰石,使吸收浆液保持一定的pH值。反应生成物浆液达到一定密度时排至脱硫副产品系统,经过脱水形成石膏。 四、工艺特点 1、脱硫效率高,可保证95%以上; 2、技术成熟、运行可靠性好; 3、对煤种变化、负荷变化的适应性强,适用于高硫煤; 4、脱硫剂资源丰富,价格便宜。

脱硫系统描述

脱硫系统描述 FGD系统及工艺描述 FGD采用单回路循环、塔内氧化方式的湿式石灰-石膏法工艺。 吸收塔由液柱塔(DCFS)及设置在塔底氧化中和槽组成,未处理的烟气经引风机通过塔底部直接进 入脱硫塔,烟气和石灰石浆液在浆液喷射区域接触反应,脱除烟气中的二氧化硫后,流经除雾器,除 去烟气中的雾滴后进入烟囱。浆液由设置在吸收塔 的母管上的多个构造简单的喷嘴向上喷出后形成 了所谓的液柱。 石灰石浆液和烟气接触,发生中和反应,脱除烟 气中的二氧化硫后,流入吸收塔底槽内。SO2被鼓入槽内的空气最大限度的氧化成HSO3-,再氧化成SO42-。SO42-与石灰石浆液中的CaCO3反应形成二水石膏(CaSO4.2H2O)浆液。 石灰石仓中的石灰石由石灰石称重给料机送至 石灰石研磨系统,生成重量浓度为30%的吸收浆液。 制备好的石灰石浆液被送到吸收塔中,烟气中的 SO2经过吸收氧化,形成石膏浆液。 从吸收塔抽出的石膏浆液被直接送至真空皮带 脱水机。经过脱水后的石膏经过石膏皮带输送机送 至石膏储存仓库,之后由铲车装入卡车外运进行再 利用。

三菱的液柱塔由于液柱在上升和下降的过程中,两次与液体接触,与以往的单向向下喷淋脱硫的喷淋塔相比,吸收塔的高度相对较低,由柱,梁组合的钢结构支撑的矩形塔体结构物组成。本工程采用逆流塔方式,结构上可以在吸收塔上部设置烟气换热器(GGH),此种工艺三菱有众多业绩。采用此方式与地面上设置相比,可使烟气系统结构紧凑,降低烟道阻力,将烟道量降为最低,维修容易,最适于FGD场地狭小的工程。 FGD 系统一览图见图1。 图1. FGD 系统一览图

虚线(---)包围的设备属于卖方的供货范围。 三菱FGD系统的优势 采用最适合于高除尘率及脱硫率 的液柱塔技术。三菱的液柱塔充 分考虑了用户便于维修的特点, 蒸汽 未处理的烟气 附属系统仪用空气 氧化空气 工艺水 消防用水 ?消防用水 石灰石原料 石膏 仪用用气 冲洗水 工艺水 烟气出口 口 烟气入口 喷浆管 循环泵

相关文档
最新文档