电路和电子基础实验函数任意波形发生器用户手册(V1.0)

电路和电子基础实验函数任意波形发生器用户手册(V1.0)
电路和电子基础实验函数任意波形发生器用户手册(V1.0)

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

波形产生电路实验报告

波形产生电路实验报告 一、实验目得 1。通过实验掌握由集成运放构成得正弦波振荡电路得原理与设计方法; 2、通过实验掌握由集成运放构成得方波(矩形波)与三角波(锯齿波)振荡电路得原理与设计方法。 二、实验内容 1. 正弦振荡电路 ?实验电路图如下图所示,电源电压为±12V。 (1)缓慢调节电位器R W,观察电路输出波形得变化,解释所观察到得现象、 (2)仔细调节电位器R W,使电路输出较好得正弦波形,测出振荡频率与幅度以及相对应得R W之值,分析电路得振荡条件。 (3)将两个二极管断开,观察输出波形有什么变化。 2、多谐振荡电路 (1)按图2 安装实验电路(电源电压为±12V)。观测V O1、V O2波形得幅度、周期(频率)以及V O1得上升时间与下降时间等参数。 (2)对电路略加修改,使之变成矩形波与锯齿波振荡电路,即V O1为矩形波,V O2为锯齿波、要求锯齿波得逆程(电压下降段)时间大约就是正程(电压上升段)时间得20% 左右、观测V O1、V O2得波形,记录它们得幅度、周期(频率)等参数、 3.设计电路测量滞回比较器得电压传输特性。 三、预习计算与仿真 1、预习计算 (1)正弦振荡电路

由正反馈得反馈系数为: 由此可得RC 串并联选频网络得幅频特性与相频特性分别为 易知当时,与同相,满足自激振荡得相位条件。 若此时,则可以满足,电 路起振,振荡频率为 000 111 994.7Hz 1.005ms 2216k 10nF f T RC f ππ= ====?Ω?,、 若要满足自激振荡,需要满足在起振前略大于1,而,令,即满足条件得R w应略大于10k Ω、 (2)多谐振荡电路 ?对电路得滞回部分,输出电压U O =±U Z =±6V ,U P =U O ×R 2R 2+R 1 +U O2× R 1R 2+R 1 ,当U P = U N =0V 时,可以得到U O2=±R 2R 1 ×U O =±3V 、 由U T = 1R 3C ×0.5T ×U O ?U T ,所以得到:T =4R 2R 4C R 1?=400us 、 2。 仿真分析 (1)正弦振荡电路 仿真电路图: 仿真得到得测量数据总结如下(具体见仿真报告): (1)R W 为0时,无波形产生 (2)调节R W 恰好起振时 (3)调节R W 使输出电压幅值最大

波形发生电路实验报告

波形发生电路实验报告 班级 姓名 学号

一、实验目的 1. 掌握由集成运放构成的正弦波振荡电路的原理与设计方法。 2. 学习电压比较器的组成及电压传输特性的测试方法。 3. 掌握由集成运放构成的矩形波和三角波振荡电路的原理与设计方法。 二、实验内容 1. 正弦波发生电路 (1)实验参考电路见图1。 (2)缓慢调节电位器R W,观察电路输出波形的变化,完成以下测试: ①R W为0Ω 时的u O的波形; ②调整R W使电路刚好起振,记录u O的幅值、频率及R W的阻值; ③调整R W使输出为不失真的正弦波且幅值最大,记录u O幅值、频率及R W的阻值; ④将两个二极管断开,观察R W从小到大变化时输出波形的变化情况。 2. 方波- 三角波发生电路 (1)实验参考电路见图2。 (2)测试滞回比较电路的电压传输特性 将图2 电路的第一级改造为滞回比较电路,在输入端输入合适的测试信号,用示波器X-Y模式观测电压传输特性曲线并记录阈值电压和u O1的幅值。

(3)测量图2电路u O1、u O2波形的幅值、周期及u O1波形的上升和下降时间。 3.矩形波- 锯齿波发生电路 修改电路图2,使之成为矩形波- 锯齿波发生电路。要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录u O1、u O2的幅值、周期。 三、实验要求 1. 实验课上搭建硬件电路,记录各项测试数据。 2. 完成正弦波电路的实验后在面包板上保留其电路,并使其输出电压U o在1-3V范围内连续可调。 四、预习计算 1.正弦波振荡电路 起振条件为|A|略大于3,刚起振时幅值较小,认为二极管还未导通,即R4+R W R2 +1略大于3,即R W略大于10kΩ时刚好起振,随着R W的增大,振幅会增大,当R W过大时波形会出现失真。 振荡频率由RC串并联选频网络决定,f0=1 2πR1C1 ≈106.1Hz 2.方波- 三角波发生电路 滞回比较器的阈值电压±U T=±R2 R1 U Z=±2.9V,测试滞回比较电路时将R2与运放A2的输出端断开,改接输入信号(三角波为宜)。 方波(u O1)的幅值为U Z=5.8V,三角波(u O2)的幅值为U T=2.9V。 U T=?1 4 (?U Z) T ?U T U T=R2 1 U Z 解得:T=4R2R4C R1 =0.4ms,即u O1和u O2的周期为0.4ms。 3.矩形波- 锯齿波发生电路 只需让电容充放电回路的时间常数不一样即可。电路原理图如下:

波形发生器设计实验报告

一、实验目的 (1)熟悉555型集成时基电路结构、工作原理及其特点。 (2)掌握555型集成时基电路的基本应用。 (3)掌握由555集成型时基电路组成的占空比可调的方波信号发生器。 二、实验基本原理 555电路的工作原理 555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体。 555芯片管脚介绍 555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。

用555定时器组成的多谐振荡器如图所示。接通电源后,电容C2被充电,当电容C2上端电压Vc 升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T 导通,此时电容C2通过R1放电,Vc 下降。当Vc 下降到Vcc/3时,V0翻转为高电平。电容器C2放电所需的时间为 2ln 12??=C R t pL ( 1-1) 当放电结束时,T 截止,Vcc 将通过R1,R2,R3向电容器C2充电,Vc 由Vcc/3 上升到2Vcc/3所需的时间为 22)321(7.02ln )321(C R R R C R R R t pH ++=++= (1-2) 当Vc 上升到2Vcc/3时,电路又翻转为低电平。如此周而复始,于是,在电路的输出端就得到一个周期性的矩形波。电路的工作波形如图4,其中的震荡频率为 : f=1/(tpL+tpH )=1.43/(2R1+R2+R3) C2 (1-3) 三、实验设计目标 波形发生器是建立在模拟电子技术基础上的一个设计性实验,它是借助综合测试板上的555芯片和一片通用四运放324芯片,以及各种电阻、电感、电容等基本元器件,从而设计制作一个频率可变的同时输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ的波形产生电路,其借助于计算机软件multisim 仿真以及电路板硬件调

DAC0832波形发生器课程设计实验报告

DAC0832波形发生器课程设计实验报告 目录 第1章系统设计方案 (2) 1.1 设计思路 (2) 1.2 方案比较与选择 (2) 第2章系统硬件设计..................................................................................2. 2.1 主控制器电路 (2) 2.2 数模转换电路 (3) 第3章系统软件设计................................................................................ .6 3.1 系统整体流程...................................................................................... .6 3.2 数模转换程序...................................................................................... .6 第4章系统调试 (8) 4.1 proteus的调试 (8) 第5章结论与总结 (11) 5.1 结论 (11) (系统总体设计与完成做一个总结,是客观的,主要包括:设计思路,设计过程,测试结果及完善改进的方向。) 5.2 总结 (11) (这是一个主观的总结,谈谈自己收获和不足等方面的内容。) 第1章系统设计方案 1.1 设计思路 (一)、课设需要各个波形的基本输出。如输出矩形波、锯齿波,正弦波。这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。然而为了实现100HZ的频率,终于发现,将总时间除了总步数,根据每步执行时间,算出延时时间,最终达到要求,然后建一个表通过查表来进行输出,这样主要工作任务就落到了建表的过程中。这样做的好处在于,查表所耗费的时钟周期相同,这样输出的点与点之间的距离就相等了,输出的波形行将更趋于完美,当然更让我们感到的高兴的是它输出波形的频率将近达到了100赫兹,能够满足我们设计的扩展要求了。

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

函数信号发生器与示波器的使用实验报告书

函数信号发生器与示波器的使用实验报告书 专业:班级:学号: 姓名:实验时间: 实验目的 1、学会数字合成函数信号发生器常用功能的设置、使用; 2、会从函数信号发生器胡频率计上读出信号频率; 3、在了解数字双踪示波器显示波形的工作原理基础上,观察 并测量以下信号:(见下表)学会数字示波器的基本操作与 读书; 实验仪器 F40函数信号发生器、UTD2102CE数字示波器、探头。 实验原理 1、函数信号发生器的原理

该仪器采用直接数字合成技术,可以输出函数信号、调频、调幅、FSK、PSK、猝发、频率扫描等信号,还具有测频、计数、任意波形发生器功能。 2、示波器显示波形原理 如果在示波器CH1或CH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与 正弦波电压相等时,则显示完整的周期的正弦波形,若在示波 器CH1和YCH2同时加上正弦波,在示波器的X偏转板上加上 示波器的锯齿波,则在荧光屏上将的到两个正弦波。 实验内容 1、做好准备工作,连接实验仪器电路,设置好函数信号发生 器、示波器; (1)、把函数信号发生器的“函数输出”输出端与示波器的 X CH1信号输入端连接,两台仪器的接通220V交流电源。 (2)、启动函数信号发生器,开机后仪器不需要设置,短暂 时间后,即输出10K Hz的正弦波形。 (3)、需要信号源的其他信号,到时在进行相关的数据设定 (如正弦波2的波形、频率、点频输出、信号幅度)等。 2、用示波器观察上表中序号1的信号波形(10KHz);过程如下: (1)、打开示波器的电源开关,将数字存储示波器探头连接到CH1输入端,按下“AUTO”按键,示波器将自动设置垂直偏转系数、扫描时基以及触发方式;按下CH1按键。

DDS信号发生器-实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y EDA技术高级应用 实验报告 姓名:禾小鬼 同组人: 学号:16S 班级:信息2班 指导教师:xxx 院系:电信学院

实验一函数信号发生器 一、实验内容 实验内容包括下面两个方面 1.熟悉quartus ii开发环境 第一次接触quartus ii开发环境,首先可以通过新建一个工程熟悉quartus ii的各种基本操作。需要学习的包括以下几个方面:选器件,采用原理图方法画一个电路图实现某种功能,并对这个功能进行行为仿真以验证功能上的正确性。 2.设计一个函数信号发生器 在开始之前,首先要明确设计目的,我们的想要用电路图方法实现设计一个“函数信号发生器”。然后,可以先根据自己的思路想好一个电路图的设计方案,再开始实验。 二实验结果 1.第一步:建立一个新的工程 新建工程的过程中,最重要的是设置器件,不同的器件的设计之间并不兼容。会有一个综合的信息框,注明了我所做的设置,看看没问题就可以了。然后新建一个原理图文件schematic,作为顶层文件,将顶层文件命名为DDS在上面进行画图。 2.第二步:画电路图 本次实验采用软件自带的器件库MegaWizard Plug-in Manager中的器件。自定义3个ROM,并将ROM表中存储事先准备好的三种波形的数据文件,波形数据文件由matlab产生,ROM中存储8bit-32words的数据,包括一个时钟输入,一个5位地址输入和一个7位输出;还需要一个5位计数器,用以输出读取ROM 的地址;一个时钟控制整个电路工作; 我画的电路图,如图1所示。其原理为:三个ROM表存储三种波形数据,整个电路通过时钟控制,时钟每翻转一次,计数器加一,产生一个地址,输入到

波形发生器设计实验报告

波形发生器设计实验报告 一、设计目的 掌握用99SE软件制作集成放大器构成方波,三角波函数发生器的设计方法。 二、设计原理 波形发生器:函数信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、函(波形)信号、脉冲信号和随机信号发生器等四大类。而波形发生器是指能够输出方波、三角波、正弦波等多种电压波形的信号源。它可采用不同的电路形式和元器件来实现,具体可采用运算放大器和分立元件构成,也可用单片专用集成芯片设计。 设计原理图:

三、设计元件 电阻:R1 5.1K、R2 8.2K 、R3 680 、R4 3K 、R5 39K R6 1K 、R7 39K 、R8 39K 电容:C 1uF 运算放大器:U1A LM324 、U1B LM324 二极管:D1 3.3V 、D2 3.3V 滑动变阻器:RW1 10K 接口:CON3 地线、GND 四、设计步骤 大概流程图 1、打开99SE,建立Sch文件。绘制原理图。 绘制原理图时要注意放大器的引脚(注意引脚上所对应的数字)和二极管的引脚(注意原理图和PCB中的引脚参数是否一致)。 元件元件库代码

电阻:RES2 滑动变阻器:POT2 电容:CAP 放大器:OPAMP 二极管:ZENER3 元件封装代码 电阻:AXIAL0.4 滑动变阻器:VR5 放大器:DIP14 二极管:DIODE0.4 电容:RB.2/.4 2、生成网络表格 本步骤可完成建立材料清单(可执行report中的Bill of Material)、电器规则检查(Tools中ERC )、建立网络表(Design中Create Netlist,点击OK即可)3、PCB文件的设置 建立PCB文件 单双面板设置:Design中Options进行设置单双面板,及面板大小(8cm*7cm)建立原点(Edit中Origin中的set) 并在KeepOutLayer层中制板 4、引入网络表 执行Design中Load Nets载入网络表,屏幕弹出对话框,点击Browse按钮选择网络表文件(*net),载入网络表,单机Execute,便成功引入网络表。 5、修改封装与布局 按照原理图调试布局,美观整齐即可 6、设置PCB规则 Design中Rules即可设置规则例:设置地线,电源线等的粗细参数。双面布线及单面布线的设置等等。

波形发生器实验报告

(此文档为word格式,下载后您可任意编辑修改!) 单片机课程设计报告 波形发生器 2014 年02 月23日

1、用户需求 1、产生三角波、方波、正弦波信号 2、输出信号的频率和幅度可以通过按键来改变,,分析波形产生的最高频率。 2、设计任务 基于AT89C51的波形发生器主要功能如下: (1)可以三产生角波、方波、正弦波信号并通过按键控制。 (2)输出信号的频率和幅度可以通过按键来改变,分析波形产生的最高频率。 (3)以单片机为核心,经过D/A转换和放大电路的处理,最后输出信号。 3、原理框图及说明 根据设计任务,设计如下框图: 图1、原理框图 电源部分,为单片机提供5V稳压电源;8位按键提供给用户用来选择需要输出的波形,以及修改频率及方波占空比;数码管显示所选择的的波形代号,1代表正弦波,2代表方波,3代表锯齿波,4代表三角波;幅度调节电路用来调节输出波形的幅度;D/A转换及放大电路可以将数字信号转换成模拟信号输出我们所需要的波形;显示电路则是将波形显示在屏幕上。 89C51上电后,扫描P1口,判断是否有键按下,进行相应的操作。 根据原理框图,设计电路图如附件1. 设置的3位按键分别为S1代表正弦波,S2代表方波,S3代表锯齿波,S4代表三角波,S5代表增加方波占空比,S6代表减小方波占空比,S7代表增加频率,S8代表减小频率。 4、主要电路说明、元件选择及参数计算 简易函数信号发生器原件清单如下:

4.1主控芯片单片机的介绍 (1)AT89C51的引脚如图2.2所示。 AT89C51单片机的40个引脚可分为:电源引脚2根、时钟引脚两根、控制引脚4根、输入/输出引脚32根。各引脚功能描述如下: (1)主电压引脚 ●V CC:电源端,正常工作时接+5V电源 ● V SS:接地端 (2)时钟引脚 ●XTAL1:内部振荡电路的反相放大器的输入端,接外部晶振和微调电容的一端。采用外部时钟电路时,对HMOS型工艺的单片机而言,此引脚应接地;对CHMOS型而言,此引脚应接外部时钟的输入端。 ●内部振荡电路的反相放大器的输出端,接外部晶振和微调电容的另一端。采用外部时钟电路时,对HMOS型工艺的单片机而言,此引脚应接外部时钟的输入端;对CHMOS型而言,此引脚悬空。 (3)控制引脚 ●RST/V PD:复位信号/备用电源输入引脚。当振荡运行时,RST引脚保持2个机器周期的高电平后,就可以使8051完成复位工作。该引脚的第二功能是V , PD 掉电期间,该引脚可接即备用电源的输入端,具有掉电保护功能。在主电源V CC 向内部RAM提供备用电源,保持内部RAM中的数据不丢失。+5V备用电源,由V PD ● ALE/PROG:地址锁存允许信号/编程脉冲输入端。当CPU访问片外存储器时,ALE输出信号控制锁存P0口的低8位地址,从而实现P0口的数据与低位地 /6)址的分时复用。当8051上电正常工作后,ALE端以不变频率(振荡器频率的f osc 周期性地输出正脉冲信号。该脉冲可用作对外输出的时钟,或用于定时目的。该引脚的第二功能PROG是做编程脉冲的输入端。 ● PSEN:外部程序存储器读选通信号端,低电平有效。

信号波形发生与合成实验报告

电子电路综合实验 总结报告 题目:信号波形发生与合成 班级: 学号: 姓名: 成绩: 日期:2015年3月12日

一、摘要 实验采用纯硬件电路设计形式完成实验任务,实现实验功能。首先用带限幅器滞回比较器和RC充放电回路构成的方波发生电路产生频率为1KHZ的方波信号。作为一个信号源,需要低阻抗输出,因此在方波发生器之后连接一个射随电路。信号经两路不同频率有源滤波处理,同时产生频率为1kHz和3kHz的正弦波信号。其中基波产生采用低通滤波器,三次谐波产生采用带通滤波器。为了将基波和三次谐波叠加之后最终恢复出近似方波信号,因此需要根据滤波分频电路输出的基波和三次谐波的延时,设计移相电路,其设计采用全通滤波器原理。最后运用反相加法器将基波和三次谐波信号叠加,从而完成设计要求。 实现功能:设计一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。 方案特点:电路为纯硬件电路,采用运算放大器TL081,原理图简单易懂,硬件调试容易,部分实现功能明确且输出可测,有助于电路问题检测。

二、设计任务 2.1 设计选题 选题十四:信号波形发生与合成 2.2 设计任务要求 图1系统框图 1)矩形波发生电路产生1kHz的方波(50%占空比),频率误差小于5%,方波波形幅度峰峰值为10V,幅度误差小于5%,且输出阻抗r=50 ?; o 2)基波频率为1kHz,设计的低通滤波器要求-3dB带宽为1kHz,带外衰减≥-40dB/十倍频程下降,产生的信号波形无明显失真,幅度峰峰值为12V,幅度误差小于5%; 3)三次谐波频率为3kHz,设计的带通滤波器要求中心频率为3kHz,-3dB带宽小于500Hz,带外衰减≥-40dB/十倍频程下降,产生的信号波形无明显失真,幅度峰峰值为4V,幅度误差小于5%; 4)设计移相电路,完成对基波正弦信号的移相,使移相后的基波和三次谐波的波形如图2所示,要求移相电路的增益为1,增益误差≤5%;

波形产生电路实验报告

波形产生电路实验报告 一、实验目的 1. 通过实验掌握由集成运放构成的正弦波振荡电路的原理与设计方法; 2. 通过实验掌握由集成运放构成的方波(矩形波)和三角波(锯齿波)振荡电路的原理与设计方法。 二、实验内容 1. 正弦振荡电路 实验电路图如下图所示,电源电压为±12V。 (1)缓慢调节电位器R W,观察电路输出波形的变化,解释所观察到的现象。 (2)仔细调节电位器R W,使电路输出较好的正弦波形,测出振荡频率和幅度以及相对应的R W之值,分析电路的振荡条件。 (3)将两个二极管断开,观察输出波形有什么变化。 2. 多谐振荡电路 (1)按图2 安装实验电路(电源电压为±12V)。观测V O1、V O2波形的幅度、周期(频率)以及V O1的上升时间和下降时间等参数。 (2)对电路略加修改,使之变成矩形波和锯齿波振荡电路,即V O1为矩形波,V O2为锯齿波。要求锯齿波的逆程(电压下降段)时间大约是正程(电压上升段)时间的20% 左右。观测V O1、V O2的波形,记录它们的幅度、周期(频率)等参数。 3. 设计电路测量滞回比较器的电压传输特性。 三、预习计算与仿真

1. 预习计算 (1)正弦振荡电路 由正反馈的反馈系数为: f 1 12 0o 013V Z F Z Z V j ωωωω? ? ? = = = +??+- ? ?? 由此可得RC 串并联选频网络的幅频特性与相频特性分别为 2 00231? ??? ??-+= ωωωωF 0F arctan 3 ωωωω φ-=- 易知当RC 1 0==ωω时,?f V 和?o V 同相,满足自激振荡的相位条件。 若此时f 3v A >,则可以满足f 1v A F >,电路起振,振荡频率为 000 111 994.7Hz 1.005ms 2216k 10nF f T RC f ππ= ====?Ω?,。 若要满足自激振荡,需要满足f v A F 在起振前略大于1,而max 1 3 F =,令f 3v A =,即满足条件的R w 应略大于10kΩ。 (2)多谐振荡电路 对电路的滞回部分,输出电压U O =±U Z =±6V ,U P =U O × R 2R 2+R 1 +U O2× R 1R 2+R 1 ,当 U P =U N =0V 时,可以得到U O2=±R 2R 1 ×U O =±3V 。 由U T = 1R 3C ×0.5T ×U O ?U T ,所以得到:T =4R 2R 4C R 1?=400us 。 2. 仿真分析 (1)正弦振荡电路 仿真电路图:

波形发生电路 实验报告

实验报告 课程名称:电路与模拟电子技术实验 指导老师: 张冶沁 成绩: 实验名称:波形发生器电路分析与设计 实验类型: 电路实验 同组学生姓名: 一、 实验目的和要求: 桥式正弦振荡电路设计 1.正弦波振荡电路的起振条件。 2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出 波形的影响。 3.选频电路参数变化对输出波形频率的影响。 4.学习正弦振荡电路的仿真分析与调试方法。 B.用集成运放构成的方波、三角波发生电路设计 1.掌握方波和三角波发生电路的设计方法。 2.主要性能指标的测试。 3.学习方波和三角波的仿真与调试方法。 二、 实验设备: 示波器、万用表 模电实验箱 三、 实验须知: 1. RC 桥式正弦波振荡电路,起振时应 满足的条件是: 闭环放大倍数大于 3,即R f >2R 1,引入正反馈 RC 桥式正弦波振荡电路,稳定振荡时应 满足的条件是: 电路中有非线性元 件起自动稳幅的作用 3.RC 桥式正弦波振荡电路的振荡频率: =0f 1/(2πRC) 4.RC 桥式正弦波振荡电路里C 的大小: =C 专业: 姓名: 学号: 日期:

四、实验步骤:

A .RC 桥式正弦波振荡电路: 原理图: 1. PSpice 仿真波形: 示波器测量的波形: T=616us ,=pp v ,=RMS v 667mV 根据实际波形,比较实际数据和理论数据之间的差异: 理论周期为650us ,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求 2. 改变R2的参数(减小或增大R2),使输出0v 从无到有,从正弦波直 至削顶,分析出现这三种情况的原因和条件。

信号发生器实验报告波形发生器实验报告

信号发生器实验报告波形发生器实验报告 Revised at 2 pm on December 25, 2020.

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。(2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC桥式正弦波振荡器

图 1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,分别代入得频率调节范围为:~,~,~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 RP2 R4 R13 组成负反馈支路,作为稳幅环节。R13与D1、D2并联,实现振荡幅度的自动稳定。D1、D2采用1N4001二极管。 在multisim 软件仿真时,调节电位器25%~35%时能够起振。 电路起振条件:左 右 22134p p f R R R R A ++= ,代入数据解得Ω≤k R P 11.1002左 Ⅱ方波发生器 由正弦波振荡器产生的一定频率的正弦信号经过比较器产生一同频率的方波。如图3。 电路输出端引入的限流电阻R6 和两个背靠背的稳压管D3、D4(采用1N4734)组成双向限幅电路。 UA741在这里实际上是一个电压比较器,当输入电压比基准电压高时,输出高电平,当输入电压比基准电压低时,输出低电平,输出端输出与输入同频率的方波。 图3 图4 Ⅲ比例运算放大电路 转换开关J 5的作用是通过开关切换与比例运算放大电路连接,输出一定幅度的正弦波或方波。通过调节RP3(200k )调节放大倍数,9 36R R R A p f 右 += 。如图4所示。 在multisim 软件仿真时,当R P3 调节到50%时,(计算结果 10 %50-1*20033.0) (+= f A =)放大前信号(左图5)与放大后信号(右图6)如下图所 示。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频

实验九 波形发生器仿真实验报告

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:2017.12.25实验成绩: 实验九波形发生器 一、实验目的 1、学习用集成运放构成正弦波、方波和三角波发生器。 2、学习波形发生器的调整和主要性能指标的测试方法。 二、实验原理 RC桥式正弦波振荡器(文氏电桥振荡器): 图2-1 RC桥式正弦波振荡器原理图 RC串并联电路构成正反馈支路,同时兼作选频电路,R1、R2、R w及二极管等元件构成负反馈和稳幅环节。调节电位器R w,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保 证输出波形正负半周对称。R3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率f0=1 2πRC 起振的幅值条件R f R1 ≥2 式中R f=R w+R2+(R3//r D),r D为正向导通电阻。 调整反馈电阻R f(调节R w),使电路起振,且波形失真最小。如果不能起振,则说明负反馈太强,应该适当加大R f。如果波形失真严重,则应该适当减小R f。 方波发生器: 图2-2方波发生器原理图 由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC积分器两大部分。如图所示,滞回比较器及简单RC积分电路组成的方波三角波发生器。特点是线路简单,但是三角波的线性度较差。主要用于产生方波,或者对三角波要求不高的场合。 电路振荡频率f0=1 2R f C f Ln(1+2R2 R1) 式中R1=R′1+R′w 方波输出幅值U om=±U Z三角波输出幅值U cm=R2 R1+R2 U Z 调节电位器R w(即改变R2/R1),可以改变振荡频率,但三角波的幅值也会随之变化。如果想要互不影响,则可以通过改变R f或者C f来实现振荡频率的调节。 三角波和方波发生器:

东南大学模拟电子电路实验报告——波形的产生、分解与合成

东南大学电工电子实验中心 实验报告 模拟电子电路 第四次实验 (系):一专 业: 验室:电工电子中1 心103实验组别: 课程名称: 实验名称: 波形的产生、分解与合成 名: 学 号: 同组人员: 实验时间: 2019年5月15日 评定成绩: 审阅教师:

根据实验内容、技术指标及实验室现有条件, 自选方案设计出原理图, 计算元件参数: 方波发生器 实验目的 波形的产生、分解与合成 1. 掌握方波信号产生的基本原理和基本分析方法, 电路参数的计算方法, 各参数对电路性 能的影响; 2. 掌握由运算放大器组成的 RC 有源滤波器的工作原理,熟练掌握RC 有源滤波器的基本参 数的测量方法和工程设计方法; 3. 掌握移相电路设计原理与方法 4. 掌握比例加法合成器的基本类型、选型原则和设计方法。 5. 掌握多级电路的级联安装调试技巧; 6. 熟悉FilterPro 、MultiSim 软件高级分析功能的使用方法。 实验内容 设计并安装一个电路使之能够产生方波, 并从方波中分离出主要谐波, 再将这些谐 波合成为原始信号或其他周期信号。 (1) 设计一个方波发生器,要求其频率为 500Hz,幅度为5V; (2) 设计合适的滤波器,从方波中提取出基波和 3次谐波; (3) 设计移相电路,使高次谐波与基波之间的初始相位差为零。 (4) 设计一个加法器电路, 将基波和3次谐波信号按一定规律相加, 将合成后的信 号与原始信号比较,分析它们的区别及原因。 三、 电路设计 ⑴ 理, I 分析工作原

这里取 R= Rs=10k? , R=9k?, C 1=0.1 成, VCC=6V, VEE=-6V ,此时 f=500Hz 仿真结果 仿真分析 由上图可以看出,输出波形为频率为 求。 II 滤波器 设计思路 我们知道,方波信号可以分解为: 这里我们分别采用两个 波和 取 R=20k , R 1 = 10k 故A Uf 1胃=3 , 1 一… ………、,— ............... .. 此时Q -------------- 可以尽量大,这样通带宽度越窄,选择性也尽量好 3 A Uf 2RC ln 2RC ln(1 2?) 2RC ln(1 2 劄 500Hz,幅度为5V 的方波,符合实验设计要

函数信号发生器实验报告.

青海师范大学 课程设计报告课程设计名称:函数信号发生器 专业班级:电子信息工程 学生姓名:李玉斌 学号:20131711306 同组人员:郭延森安福成涂秋雨 指导教师:易晓斌 课程设计时间:2015年12月

目录 1 设计任务、要求以及文献综述 2 原理综述和设计方案 2.1 系统设计思路 2.2设计方案及可行性 2.3 系统功能块的划分 2.4 总体工作过程 3 单元电路设计 3.1 安装前的准备工作 3.2 万用表的安装过程 4 结束语 1设计任务、要求 在现代电子学的各个领域,常常需要高精度且频率可方便调节的信号发生器。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路称为函数信号发生器,又名信号源或振荡器。函数信号发生器与正弦波信号发生器相比具有体积小、功耗少、价格低等优点, 最主要的是函数信号发生器的输出波形较为灵活, 有三种波形(方波、三角波和正弦波)可供选择,在生产实践,电路实验,设备检测和科技领域中有着广泛的应用。 该函数信号发生器可产生三种波形,方波,三角波,正弦波,具有数字显示输出信号频率和电压幅值功能,其产生频率信号范围1HZ~100kHZ,输出信号幅值范围0~10V,信号产生电路由比较器,积分器,差动放大器构成,频率计部分由时基电路、计数显示电路等构成。幅值输出部分由峰值检测电路和芯片7107等构成。 技术要求: 1. 信号频率范围 1Hz~100kHz; 2. 输出波形应有:方波、三角波、正弦波; 3. 输出信号幅值范围0~10V; 4. 具有数字显示输出信号频率和电压幅值功能。

2原理叙述和设计方案 2.1 系统设计思路 函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件(如低频信号函数发生器S101全部采用晶体管),也可以是集成器件(如单片集成电路函数信号发生器ICL8038)。产生方波、正弦波、三角波的方案也有多种,如先产生方波,再根据积分器转换为三角波,最后通过差分放大电路转换为正弦波。频率计部分由时基电路、计数显示电路等构成,整形好的三角波或正弦波脉冲输入该电路,与时基电路产生的闸门信号对比送入计数器,最后由数码管可显示被测脉冲的频率。产生的3种波经过一个可调幅电路,由于波形不断变化,不能直接测出其幅值,得通过峰值检测电路测出峰值(稳定的信号幅值保持不变),然后经过数字电压表(由AD转换芯片CC7107和数码管等组成),可以数字显示幅值。 2.2设计方案及可行性 方案一:采用传统的直接频率合成器。首先产生方波—三角波,再将三角波变成正弦波。 方案二:采用单片机编程的方法来实现(如89C51单片机和D/A转换器,再滤波放大),通过编程的方法控制波形的频率和幅度,而且在硬件电路不变的情况下,通过改变程序来实现频率变换。 方案三:是利用ICL8038芯片构成8038集成函数发生器,其振荡频率可通过外加直流电压进行调节。 经小组讨论,方案一比较需要的元件较多,方案二超出学习范围,方案三中的芯片仿真软件中不存在,而且内部结构复杂,不容易构造,综合评定,最后选择方案一。 2.3系统功能块的划分 该系统应主要包括直流稳压电源,信号产生电路,频率显示电路和电压幅值显示电路四大部分。 直流稳压电源将220V工频交流电转换成稳压输出的直流电压,信号产生电路产生的信号,经过适当的整形,作为频率显示电路的输入,从而达到了数字显示频率的要求;产生的信号经过幅频显示部分(峰值检测电路和数模转换),便

相关文档
最新文档