现代密码学课程设计实验报告 -

现代密码学课程设计实验报告 -
现代密码学课程设计实验报告 -

西安科技大学

《现代密码学》课程设计报告

题目:密码学计算器

学院: 计算机科学与技术学院

班级: 姓名:

学号: 日期: 2015.1.8

一.课程设计题目

密码学计算器的研究与实现

二.分工

对称密码程序实现Des算法组长:

古典密码程序设计(置换)

SHA算法

ECC算法

三.软件运行环境

Windows7操作系统visual C++

四.算法设计思想

1.古典密码置换算法

置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现明文信息的加密。置换密码又称为换位密码。

矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给定的顺序安排在一个矩阵中,然后又根据密钥提供的顺序重新组合矩阵中的字母,从而形成密文。例如,明文为 attack begins at five ,密钥为 cipher ,将明文按照每行6个字母的形式排在矩阵中,形成如下形式:

a t t a c k

b e g i n s

a t f i v e

根据密钥 cipher 中各字母在字母表中出现的先后顺序,得到给定的一个置换:

f = 1 4 5 3 2 6

因此有:

密钥: 1 4 5 3 2 6

明文: a t t a c k

b e g i n s

a t f i v e

根据上面的置换,将原有矩阵中的字母按照第1列、第4列、第5列、第3列、第2列、第6列的顺序排列、则有下面的形式:

a a c t t k

b i n g e s

a i v f t e

从而得到密文:abatgftetcnvaiikse

其解密过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。

2.ECC算法

ECC(Elliptic Curves Cryptography)加密算法是一种公钥加密算法,与主流的RSA算法相比,ECC算法可以使用较短的密钥达到相同的安全程度。近年来,人们对ECC

的认识已经不再处于研究阶段,开始逐步进入实际应用,如国家密码管理局颁布的SM2算法就是基于ECC算法的

在引入椭圆曲线之前,不得不提到一种新的坐标系-------射影平面坐标系,它是对笛卡尔直角坐标系的扩展,增加了无穷远点的概念。在此坐标系下,两条平行的直线是有交点的,而交点就是无穷远点。两者的变换关系为:

笛卡尔坐标系中的点a(x,y),令x=X/Z,y=Y/Z,则射影平面坐标系下的点a的坐标为(X,Y,Z),如点(2,3)就转换为(2Z,3Z,Z)。

加法法则

运算法则:任意取椭圆曲线上两点P、Q (若P、Q两点重合,则做P点的切线)做直线交于椭圆曲线的另一点R’,过R’做y轴的平行线交于R。我们规定P+Q=R。(如图)

下面,我们利用P、Q点的坐标(x1,y1),(x2,y2),求出R=P+Q的坐标(x4,y4)。

P,Q,R'共线,设为y=kx+b,

若P≠Q,k=(y1-y2)/(x1-x2)

若P=Q,k=(3x2+2a2x+a4 -a1y) /(2y+a1x+a3)

解方程组得到:

x4=k2+ka1-a2-x1-x2;

y4=k(x1-x4)-y1-a1x4-a3;

3.对称密码DES算法

DES是一个16轮的Feistel型结构密码,它的分组长度为64比特,用一个56比特的密钥来加密一个64比特的明文串,输出一个64比特的密文串。其中,使用密钥为64比特,实用56比特,另8位用作奇偶校验。加密的过程是先对64位明文分组进行初始置换,然后分左、右两部分分别经过16轮迭代,然后再进行循环移位与变换,最后进行逆变换得出密文。加密与解密使用相同的密钥,因而它属于对称密码体制。

图4-3给出了DES过程框图。假设输入的明文数据是64比特。首先经过初始置换IP 后把其左半部分32比特记为L0,右半部分32比特记为R0,即成了置换后的输入;然后把R0与密钥产生器产生的子密钥k1进行运算,其结果计为f (R0,k1);再与L0进行摸2加得到L0○+ f (R0 , k1), 把R0记为L1放在左边,而把L0○+f (R0 , k1)记为R1放在右边,从而完成了第一轮迭代运算。在此基础上,重复上述的迭代过程,一直迭代至第16轮。所得的第16轮迭代结果左右不交换,即L15○+f (R15 , k16)记为R16,放在左边,而R15记为L16放在右边,成为预输出,最后经过初始置换的逆置换IP-1运算后得到密文。

图4-3DES框图

DES的解密过程与加密过程共用了同样的计算过程。两者的不同之处仅在于解密时子密钥k i的使用顺序与加密时相反。如果加密的子密钥k1,k2,…,k16, 那么,解密时子密钥的使用

顺序为与k16,k15,…,k1。即:用DES解密时,将以64位密文作为输入,第一轮迭代使用子

密钥k16;第二轮迭代使用子密钥k15 , … , 第16轮迭代使用子密钥k1, 其他运算与加密时一样,最后输出的便是64位明文。

4.SHA算法

散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。

SHA-1是一种数据加密算法,该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。

单向散列函数的安全性在于其产生散列值的操作过程具有较强的单向性。如果在输入序列中嵌入密码,那么任何人在不知道密码的情况下都不能产生正确的散列值,从而保证了其安全性。SHA将输入流按照每块512位(64个字节)进行分块,并产生20个字节的被称为信息认证代码或信息摘要的输出。

该算法输入报文的长度不限,产生的输出是一个160位的报文摘要。输入是按512 位的分组进行处理的。SHA-1是不可逆的、防冲突,并具有良好的雪崩效应。

通过散列算法可实现数字签名实现,数字签名的原理是将要传送的明文通过一种函数运算(Hash)转换成报文摘要(不同的明文对应不同的报文摘要),报文摘要加密后与明文一起传送给接受方,接受方将接受的明文产生新的报文摘要与发送方的发来报文摘要解密比较,比较结果一致表示明文未被改动,如果不一致表示明文已被篡改。

MAC (信息认证代码)就是一个散列结果,其中部分输入信息是密码,只有知道这个密码的参与者才能再次计算和验证MAC码的合法性。

五.算法设计与分析(含流程图)

该密码学计算器实现了四个功能,其中两个:

(1)古典密码程序设计(置换)

(2)对称密码程序实现(DES)

(3)SHA算法

(4)ECC算法

我负责的是古典密码置换算法,我的思想是:不改变原给字母的字符,只根据所给秘钥改变原给字符串的顺序,从而对明文加密,解密思想与加密一样。

加密核心代码如下:

printf ("请输入需要加密的字符数量(不大于100):");

scanf("%d",&k);

printf("请输入明文(字符串): \n");

for(i=0;i

scanf("%d",&ming[i]);

for(j=0;j

{ l=1;

a=ming[j];

m=1;

for (i=1;i<=e;i++)

m=m*a;

l=m%n;

if (l<0)

l=l+n;

c[j]=l;

}

printf("加密后的密文是:\n");

for(j=0;j

printf("%d",c[j]);

解密核心代码如下:

printf ("请输入需要解密的字符数量(不大于100):");

scanf("%d",&k);

printf("请输入密文(字符串): \n");

for(i=0;i

scanf("%d",&c[i]);

for(j=0;j

m=1;l=1;

a=c[j];

for (i=1;i<=d;i++)

m=m*a;

l=m%n;

if (l<0) //在进行Mod操作时,会出现负数,我进行了+n 操作。

l=l+n;

ming[j]=l;}

printf("解密后的明文是:\n"); for(j=0;j

printf("%d",ming[j]);

1.公钥e 与t 的互素判断函数

Y

N

N Y N

2. Main 函数

开 始

t=x

x=y

y=t%y

y!=1

x==1 返回0

返回1

输出结果

结束

开始

Y N

Y

N

输入p,q

n=p*q

t=(p-1)*(q-1)

输入e

e=1‖‖e>t ‖‖fun(e,t) 不合要求

d=1 d++

(e*d)%t!=1 输出d 输入1

输入2

六.测试结果与分析

加密如下:

解密:

输出结果c[]

输出结果ming[] 输入明文ming[]

输入密文c[]

a=ming[j]; m=a ^e; l=m%n; c[j]=l; a=c[j]; m=a ^d; l=m%n; ming[j]=l;

七.总结

这次课程设计,使我对密码学这门课有了更深刻地理解,也为毕业设计打下了一定的密码学基础。我负责的是古典密码置换算法,在算法编程实现时,确实遇到了出现乱码的以及加密后出现问题,通过和组员的讨论和查资料,解决了这一问题,收获颇多。

八.参考文献

1.杨义先 . 应用密码学. 北京邮电大学出版社. 2005年

2.杨波. 现代密码学.清华大学出版社.2007年

现代密码学实验报告

现代密码学 实验报告 学生姓名 学号 专业班级计算机科学与技术指导教师段桂华 学院信息科学与工程学院完成时间2016年4月

实验一密码算法实验 [实验目的] 1.掌握密码学中经典的对称密码算法AES、RC4的算法原理。 2.掌握AES、RC4的算法流程和实现方法。 [实验预备] 1.AES算法的基本原理和特点。 2.流密码RC4的密钥流生成以及S盒初始化过程。 [实验内容] 1. 分析AES、RC4的实现过程。 2. 用程序设计语言将算法过程编程实现。 3. 完成字符串数据的加密运算和解密运算 输入十六进制明文:11223344556677889900AABBCCDDEEFF 输入十六进制密钥:13579BDF02468ACE1234567890ABCDEF [实验步骤] 1. 预习AES、RC4算法。 2. 写出算法流程,用程序设计语言将算法过程编程实现。 3. 输入指定的明文、密钥进行实验,验证结果。 4. 自己选择不同的输入,记录输出结果。 写出所编写程序的流程图和运行界面、运行结果。 一、AES算法 1、AES算法简介 AES 是一种可用来保护电子数据的新型加密算法。特别是,AES 是可以使用128、192 和 256 位密钥的迭代式对称密钥块密码,并且可以对 128 位(16 个字节)的数据块进行加密和解密。与使用密钥对的公钥密码不同的是,对称密钥密码使用同一个密钥来对数据进行加密和解密。由块密码返回的加密数据与输入数据具有相同的位数。迭代式密码使用循环结构来针对输入数据反复执行排列和置换运算。 2、算法实现及流程 以加密函数为例,如下所示,首先对密钥进行预处理密钥扩展,然后明文进行Nr(Nr与密钥长度有关)次迭代运算,包括字节替换SubBytes、移位行运算ShiftRows、混合列运算MixColumns、以及轮秘钥加密AddRoundKey。

密码学实验报告

密码学实验报告 学院:计算机科学与技术 班级: 学号: 姓名: 指导老师:

密码学 实验日志 实验题目: DES (或AES )分组密码 实验目的: 熟悉分组密码加解密算法的基本原理,加深对所提供的部分源程序的理解; 分组密码将明文分成一组一组,在密钥的控制下,经过加密变换生成一组一组的密文。具体而言,分组密码就是将明文消息序列 ,,,,21i m m m 划分成等长的消息组 ),,,,(),,,,(22121n n n n m m m m m m ++在密钥t k k k k ,,,21 =的控制下按固定的加密算法一组一 组进行加密,输出一组一组密文 ),,,,(),,,,(22121l l l l c c c c c c ++。 下面的实验以DES 算法为例,DES 算法明文分组长为64bit ,加密后得到64bit 的密文,输入初始种子密钥为64bit ,第8、16、24、32、40、48、56、64为奇偶校验位,实际的密钥长为56bit 。DES 加密过程由三个阶段来完成: (1) 初始置换IP ,用于重排明文分组的64bit 数据; (2) 相同结构的16轮迭代,每轮中都有置换和代换运算,第16轮变换的输出分为左右两半,并交换次序。 (3) 逆初始置换IP -1 (为IP 的逆)后,产生64bit 的密文。 实验要求: (1) Windows 系列操作系统; (2) VC6.0编程环境。 (3) 提交完整的程序代码清单和详细的注释; (4) 要求有程序运行结果显示。当加密成功时,得到密文;输入相同的密钥,能将密文恢复成明文。 实验主要步骤: (1) 熟悉分组密码加解密算法的基本原理,加深对所提供的部分源程序的理解; (2) 分析源程序中密码算法的加解密和子密钥生成等典型模块的主要功能,并对源程序加上注释; (3) 在已提供的部分源程序的基础上,添加源程序省缺的部分; (4) 对给定的消息分组进行加解密运算和验证。 源代码: #include #include #include typedef bool (*PSubKey)[16][48]; enum {ENCRYPT,DECRYPT}; //选择:加密;解密 static bool SubKey[2][16][48]; // 16圈子密钥 static bool Is3DES; // 3次DES 标志 static char Tmp[256], deskey[16]; //暂存字符串,密钥串

人机交互技术实验五熟悉设计管理和游戏界面设计

重庆邮电大学移通学院学生实验报告 实验名称:熟悉设计管理和游戏界面设计 专业班级:数字媒体技术 02141401 姓名:罗钧 学号: 2014210xxx 实验日期:

实验五:熟悉设计管理和游戏界面设计 一、实验目的 (1)了解和熟悉人机界面设计过程管理的相关知识; (2)了解和评价游戏软件的人机交互设计,提高自己的评价能力,提高自己对设计水平的。 二、工具/准备工作 需要准备一台带有浏览器,能够访问因特网的计算机。 三、实验内容与步骤 1.概念理解 (1)成功的用户界面开发有4个支柱,它们能够帮助用户界面架构师将好的思想转化为成功的系统。经验表明,每个支柱都能在此过程中产生数量级的加速作用,并能促进建立优秀的系统。 请简单描述这4个支柱。 用户界面需求:软件项目的成败经常取决于所有用户和实现者之间理解的精确性和完整性。如果没有适当的需求定义,那就既不能确定正在解决什么问题,也不会知道何时能够完成。拟定用户界面需求是整个需求开发和管理过程的一部分,系统需求(硬件、软件、系统性能及可靠性等)必须清楚的加以陈述,任何处理用户界面的需求(输入/输出设备、功能、界面及用户范围等)都必须指明并达成共识。一个确定用户需求的成功方法是通过用户观察,监视正在行动的真实用户的背景和环境。 指南文档和过程:指南文档应考虑以下几方面。 1.词、图标和图形 2.屏幕布局问题 3.输入与输出设备 4.动作序列 5.培训 用户界面软件工具:设计交互系统的困难之一,是客户和用户可能对新系统并没有一个清晰的想法。由于在很多情况下交互系统都是新奇的,用户可能认识不到设计决策的用意。虽然打印出来的文稿对初步体验是有帮助的,但具有活动键盘和鼠标的屏幕展示却更为真实。菜单系统的原型可能用一两条活动路径来代替为最终系统预想的数千条路径。 专家评审和可用性测试:现在,网站的设计人员认识到,在将系统交付给客户使用之前,必须对组件进行很多小的和一些大的初步试验。除了各种专家评审方法外,与目标用户一起进行的测试、调查和自动化分析工具被证明是有价值的。其过程依可用性研究的目标、预期用户数量、错误和危害程度和投资规模而变化很大。 (2)请简单描述用户界面设计所涉及的法律问题 ①隐私问题 ②安全性和可靠性

密码学基础课程设计指导书

《现代密码学基础》课程设计指导书 杨柳编 湖南科技大学计算机科学与工程学院 2014年12月

一、概述 本课程在简要复习数学基础知识之后,探讨了密码学研究的基本问题:通过不安全的通信媒介如何进行安全通信。也可以理解为关心任何希望限制不诚实者达到目的的问题,把度量和评价一个密码体制(协议)的安全性作为一个重点。就目前来说,密码学的研究领域已从消息加密扩大到了数字签名、消息认证、身份识别、抗欺骗协议等。无疑,在整个教学过程中非常重视密码学的基础,当然包括数学基础。并针对实际的密码体制(协议)强调设计与分析(攻击),对现代密码学的主要研究问题都进行了介绍。 对于密码学这样的课程,同学们一定要从理论、技术、应用三个方面进行学习与思考。密码体制(协议)无疑是我们的学习重点,密码体制(协议)也可以单纯地理解为计算机算法,从而有设计、分析、证明、实现的问题。实现密码体制(协议)就是我们经常讲的八个字:模型、算法、程序、测试。 二、课程设计步骤 课程设计步骤要求如下: 1.模型 从数学的角度看,解决任何问题都要建立一个数学模型,对于密码学来说更是如此。我们还可以认为,数据结构中的存储结构也是模型。于是这一部分的任务就是建立起问题的逻辑结构和存储结构,为算法设计和编码实现打下基础。 2.算法 这一部分对同学们的要求是能看懂书上的常用算法,并对其中的参数可以进行调整和设置,能实现和应用它们。 3.程序 编码实现得到程序。 4. 测试 5. 提交课程设计报告

三、课程设计报告编写要求 课程设计报告开头标明课程设计题目、设计者的班级、姓名、学号和完成日期,内容包括:模型、算法、程序、测试四个部分。 四、设计要求 可以只做第7题,不做第7题的要做第1题-第6题。 五、课程设计题目 大整数运算包的设计与实现 1.问题描述 大整数运算是现代密码学算法实现的基础,重要性不言而喻。大整数我们指的是二进制位512、1024和2048的数,一般的语言不支持。 2.基本要求 以类库头文件的形式实现。 3.实现提示 在选择了大整数的存储结构之后,主要实现以下运算: ①模加; ②模减; ③模乘; ④模整除; ⑤模取余。这五种运算模拟手算实现。 ⑥幂模:利用“平方-乘法”算法实现。 ⑦GCD:利用欧几里得算法实现。 ⑧乘法逆: 利用扩展的欧几里得算法实现。 ⑨素数判定与生成:概率性素数产生方法产生的数仅仅是伪素数,其缺点在于,

杭电密码学DES密码实验报告

课程实验报告 课程密码学实验 学院通信工程学院 专业信息安全 班级14083611 学号14084125 学生姓名刘博 实验名称DES密码实验 授课教师胡丽琴

DES密码实验 一、实验要求: 1、了解分组密码的起源与涵义。 2、掌握DES密码的加解密原理。 3、用Visual C++实现DES密码程序并输出结果。 二、实验内容: 1、1949年,Shannon发表了《保密系统的通信理论》,奠定了现代密码学的基础。他还指出混淆和扩散是设计密码体制的两种基本方法。扩散指的是让明文中的每一位影响密文中的许多位,混淆指的是将密文与密钥之间的统计关系变得尽可能复杂。而分组密码的设计基础正是扩散和混淆。在分组密码中,明文序列被分成长度为n的元组,每组分别在密钥的控制下经过一系列复杂的变换,生成长度也是n的密文元组,再通过一定的方式连接成密文序列。 2、DES是美国联邦信息处理标准(FIPS)于1977年公开的分组密码算法,它的设计基于Feistel对称网络以及精心设计的S盒,在提出前已经进行了大量的密码分析,足以保证在当时计算条件下的安全性。不过,随着计算能力的飞速发展,现如今DES已经能用密钥穷举方式破解。虽然现在主流的分组密码是AES,但DES的设计原理仍有重要参考价值。在本实验中,为简便起见,就限定DES 密码的明文、密文、密钥均为64bit,具体描述如下: 明文m是64bit序列。 初始密钥K是64 bit序列(含8个奇偶校验bit)。 子密钥K1, K2…K16均是48 bit序列。 轮变换函数f(A,J):输入A(32 bit序列), J(48 bit序列),输出32 bit序列。 密文c是64 bit序列。 1)子密钥生成: 输入初始密钥,生成16轮子密钥K1, K2 (16) 初始密钥(64bit)经过置换PC-1,去掉了8个奇偶校验位,留下56 bit,接着分成两个28 bit的分组C0与D0,再分别经过一个循环左移函数LS1,得到C1与D1,连成56 bit数据,然后经过置换PC-2,输出子密钥K1,以此类推产生K2至K16。

实验报告_密码学

信息安全实验报告 学号: 学生姓名: 班级:

实验三密码学实验 一、古典密码算法实验 一、实验目的 通过编程实现替代密码算法和置换密码算法,加深对古典密码体制的了解,为深入学习密码学奠定基础。 二、编译环境 运行windows 或linux 操作系统的PC 机,具有gcc(linux)、VC (windows)等C语言编译环境。 三、实验原理 古典密码算法历史上曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。 1.替代密码 替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其它字符替代后形成密文。例如:明文字母a、b、c、d ,用D、E、F、G做对应替换后形成密文。 替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替代密码等。下面我们介绍一种典型的单表替代密码,恺撒(caesar)密码,又叫循环移位密码。它的加密方法,就是将明文中的每个字母用此字符在字母表中后面第k个字母替代。它的加密过程可以表示为下面的函数:E(m)=(m+k) mod n 其中:m 为明文字母在字母表中的位置数;n 为字母表中的字母个数;k 为密钥;E(m)为密文字母在字母表中对应的位置数。例如,对于明文字母H,其在字母表中的位置数为8,设k=4,则按照上式计算出来的密文为L:E(8) = (m+k) mod n = (8+4) mod 26 = 12 = L

2.置换密码 置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改 变,从而实现明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的 顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而 形成密文。例如,明文为attack begins at five,密钥为cipher,将明文按照每行 6 列的形式排在矩阵中,形成如下形式: a t t a c k b e g i n s a t f i v e 根据密钥cipher中各字母在字母表中出现的先后顺序,给定一个置换: 1 2 3 4 5 6 f = 1 4 5 3 2 6 根据上面的置换,将原有矩阵中的字母按照第 1 列,第 4 列,第 5 列,第 3 列, 第2列,第 6 列的顺序排列,则有下面形式: a a c t t k b i n g e s a I v f t e 从而得到密文:abatgftetcnvaiikse 其解密的过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。 四、实验内容和步骤 1、根据实验原理部分对替代密码算法的介绍,自己创建明文信息,并选择 一个密钥k,编写替代密码算法的实现程序,实现加密和解密操作。 2、根据实验原理部分对置换密码算法的介绍,自己创建明文信息,并选择一个密钥,编写置换密码算法的实现程序,实现加密和解密操作。 五、总结与思考 记录程序调试过程中出现的问题,分析其原因并找出解决方法。记录最终实现的程序执行结果。

AES密码学课程设计(C语言实现)

成都信息工程学院课程设计报告 AES加密解密软件的实现 课程名称:应用密码算法程序设计 学生姓名:樊培 学生学号:2010121058 专业班级:信息对抗技术101 任课教师:陈俊 2012 年6月7日

课程设计成绩评价表

目录 1、选题背景 (4) 2、设计的目标 (4) 2.1基本目标: (4) 2.2较高目标: (5) 3、功能需求分析 (5) 4、模块划分 (6) 4.1、密钥调度 (6) 4.2、加密 (8) 4.2.1、字节代替(SubBytes) (8) 4.2.2、行移位(ShiftRows) (10) 4.2.3、列混合(MixColumn) (11) 4.2.4、轮密钥加(AddRoundKey) (13) 4.2.5、加密主函数 (14) 4.3、解密 (16) 4.3.1、逆字节替代(InvSubBytes) (16) 4.3.2、逆行移位(InvShiftRows) (17) 4.3.3、逆列混合(InvMixCloumns) (17) 4.3.4、轮密钥加(AddRoundKey) (18) 4.3.5、解密主函数 (18) 5.测试报告 (20) 5.1主界面 (20) 5.2测试键盘输入明文和密钥加密 (20) 5.3测试键盘输入密文和密钥加密 (21) 5.3测试文件输入明文和密钥加密 (22) 5.4测试文件输入密文和密钥加密 (22) 5.5软件说明 (23) 6.课程设计报告总结 (23) 7.参考文献 (24)

1、选题背景 高级加密标准(Advanced Encryption Standard,AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。该算法为比利时密码学家Joan Daemen和Vincent Rijmen所设计,结合两位作者的名字,以Rijndael 之命名之,投稿高级加密标准的甄选流程。(Rijndael的发音近于 "Rhine doll") 严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支援更大范围的区块和密钥长度:AES的区块长度固定为128 位元,密钥长度则可以是128,192或256位元;而Rijndael使用的密钥和区块长度可以是32位元的整数倍,以128位元为下限,256位元为上限。加密过程中使用的密钥是由Rijndael 密钥生成方案产生。大多数AES计算是在一个特别的有限域完成的。 截至2006年,针对AES唯一的成功攻击是旁道攻击 旁道攻击不攻击密码本身,而是攻击那些实作于不安全系统(会在不经意间泄漏资讯)上的加密系统。2005年4月,D.J. Bernstein公布了一种缓存时序攻击法,他以此破解了一个装载OpenSSL AES加密系统的客户服务器[6]。为了设计使该服务器公布所有的时序资讯,攻击算法使用了2亿多条筛选过的明码。有人认为[谁?],对于需要多个跳跃的国际互联网而言,这样的攻击方法并不实用[7]。 Bruce Schneier称此攻击为“好的时序攻击法”[8]。2005年10月,Eran Tromer和另外两个研究员发表了一篇论文,展示了数种针对AES的缓存时序攻击法。其中一种攻击法只需要800个写入动作,费时65毫秒,就能得到一把完整的AES密钥。但攻击者必须在执行加密的系统上拥有执行程式的权限,方能以此法破解该密码系统。 虽然高级加密标准也有不足的一面,但是,它仍是一个相对新的协议。因此,安全研究人员还没有那么多的时间对这种加密方法进行破解试验。我们可能会随时发现一种全新的攻击手段会攻破这种高级加密标准。至少在理论上存在这种可能性。 2、设计的目标 2.1基本目标: (1)在深入理解AES加密/解密算法理论的基础上,能够设计一个AES加密/解密软件系统,采用控制台模式,使用VS2010进行开发,所用语言为C语言进行编程,实现加密解密; (2)能够完成只有一个明文分组的加解密,明文和密钥是ASCII码,长度都为16个字符(也就是固定明文和密钥为128比特),输入明文和密钥,输出密文,进行加密后,能够进

华科大密码学课程设计实验报告

密码学课程设计实验报告 专业:信息安全 班级:0903 姓名:付晓帆 学号:U200915328

一、 DES 的编程实现 1.实验目的 通过实际编程掌握DES 的加、脱密及密钥生成过程,加深对DES 算法的认识。 2.实验原理 a.加密过程 DES 是一个分组密码,使用长度为56比特的密钥加密长度为64比特的明文,获得长度为64比特的密文,其加密过程: (1) 给定一个明文X ,通过一个固定的初始置换IP 置换X 的比特,获得X0,X0=IP(X)=L0R0,L0R0分别是X0的前32比特和后32比特。 (2) 然后进行16轮完全相同的运算,有如下规则,其中0

人机交互实验报告及实验结果

中北大学软件学院 实验报告 专业软件工程 课程名称人机交互 学号 姓名 辅导教师何志英成绩 实验日期2012/3/13实验时间19:00-22:00

1实验名称 试验一:最新人机交互技术 2、实验目的 了解最新人机交互的研究内容 3、实验内容 通过网络查询最新人机交互相关知识。 (1)在百度中找到“最新人机交互视频”的相关网页,查看视频。 (2)什么是Kinect技术。 (3)人机交互技术在各个领域的应用。 4、测试及结果 (1)已在百度中查看“最新人机交互视频”的相关网页。 (2)Kinect是微软在2010年6月14日对XBOX360体感周边外设正式发布的名字。 (3)人机交互技术已成为解决医疗、教育、科研、环保等各类重大社会问题不可或缺的重要工具 5、心得 通过此实验,我了解人机交互技术在社会各个行业的重大作用。辅导教师何志英成绩 实验日期2012/3/13实验时间19:00-22:00 1、实验名称 实验二:立体视觉 2、实验目的 掌握立体视觉的原理

3、实验要求 通过网络查询立体视觉相关知识。 (1)在虚拟环境是如何实现立体视觉? (2)3D和4D电影的工作原理。 4、测试及结果 (1)实物虚化的视觉跟踪技术使用从视频摄像机到x-y平面阵列,周围光或者跟踪光在图像投影平面不同时刻和不同位置上的投影,计算被跟踪对象的位置和方向。 视点感应必须与显示技术相结合,采用多种定位方法(眼罩定位、头盔显示、遥视技术和基于眼肌的感应技术)可确定用户在某一时刻的视线。例如将视点检测和感应技术集成到头盔显示系统中,飞行员仅靠“注视”就可在某些非常时期操纵虚拟开关或进行飞行控制 (2) 4D电影是在3D立体电影的基础上加环境特效模拟仿真而组成的新型影视产品。所谓4D电影,也叫四维电影;即三维的立体电影和周围环境模拟组成四维环境。观众在看立体电影时,顺着影视内容的变化,可实时感受到风暴、雷电、下雨、撞击、喷洒水雾、拍腿等身边所发生与立体影象对应的事件,4D的座椅是具有喷水、喷气、振动、扫腿等功能的,以气动为动力的。环境模拟仿真是指影院内安装有下雪、下雨、闪电、烟雾等特效设备,营造一种与影片内容相一致的环境。 5、心得 通过本次试验,我明白了立体视觉以及3D、4D电影的工作原理。

密码学实验报告模板总结模板计划模板.doc

密码学应用与实践课程实验报告 实验 1:实现 DES密码体制 一、实验目的 1.编写程序实现 DES的加、解 密:1)编程构造 DES的密钥; 2)应用上述获得的密钥将一段英文或文件进行加、解密。 2.用 DES算法实现口令的安全 二、实验内容 1.DES原理 DES综合运用了置换,代换,移位多种密码技术,是一种乘积密码。在算法结构上采用迭代 结构,从而使其结构清晰,调理清楚,算法为对合运算,便于实现,运行速度快。DES使用了初始置换IP 和 IP-1 各一次(相应的置换看算法描述图表)置换P16 次,安排使用这 3 个置换的目的是把数据彻底打乱重排。选择置换 E 一方面把数据打乱重排,另一方面把32 位输入扩展为48 位,算法中除了S- 盒是非线性变换外,其余变换均为显示变换,所以保密 的关键是选择S- 盒。符合以下 3 条准则: (1)对任何一个 S- 盒而言,没有任何线性方程式等价于此S-盒的输出输入关系,即是S- 盒是非线性函数。 (2)改变 s- 盒的任何一位输入,都会导致两位以上的输出改变,即满足" 雪崩效应 " 。(3)当固定某一个位的输入时,S- 盒的 4 个出位之间,其中0 和 1 的个数之差小。这个准 则的本质是数据压缩,把四位输入压缩为 4 位输出。选择 S-盒函数的输入中任意改变数位, 其输出至少变化两位。因为算法中使用了16 次迭代,大大提高了保密性。 2.DES算法由加密、解密和子密钥的生成三部分组成 1)加密 DES算法处理的数据对象是一组64 比特的明文串。设该明文串为m=m1m2m64 (mi=0 或 1) 。明文串经过64 比特的密钥K 来加密,最后生成长度为64 比特的密文E。其加密过程图示如下:

密码学课程设计

一、设计题目 随机数产生器应用系统 二、课题要求 系统功能要求: 1)模拟线性移位寄存器、线性同余发生器等产生伪随机数,并比较算法性能以及伪随机数的随机性; 2)利用该模拟随机数,应用到口令认证系统中,完成口令的生产、口令的加密保护、登陆验证等功能; 3)利用该模拟随机数,应用到密钥生成系统中,可以利用该密钥完成对称密钥的加密和解密功能。 三、系统设计和模块设计 1.总体设计思路 利用线性同余发生器(LCG)和线性反馈移位寄存器(LFSR)生成伪随机数M序列,并通过口令认证系统完成口令生成加密工作,同时完成对随机数的加密和解密功能。 2.模块设计思路 2.1原理 通过一定的算法对事先选定的随机种子(seed)做一定的运算可以得到一组人工生成的周期序列,在这组序列中以相同的概率选取其中一个数字,该数字称作伪随机数,由于所选数字并不具有完全的随机性,但是从实用的角度而言,其随机程度已足够了。这里的“伪”的含义是,由于该随机数是按照一定算法模拟产生的,

其结果是确定的,是可见的,因此并不是真正的随机数。伪随机数的选择是从随机种子开始的,所以为了保证每次得到的伪随机数都足够地“随机”,随机种子的选择就显得非常重要,如果随机种子一样,那么同一个随机数发生器产生的随机数也会一样。 2.2线性同余算法生成随机数 到目前为止,使用最为广泛的随机数产生技术是由Lehmer首先提出的称为线性同余算法,即使用下面的线性递推关系产生一个伪随机数列x1,x2,x3,… 这个算法有四个参数,分别是: a 乘数 0 ≤ a < m c 增量 0 ≤ c< m m 模数 m > 0 ≤ x0 < m x0 初始种子(秘密) 0 伪随机数序列{ xn}通过下列迭代方程得到: xn+1=(axn+c)modm 如果m、a、c和x0都是整数,那么通过这个迭代方程将产生一系列的整数,其中每个数都在0 ≤ xn < m的范围内。数值m、a和c的选择对于建立一个好的伪随机数产生器十分关键。为了形成一个很长的伪随机数序列,需要将m设置为一个很大的数。一个常用准则是将m选为几乎等于一个给定计算机所能表示的最大非负整数。因而,在一个32位计算机上,通常选择的m值是一个接近或等于231的整数。此外,为了使得随机数列不易被重现,可以使用当前时间的毫秒数作为初始种子的位置。 2.2 线性反馈移位寄存器生成随机数 LFSR是指给定前一状态的输出,将该输出的线性函数再用作输入的线性寄存器。异或运算是最常见的单比特线性函数:对寄存器的某些位进行异或操作后作为输入,再对寄存器中的各比特进行整体移位。赋给寄存器的初始值叫做“种子”,因为线性反馈移位寄存器的运算是确定性的,所以,由寄存器所生成的数据流完全决定于寄存器当时或者之前的状态。而且,由于寄存器的状态是有

密码学实验报告(AES,RSA)

华北电力大学 实验报告| | 实验名称现代密码学课程设计 课程名称现代密码学 | | 专业班级:学生姓名: 学号:成绩: 指导教师:实验日期:

[综合实验一] AES-128加密算法实现 一、实验目的及要求 (1)用C++实现; (2)具有16字节的加密演示; (3)完成4种工作模式下的文件加密与解密:ECB, CBC, CFB,OFB. 二、所用仪器、设备 计算机、Visual C++软件。 三. 实验原理 3.1、设计综述 AES 中的操作均是以字节作为基础的,用到的变量也都是以字节为基础。State 可以用4×4的矩阵表示。AES 算法结构对加密和解密的操作,算法由轮密钥开始,并用Nr 表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系如表2所示)。AES 算法的主循环State 矩阵执行1 r N 轮迭代运算,每轮都包括所有 4个阶段的代换,分别是在规范中被称为 SubBytes(字节替换)、ShiftRows(行位移变换)、MixColumns(列混合变换) 和AddRoundKey ,(由于外部输入的加密密钥K 长度有限,所以在算法中要用一个密钥扩展程序(Keyexpansion)把外部密钥 K 扩展成更长的比特串,以生成各轮的加密和解密密钥。最后执行只包括 3个阶段 (省略 MixColumns 变换)的最后一轮运算。 表2 AES 参数 比特。

3.2、字节代替(SubBytes ) AES 定义了一个S 盒,State 中每个字节按照如下方式映射为一个新的字节:把该字节的高4位作为行值,低4位作为列值,然后取出S 盒中对应行和列的元素作为输出。例如,十六进制数{84}。对应S 盒的行是8列是4,S 盒中该位置对应的值是{5F}。 S 盒是一个由16x16字节组成的矩阵,包含了8位值所能表达的256种可能的变换。S 盒按照以下方式构造: (1) 逐行按照升序排列的字节值初始化S 盒。第一行是{00},{01},{02},…,{OF}; 第二行是{10},{l1},…,{1F}等。在行X 和列Y 的字节值是{xy}。 (2) 把S 盒中的每个字节映射为它在有限域GF(k 2)中的逆。GF 代表伽罗瓦域,GF(82) 由一组从0x00到0xff 的256个值组成,加上加法和乘法。 ) 1(] [2)2(3488++++= x x x x X Z GF 。{00}被映射为它自身{00}。 (3) 把S 盒中的每个字节记成),,,,,,,,(012345678b b b b b b b b b 。对S 盒中每个字节的每位 做如下变换: i i i i i i c b b b b b i b ⊕⊕⊕⊕⊕='++++8mod )7(8mod )6(8mod )5(8mod )4( 上式中i c 是指值为{63}字节C 第i 位,即)01100011(),,,,,,,,(012345678=c c c c c c c c c 。符号(')表示更新后的变量的值。AES 用以下的矩阵方式描述了这个变换: ?? ? ?? ? ? ? ? ? ??? ? ????????????+???????????????????????????????????????? ????????????=??????????????????????????0110001111111000011111000011111000011111100011111100011111100011111100017654321076543210b b b b b b b b b b b b b b b b 最后完成的效果如图:

现代密码学-RC4校验 实验报告

现代密码学 实 验 报 告 院系:理学院 班级:信安二班 姓名: 学号:

前言 密码学(Cryptology)是研究秘密通信的原理和破译秘密信息的方法的一门学科。密码学的基本技术就是对数据进行一组可逆的数学变换,使未授权者不能理解它的真实含义。密码学包括密码编码学(Cryptography)和密码分析学(Cryptanalyst)两个既对立又统一的主要分支学科。研究密码变化的规律并用之于编制密码以保护信息安全的科学,称为密码编码学。研究密码变化的规律并用之于密码以获取信息情报的科学,称为密码分析学,也叫密码破译学。 密码学在信息安全中占有非常重要的地位,能够为信息安全提供关键理论与技术。密码学是一门古老而深奥的学问,按其发展进程,经历了古典密码和现代密码学两个阶段。现代密码学(Modern Cryptology)通常被归类为理论数学的一个分支学科,主要以可靠的数学方法和理论为基础,为保证信息的机密性、完整性、可认证性、可控性、不可抵赖性等提供关键理论与技术。

RC4密码算法算法实现 实验目的: 理解流密码的概念及相关结构; 理解并能够编写基本的流密码体制; 熟练应用C/C++编程实现RC4密码算法体制。 实验内容: 编程实现RC4加/解密算法。 实验原理: RC4算法是一种序列密码体制或称流密码体制,其加密密钥和解密密钥相同RC4的 密钥长度可变,但为了确保哪去安全强度,目前RC4至少使用128位的密钥。 用1~256个字节(8~2048位)的可变长度密钥初始化一个256个字节的状态向量S,S的元素记为S[0],S[1],…,S[255],从始至终置换后的S包含从0到255的所有8位数。对于加密和解密,字节K是从S的255个元素中按一种系统化的方式选出的一个元素生成的。每生成一个K的值,S中的元素个体就被重新置换一次。 实验代码: Encrypt.h文件: #ifndef _ENCRYPT_RC4_ #define _ENCRYPT_RC4_ #include

密码学-RSA加密解密算法的实现课程设计报告

密码学课程报告《RSA加密解密算法》 专业:信息工程(信息安全) 班级:1132102 学号:201130210214 姓名:周林 指导老师:阳红星 时间:2014年1月10号

一、课程设计的目的 当前最著名、应用最广泛的公钥系统RSA是在1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出的。 RSA算法是第一个既能用于数据加密也能用于数字签名的算法,因此它为公用网络上信息的加密和鉴别提供了一种基本的方法。它通常是先生成一对RSA 密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册,人们用公钥加密文件发送给个人,个人就可以用私钥解密接受。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。 公钥加密算法中使用最广的是RSA。RSA算法研制的最初理念与目标是努力使互联网安全可靠,旨在解决DES算法秘密密钥的利用公开信道传输分发的难题。而实际结果不但很好地解决了这个难题;还可利用RSA来完成对电文的数字签名以抗对电文的否认与抵赖;同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完整性。此外,RSA加密系统还可应用于智能IC卡和网络安全产品。 二、RSA算法的编程思路 1.确定密钥的宽度。 2.随机选择两个不同的素数p与q,它们的宽度是密钥宽度的1/2。 3.计算出p和q的乘积n 。 4.在2和Φ(n)之间随机选择一个数e , e 必须和Φ(n)互素,整数e 用做加密密钥(其中Φ(n)=(p-1)*(q-1))。 5.从公式ed ≡ 1 mod Φ(n)中求出解密密钥d 。 6.得公钥(e ,n ), 私钥 (d , n) 。 7.公开公钥,但不公开私钥。 8.将明文P (假设P是一个小于n的整数)加密为密文C,计算方法为: C = Pe mod n 9.将密文C解密为明文P,计算方法为:P = Cd mod n 然而只根据n和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密 三、程序实现流程图: 1、密钥产生模块:

密码学实验报告总结

密码学实验报告(本文档为Word版本,下载后可自由编辑) 项目名称:××××××××× 项目负责人:××× 联系电话:××××× 编制日期:×××××

密码学实验报告 实验目的:掌握Caesar密码加密解密原理,并利用VC++编程实现。 实验内容:Caesar密码的加密原理是对明文加上一个密钥(偏移值)而得到密文。假设密钥为3,那么字母“a”对应的ASCII码为97,加上3得100正好是字母“d”的ASCII码值, 实验说明:加密实现的两种方式,只限定英文字母(区分大小写),加密时,根据明文字符是小(大)写字母,采用加密运算: 密文字符=“a”或“A”+(明文字符-“a”或“A”+password%26+26)%26 如果输入其他字符,则直接原样输出,不作处理 可以是任意字符 加密时,我们不做任何区分,直接利用Caesar密码算法 密文字符=明文字符+password 解密反之。 实验结果: void CCaesarDlg::OnButton1() //加密按钮 { UpdateData(TRUE); //从界面上的输入的值传入成员变量 m_crypt=m_plaintxt; //密文进行初始化,它与明文的长度是相同的 for(int i=0;i=48&&m_plaintxt.GetAt(i)<=57) //如果输入的字符是数字 { m_crypt.SetAt(i,'0'+(m_plaintxt.GetAt(i)-'0'+m_password%10 +10)%10);

人机交互实验报告

中北大学软件学院实验报告 专业:软件工程 方向:电子商务 课程名称:人机交互基础教程 班级:1021010C01 学号: 姓名: 辅导教师:李玉蓉 2012年2月制

成绩: 实验时间年月日时至时学时数 1.实验名称 最新人机交互技术 2.实验目的 了解最新人机交互的研究内容 3.实验内容 通过网络查询最新人机交互相关知识。 1、在百度中找到“最新人机交互视频”的相关网页,查看视频。 2、什么是eTable 。 3、人机交互技术在各个领域的应用 4. 实验原理及流程图

成绩: 5.实验过程或源代码 Etable是一种多功能电脑桌,集时尚、实用、经济于一“桌”,无论是居家卧室,还是出差旅途,都可以提供一个舒适、惬意的网上时光,部件有:多角度调节桌面、2个风扇、1个USB插口、1个活动USB插头、鼠标垫、桌腿可调节长度。 人机交互技术的发展极大地促进了计算机的快速发展和普及,已经在制造业、教育、娱乐、军事和日常生活等领域得到 广泛应用。在制造业用于产品设计、装配仿真等各个环节;在 教育中用于研发沉浸式的虚拟世界系统,供学者学习;在军事 方面头显示器等的出现给军事训练提供了极大地方便;在娱乐 中3d和4d电影的拍摄都应用到此技术;体育方面用于体育训 练和报道等;生活中,触屏手机,人脸识别技术等都用到人机 交互技术。 6.实验结论及心得 通过在网上查阅有关近期最新人机交互的视频和网页,我对人机交互的发展及在各方面的应用有了初步了解和认识

实验时间年月日时至时学时数1.实验名称 立体视觉 2.实验目的 掌握立体视觉的原理 3.实验内容 通过网络查询立体视觉相关知识。 1. 在虚拟环境是如何实现立体视觉? 2. 3D和4D电影的工作原理。 4.实验原理及流程图

密码学课程设计

信息安全技术应用实践 课程设计报告 设计题目信息的安全传递 专业名称: 班级: 学号: 姓名: 指导教师: 2014年7月

目录 一、引言 (3) 二、设计方案 (3) 1.安全需求 (3) 2.概要设计 (3) 3.详细设计 (5) 三、安全性分析........................................................................................................... 错误!未定义书签。 四、运行结果 (8) 五、总结 (8) 参考文献 (11)

一、引言 对于信息安全问题,经常出现QQ被盗号骗取财物等案件的出现。信息的安全性十分重要,尤其是一些个人的隐私。 人们也越来越重视信息的安全传递,所以设计出一个安全传递信息的系统刻不容缓。所以在此次课程设计我设计了一个信息传递系统,此系统是基于JAVA应用程序开发的,结合密码学的加密算法实现。其主要特性是安全的完成信息的传递。 二、设计方案 1.安全需求 1).服务器端每一客户口令安全存储(口令保护) 2).对所有通信内容用分组密码以计数器模式进行加密 3).对所有的通信内容用认证码(MAC)进行完整性检验 4).服务器对每个客户进行身份认证 5).服务器端抗重放攻击 2概要设计 1. (BrokerGUI) 发送代理端代替发送者进行内部操作,它设置了与服务端的共享密钥、实现共享口令的加密密钥的加密、随机密钥的加密,、文件的加密、消息的验证。 工作进程:

假设口令“sharedPwd”为代理与授权服务器共享口令 1)用“sharedPwd”生成加密密钥“K-BC”,以及MAC密钥“K-MAC” 2)随机生成一个密钥“K”;并且用“K”生成一个新的加密密钥“K-temp” 和一个新的MAC密钥“K-MAC-temp”。 3)对输入文件内容进行加密和计算MAC E[ K-temp, file contents ] || MAC[ K-MAC-temp, E[ K-temp, file contents ] ] 4)对新的密钥“K”进行加密和计算MAC E[ K-BC, K ] || MAC[ K-MAC, E[ K-BC, K ] ] 5)输出所有上述信息 2.(BrokerClient) 接收代理端应该设置自己的用户名和密码,且要发防重放的随机数。与服务器端建立通信通道,向服务器端发送加密后的信息。对方接收来自服务器的信息。 相对服务器而言,接收端的任务主要就是保证消息的安全性、保密性、完整性等。 1)用“用户口令”生成加密密钥“K-BC-user”,以及MAC密钥“K-MAC-user1”; 2)接收端提供给服务器 R ||user1 || MAC[ K-MAC-user1, R || user1 ] 这里R是一个随机数,user1为用户名 3)接收端从服务器获得 E[ K-BC-user1, K ] || MAC[ K-MAC-user1, E[ K-BC-user1, K ] ] 解密得“K”,并计算出加密密钥“K-temp”和 一个新的MAC密钥“K-MAC-temp”。 解密和验证“file contents”。 3.AuthorityServer) 服务端实现发送代理端和接收代理端之间的连接,是一个中转站。服务器接受和发送的信息都是加密的,保证了消息的安全性。 服务端实现对了发送代理端的消息认证,实现接收代理端的用户身份认证,对密钥的解密和加密,实现了防重放攻击。 工作进程:

相关文档
最新文档