关于几种曲线拟合基本方法的比较

关于几种曲线拟合基本方法的比较
关于几种曲线拟合基本方法的比较

关于几种曲线拟合基本方法的比较

学院:材料科学与工程学院专业:材料学(博)姓名:郑文静学号:1014208040 在实际工作中,变量之间的关系未必都是线性关系,更多时候,它们之间呈现出了曲线关系,在科学实验或社会活动中,通过实验或观测得到一些x和y数据,为了对位置点进行研究,很多时候,我们通过曲线拟合的方式,将这些离散点近似为一条连续的曲线,从而来预测或者得到所需结果。曲线拟合的方法很多,本文中,主要讨论了曲线拟合的三种基础方法--插值法、磨光法、最小二乘法的特点,并对其在科学实验和生产实践中的应用性进行了比较。

插值法是函数逼近的一种基本方法,插值法就是通过函数在有限个点处的取值情况,估算出函数在其他点处的近似值。插值法中,选取不同的插值公式,来满足实际或运算需求,得到拟合的函数。其中,最基础的插值方法是三弯矩法,该方法是利用拉格朗日插值为基础,已知平面中的n+1个不同点,寻找一条n次多项式曲线通过这些点。该曲线具有唯一性。另外,还有三转角法,该方法是利用Henmiter插值为基础,其思路与三弯矩法相同,已知条件有所差别,在Henmiter插值中,不仅已知函数在一些点的函数值,而且,还知道它在这些点的导数值,甚至知道其高阶导数值,要求所求函数不仅满足过这些点,同时也要求其导函数,甚至高阶导函数满足条件。采用Henmiter插值法求得的多项式比拉格朗日法求得的多项式有较高的光滑逼近要求。此外,还有以分段和B-样条函数为基础的δ-基函数法,其中,样条函数是:对于[a,b]上的划分,称函数S(x)为[a,b]上关于划分△的k次样条函数,记做S k,△[a,b]。该方法避免了高次插值可能引起的大幅度波动现象,在实际中通常采用分段低次插值来提高近似程度。插值法常用于填充图像变换时像素之间的空隙。

磨光法是适应保凸性要求的数据拟合方法。积分可以改变函数的光滑度,而微商是积分的逆运算,对函数进行积分,然后在微商,可以将函数还原。而差商近似为微商,对函数积分后差商,可以将函数近似还原,同时可以更光滑,这种变换就是磨光。可以采用其他方法拟合得到函数,对于不光滑的点采用一次或多次磨光,得到更加光滑连续的函数。这种方法常用于外形设计。

最小二乘法也是函数逼近的一种基本方法。该方法不要求拟合曲线通过已知点,而是通过最小化误差的平方和寻找数据的最佳函数匹配。其解题步骤是:首先通过数据点,确定其可能所属的函数类型;然后,设出函数,并求出误差平方和的表达式;之后,由表达式对函

数中已知系数的偏微分为零,得到方程组,最后,对方程组进行求解得到表达式。通过比较不同类型函数的误差和,选择误差和最小的函数表达式为其最优表达式。这种方法计算量很大,但是,在计算机中能够较好实现,是计算机化后,被广泛应用的一种拟合方法。

在曲线拟合的这几种方法中,插值法是一种基础的拟合方法,是很多数据处理和编制函数表的常用工具,是许多求解公式的基础。磨光法是改变函数光滑度的方法,用于得到更光滑的函数。最小二乘法是一种不强求经过已知点的近似方法,在计算机计算和实际中应用广泛。由于科学实验和生产实践中取得的节点处的值不可避免地带有测量误差,因此,如果要求拟合曲线精确无误地通过所有点,就是使曲线保留了一切测量误差,而测量得到的数据较多时,采用插值法势必得到次数较高的插值多项式,这会加大计算量,缺乏实用价值。而采用曲线拟合的方法,可以巧妙地避开这些弊端,得到一条使数据点在曲线附件分布的函数,这个函数既能反映数据的总体分布,又不至于出现局部较大波动,同时,也可以反映被逼近函数的特征,使其误差的平方和最小。随着如今计算机的发展,最小二乘法的曲线拟合早已实现了软件计算,这大大减少了我们的计算量,能够更好地选择所需函数。同时,由于测量中不可能都是等间距误差,因此,计算时,可以采用加权最小二乘法,对精度高、地位重的数据给予更大的权重,来得到更实用的拟合曲线。

总之,三种曲线拟合的方法都有它们的特点和侧重,而在科学研究和生产实践中,采用最小二乘法对测量所得的已知点进行拟合,是一种更方便实用的方法。

标准曲线的绘制样本

标准曲线绘制 在分析化学实验中, 常见标准曲线法进行定量分析,一般情况下的标准工 作曲线是一条直线。 标准曲线的横坐标(X)表示能够精确测量的变量(如标准溶液的浓度),称为 普通变量,纵坐标(Y)表示仪器的响应值(也称测量值,如吸光度、电极电位 等), 称为随机变量。当X取值为X1, X2,……Xn时,仪器测得的丫值分别为丫1, 丫2,……Yn。将这些测量点Xi, Yi描绘在坐标系中,用直尺绘出一条表示X 与丫之间的直线线性关系,这就是常见的标准曲线法。用作绘制标准曲线的标准物质,它的含量范围应包括试祥中被测物质的含量,标长准曲线不能任意延。用作绘制标准曲线的绘图纸的横坐标和纵坐标的标度以及实验点的大小均不能太 大或太小,应能近似地反映测量的精度。 由于误差不能完全避免,实验点完全落在工作曲线的的情况是极少的,特别是在误差较大时,实验点比较分散,它们一般并不在同一条直线上,这样凭直觉很难判断怎样才能使所连接的直线对于所有实验点来说误差是最小的,当前较好的方法是对实验点(数据)进行回归分析。 研究随机现象中变量之间相关关系的数理统计方法称为回归分析,当自变 量只有一个或X与丫在坐标图上的变化轨迹近似一直线时,称为一元线性回归。 甦2.6.1 —元线性回归方程的求法 确定回归直线的原则是使它与所有测量数据的误差的平方和达到极小值 设回归直线方法为 9 (2 - 15)

式中a表示截距,b表示斜率 9 (2 - 15)

假设Xi和Yi (i=1,2,3, ……,n)是变量X和Y的一组测量数据。对于每一个Xi值,在直线(卩“+^ )上都有一个确定的旳“从X】值。但哲值与X 轴上Xi处的实际测定值Yi是不相等的, 与Yi之差为: 筈厂& +返AY’F-碍(2—佝 上式表示与直线()的偏离程度,即直线的误差程度。如果全部n个测定引起的总偏差用£(节厂印'表示,则偏差平方和s为 (2 - 17) 在所有直线中,偏差平方和s最小的一条直线就是回归直线,即这条直线 的斜率b和截距a应使s值达到最小,这种要使所有数据的偏差平方和达到最小 的求回归直线法称为最小二乘法。 根据数学分析的极值原理,要使s达到最小,对式(2 —17)中的a、b分别 求偏微分后得到 (2 —18) (2 —19) 是所有变量Xi和Yi的平均值。由于计算离均差较麻烦,可将式(2 — 18)变换为 n是测量的次数,也就是坐标图中实验点的数目。 (2 —20)

曲线拟合的方法及过程

一、课程设计题目: 对于函数 x e x x f --=)( 从00=x 开始,取步长1.0=h 的20个数据点,求五次最小二乘拟合多项式 5522105)()()()(x x a x x a x x a a x P -++-+-+= 其中 ∑ ===19 95.020 i i x x 二、原理分析 (1)最小二乘法的提法 当数据量大且由实验提供时,不宜要求近似曲线)(x y φ=严格地经过所有数据点),(i i y x ,亦即不应要求拟合函数)(x ?在i x 处的偏差(又称残差) i i i y x -=)(φδ (i=1,2,…,m) 都严格的等于零,但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求偏差i δ适当的小还是必要的,达到这一目标的途径很多,例如,可以通过使最大偏差i δmax 最小来实现,也可以通过使偏差绝对值之和∑i i δ最小来实 现……,考虑到计算方便等因素,通常用使得偏差平方和∑i i 2δ最小(成为最小 二乘原则)来实现。 按最小二乘原则选择近似函数的方法称为最小二乘法。 用最小二乘法求近似函数的问题可以归结为:对于给定数据),(i i y x (i=1,2,…,m),要求在某个函数类Φ中寻求一个函数)(x * ?,使 [][]2 1 )(2 1 * )()(mi n ∑∑=Φ∈=-=-m i i i x m i i i y x y x ??? (1-1) 其中)(x ?为函数类Φ中任意函数。 (1)确定函数类Φ,即确定)(x ?的形式。这不是一个单纯的数学问题,还与其他领域的一些专业知识有关。在数学上,通常的做法是将数据点),(i i y x 描

标准曲线的作法

标准曲线的作法

标准曲线的作法 (1)标准液浓度的选择:在制备标准曲线时,标准液浓度选择一般应能包括待测样品的可能变异最低与最高值,一般可选择5种浓度。浓度差距最好是成 倍增加或等级增加,并应与被测液同样条件下显色测定。 (2)标准液的测定:在比色时,读取光密度至少读2-3次,求其平均值,以 减少仪器不稳定而产生的误差。 (3)标准曲线图的绘制:一般常用的是光密度一浓度标准曲线。 ①用普通方格纸作图。图纸最好是正方形(长:宽=l:1)或长方形(长:宽=3 : 2),以横轴为浓度,纵轴为光密度,一般浓度的全距占用了多少格,光密度的全距也应占用相同的格数。 在适当范围内配制各种不同浓度的标准液,求其光密度,绘制标准曲线, 以浓度位置向上延长,光密度位置向右延长、交点即为此座标标点。然后,将 各座标点和原点联成一条线,若符合Lambert-Beer氏定律,则系通过原点的 直线。 ②若各点不在一直线,则可通过原点,尽可能使直线通过更多点,使不在 直线上的点尽量均匀地分布在直线的两边。 ③标准曲线绘制完毕以后,应在座标纸上注明实验项目的名称,所使用比 色计的型号和仪器编号、滤光片号码或单色光波长以及绘制的日期、室温。 ④绘制标准曲线:一般应作二次或三次以上的平行测定,重复性良好曲线 方可应用。 ⑤绘制好的标准曲线只能供以后在相同条件下操作测定相同物质时使用。 当更换仪器、移动仪器位置、调换试剂及室温有明显改变时,标准曲线需重新 绘制。 ⑥标准曲线横坐标的标度:从标准液的含量换算成待测液的浓度。 1.5 原子吸收光谱分析的定量方法 原子吸收光谱分析是一种动态分析方法,用校准曲线进行定量。常用的定量方法有标准曲线法、标准加入法和浓度直读法。如为多通道仪器,可用内标法定量。在这些方法中,标准曲线法是最基本的定量方法。 1.5.1 标准曲线法 前面已经指出,原子吸收光谱和原子荧光光

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,Y i)(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型,式中c=(c1,c2,…c n)是一些待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在各点

标准曲线制作

标准曲线制作—考马斯亮蓝法测蛋白质含量 一、标准曲线 一般用分光光度法测物质的含量,先要制作标准曲线,然后根据标准曲线查出所测物质的含量。因此,制作标准曲线是生物检测分析的一项基本技术。 二、蛋白质含量测定方法 1、凯氏定氮法 2、双缩脲法 3、Folin-酚试剂法 4、紫外吸收法 5、考马斯亮蓝法 三、考马斯亮蓝法测定蛋白质含量—标准曲线制作 (一)、试剂: 1、考马斯亮蓝试剂: 考马斯亮蓝G—250 100mg溶于50ml 95%乙醇,加入100ml 85% H3PO4,雍蒸馏水稀释至1000ml,滤纸过滤。最终试剂中含0.01%(W/V)考马斯亮蓝G—250,4.7%(W/V)乙醇,8.5%(W/V)H3PO4。 2、标准蛋白质溶液: 纯的牛血清血蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度同 0.15mol/LNaCl配制成100ug/ml蛋白溶液。 (二)、器材: 1、722S型分光光度计使用及原理()。 2、移液管使用()。 (三)、标准曲线制作: 试管编号0 1 2 3 4 5 6 100ug/ml标准蛋白(ml)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.15mol/L NaCl (ml)1 0.9 0.8 0.7 0.6 0.5 0.4 考马斯亮蓝试剂(ml) 5 5 5 5 5 5 5 摇匀,1h内以1号管为空白对照,在595nm处比色 A595nm 1 2、以A595nm为纵坐标,标准蛋白含量为横坐标(六个点为10ug、20 ug、30 ug、40 ug、50 ug、60 ug),在坐标轴上绘制标准曲线。 1)、利用标准曲线查出回归方程。 2)、用公式计算回归方程。 3)、或用origin作图,测出回归线性方程。即A595nm=a×X( )+6 一般相关系数应过0.999以上,至少2个9以上。 4)、绘图时近两使点在一条直线上,在直线上的点应该在直线两侧。 (四)、蛋白质含量的测定: 样品即所测蛋白质含量样品(含量应处理在所测范围内),依照操作步骤1操作,测出样品的A595nm,然后利用标准曲线或回归方程求出样品蛋白质含量。

origin两条曲线拟合步骤

o r i g i n两条曲线拟合步 骤 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

以英文版origin75为例: 首先是输入数据(以两个拟合曲线为例): 一、在origin里面增加两列:点击鼠标右键,选择add new column, 二、选择C列,并将 其设为X(点击鼠标 右键选择) 三、从excel表格中选择需要的数据复制过来 然后是曲线拟合: 一、画散点图 全选数据后点击表格左下角的散点符号即可画出散点图 二、断开两组数据的关联 任选一点,双击,将dependent改为independent 三、第一条曲线拟合 单击最小梯度数据点,然后选择analysis→fit exponential decay→ first order 这样第一条线就拟合出来了 四、第二条曲线拟合 拟合之前需要将第一条线的拟合方程剪切,因为直接拟合第二条会将第 一条曲线方程覆盖 先选择需要拟合的数据,选择data→2g1 data1:C(X),D(Y) 然后依旧是analysis→fit exponential decay→first order,然后将剪切的方程粘贴上去,这样两个方程 然后双击进行修 改。

去掉方程的文本框:鼠标放在文本框上,右键→properties→选择none即可 增加图名,右键add text即可。 最后是输出图件 一、输出图片格式 二、输出工程文件 file→export page file→save project as 单曲线拟合在输入数据的时候不需要增加列数,直接输入,然后拟合即可。 带有异常值的数据在输入时就要再增加两列输入异常值,并将其中一列设置为X,然后和两条曲线一样进行拟合即可。

1、曲线拟合及其应用综述

曲线拟合及其应用综述 摘要:本文首先分析了曲线拟合方法的背景及在各个领域中的应用,然后详细介绍了曲线拟合方法的基本原理及实现方法,并结合一个具体实例,分析了曲线拟合方法在柴油机故障诊断中的应用,最后对全文内容进行了总结,并对曲线拟合方法的发展进行了思考和展望。 关键词:曲线拟合最小二乘法故障模式识别柴油机故障诊断 1背景及应用 在科学技术的许多领域中,常常需要根据实际测试所得到的一系列数据,求出它们的函数关系。理论上讲,可以根据插值原则构造n 次多项式Pn(x),使得Pn(x)在各测试点的数据正好通过实测点。可是, 在一般情况下,我们为了尽量反映实际情况而采集了很多样点,造成了插值多项式Pn(x)的次数很高,这不仅增大了计算量,而且影响了函数的逼近程度;再就是由于插值多项式经过每一实测样点,这样就会保留测量误差,从而影响逼近函数的精度,不易反映实际的函数关系。因此,我们一般根据已知实际测试样点,找出被测试量之间的函数关系,使得找出的近似函数曲线能够充分反映实际测试量之间的关系,这就是曲线拟合。 曲线拟合技术在图像处理、逆向工程、计算机辅助设计以及测试数据的处理显示及故障模式诊断等领域中都得到了广泛的应用。 2 基本原理 2.1 曲线拟合的定义 解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。 2.2 曲线拟合的方法 解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。 2.2.1 有理论模型的曲线拟合 有理论模型的曲线拟合适用于处理有一定背景资料、规律性较强的拟合问题。通过实验或者观测得到的数据对(x i,y i)(i=1,2, …,n),可以用与背景资料规律相适应的解析表达式y=f(x,c)来反映x、y之间的依赖关系,y=f(x,c)称为拟合的理论模型,式中c=c0,c1,…c n是待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的方法是最小二乘法。 2.2.1.1 线性模型的曲线拟合 线性模型中与背景资料相适应的解析表达式为: ε β β+ + =x y 1 (1) 式中,β0,β1未知参数,ε服从N(0,σ2)。 将n个实验点分别带入表达式(1)得到: i i i x yε β β+ + = 1 (2) 式中i=1,2,…n,ε1, ε2,…, εn相互独立并且服从N(0,σ2)。 根据最小二乘原理,拟合得到的参数应使曲线与试验点之间的误差的平方和达到最小,也就是使如下的目标函数达到最小: 2 1 1 ) ( i i n i i x y Jε β β- - - =∑ = (3) 将试验点数据点入之后,求目标函数的最大值问题就变成了求取使目标函数对待求参数的偏导数为零时的参数值问题,即: ) ( 2 1 1 = - - - - = ? ?∑ = i i n i i x y J ε β β β (4)

SPSS 10.0高级教程十二:多元线性回归与曲线拟合

SPSS 10.0高级教程十二:多元线性回归与曲线拟合 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:

除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。 【Dependent框】 用于选入回归分析的应变量。 【Block按钮组】 由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。下面的例子会讲解其用法。 【Independent框】 用于选入回归分析的自变量。

一种分段曲线拟合方法研究

一种分段曲线拟合方法研究 摘要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线,从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好. 关键词:分段曲线拟合Hermite插值分段点连续 Study on A Method of Sub-Curve Fitting Abstract:Sub-curve fitting is a commonly used processing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of t wo points’ cubic Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective. Key words:sub-curve fitting Hermite interpolation sub-point continuous

曲线拟合方法浅析

曲线拟合方法概述 工业设计张静1014201056 引言:在现代图形造型技术中,曲线拟合是一个重要的部分,是曲面拟合的基础。现着重对最小二乘法、移动最小二乘法、NURBS 三次曲线拟合法和基于RBF 曲线拟合法进行 比较,论述这几种方法的原理及其算法,基于实例分析了上述几种拟合方法的特性,以分析拟合方法的适用场合,从而为图形造型中曲线拟合的方法选用作出更好的选择。 1 曲线拟合的概念 在许多对实验数据处理的问题中,经常需要寻找自变量和对应因变量之间的函数关系,有的变量关系可以根据问题的物理背景,通过理论推导的方法加以求解,得到相应关系式。但绝大多数的函数关系却很复杂,不容易通过理论推导得到相关的表达式,在这种情况下,就需要采用曲线拟合的方法来求解变量之间的函数关系式。 曲线拟合(Curve Fitting) ,是用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之问的函数关系的一种数据处理方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,y i), i=1 , 2, 3…,m,其中各X i是彼此不同的。人们希望用一类与数据的规律相吻合的解析表达式y=f(x)来反映量x与y之间的依赖关系。即在一定意义下“最佳”地逼近或拟合已知数据。f(x)称作拟合函数,似的图 像称作拟合曲线。 2 曲线拟合的方法 2.1 最小二乘法 最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配,是进行曲线拟合的一种早期使用的方法一般最小二乘法的拟合函数是一元二次,可一元多次,也可多元多次。该方法是通过求出数据点到拟合函数的距离和 最小的拟合函数进行拟合的方法令f(x)=ax 2+bx+c ,计算数据点到该函数 所表示的曲线的距离和最小即:

曲线拟合的数值计算方法实验

曲线拟合的数值计算方 法实验 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按原理求出变换后变量的,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。

3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近的一种方法。在或社会活动中,通过实验或观测得到量x 与y 的一组数据对(X i ,Y i )(i=1,2,...m ),其中各X i 是彼此不同的 。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x ,c )来反映量x 与y 之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x ,c)常称作拟合模型 ,式中c=(c 1,c 2,…c n )是一些待定参数。当c 在f 中出现时,称为线性模型,否则称为。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c 使得拟合模型与实际在各点的(或),c)-f (f y e k k k 的平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线。有许多求解拟合曲线的成功方法,对于线性模型一般通过建立和求解来确定参数,从而求得拟合曲线。至于,则要借助求解非线性方程组或用最优化方法求得所需参数才能得到拟合曲线,有时称之为非线性。 曲线拟合:与路径转化时的误差。值越大,误差越大;值越小,越精确。 2.最小二乘法拟合:

HPLC标准曲线的制作

HPLC标准曲线的制作 你可以随便弄一个浓度进一针样品看一看你这个样品的吸收度如何,再根据你样品的吸收度配置适当的底浓度样品逐个稀释这样可以连检测线定量限一起做了,一举3得(最后将你得到的峰面积根据你的进样浓度做一个线性回归就行啦,线性好的话R的平方一般接近于1 。 请问下各位在上样的时候是进同浓度的不同体积的样液绘制标准曲线好还 是先配好不同浓度的样液再以相同体积进样好呢, 这2个有什么区别吗, 请你看看分析化学书,有关精密度和线性的关系就知道了,实在不行,可以查看2005版药典一部附录新药质量标准的技术要求项下。自己看看就知道了。 我觉得进不同浓度相同体积好.因为你进样体积不同.在同样的方法下,系统的 各项参数可能会发生变化.而且你要通过进样体积的变化来控制浓度范围,这样也不大可行.一般我们进样的体积是5到20微升.而这个狭小的范围我们能调控的浓度线性范围非常窄.而通过事先调配不同浓度的话,就简单可行,而且浓度范围可以任意去控制.在实际操作中,老师也一直是教我们通过控制不同浓度来制作标准曲线的.以上只是个人的粗浅看法,欢迎高手们前来批评指正!!!!!!!!!! 前面几个站友说得都很好。我简单再补充一点自己的看法。 一般而言,还是不同浓度进相同体积做标曲是最规范的做法,而且可以有效避免人为误差。比如说,你的一个浓度配错了,如果以这个浓度为基准进不同的体积,会导致你最后的结果会整体偏大或偏小。所以要特别注意。 但实际工作中,如果你们的产品做得比较成熟了,而且做实验的经验比较丰富,大家为了省事还是多采用配一个浓度进不同的体积。 以进样量做标准曲线和以不同浓度进样相同体积做标准曲线差别不大。

曲线拟合和插值运算原理和方法

实验10 曲线拟合和插值运算 一. 实验目的 学会MATLAB 软件中软件拟合与插值运算的方法。 二. 实验内容与要求 在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。 根据测量数据的类型有如下两种处理观测数据的方法。 (1) 测量值是准确的,没有误差,一般用插值。 (2) 测量值与真实值有误差,一般用曲线拟合。 MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。 1.曲线拟合 已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i i i f x y =-∑ 最小的f(x). 格式:p=polyfit(x,Y ,n). 说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。 [例 1.9] >>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值 >>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值 >>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数 >>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值 >>y1=polyval(p,1x ); %求出f(x)在1x 的值 >>plot(x,y,?*r ?, 11,x y ?-b ?) %比较拟合曲线效果 计算结果为: p= 0.5614 0.8287 1.1560 即用f(x)=0.56142 x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。

标准曲线制作考马斯亮蓝法测蛋白质含量

标准曲线制作考马斯亮蓝法测蛋白质含量

标准曲线制作—考马斯亮蓝法测蛋白质含量 一、标准曲线 一般用分光光度法测物质的含量,先要制作标准曲线,然后根据标准曲线查出所测物质的含量。因此,制作标准曲线是生物检测分析的一项基本技术。 二、蛋白质含量测定方法 1、凯氏定氮法 2、双缩脲法 3、Folin-酚试剂法 4、紫外吸收法 5、考马斯亮蓝法 三、考马斯亮蓝法测定蛋白质含量—标准曲线制作 (一)、试剂: 1、考马斯亮蓝试剂: 考马斯亮蓝G—250 100mg溶于50ml 95%乙醇,加入100ml 85% H3PO4,雍蒸馏水稀释至1000ml,滤纸过滤。最终试剂中含0.01%(W/V)考马斯亮蓝G—250,4.7%(W/V)乙醇,8.5%(W/V)H3PO4。 2、标准蛋白质溶液: 纯的牛血清血蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度同0.15mol/LNaCl配制成100ug/ml蛋白溶液。 (二)、器材: 1、722S型分光光度计使用及原理()。 2、移液管使用()。 (三)、标准曲线制作: 1、 试管编号0 1 2 3 4 5 6 100ug/ml标准蛋白(ml)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.15mol/L NaCl (ml) 1 0.9 0.8 0.7 0.6 0.5 0.4 考马斯亮蓝试剂(ml) 5 5 5 5 5 5 5 摇匀,1h内以1号管为空白对照,在595nm处比色 A595nm 2、以A595nm为纵坐标,标准蛋白含量为横坐标(六个点为10ug、20 ug、30 ug、

药品的配制(磷酸缓冲液的配制) 一、药品的配制步骤 (一)、实验准备: 1、准备所需的药品和玻璃仪器。 2、洗涤。(怎样洗涤算干净?) (二)、计算: 1、百分比浓度计算: 1)、G/V比 例如配1% NaCl,称1g NaCl溶于100ml 水。 2)、V/V比: 例如配75%乙醇100ml,75%×100%=100%×X, X=75ml。取75ml无水乙醇,加25ml蒸馏水。 乙醇:乙醚:丙酮=2:1:2配500ml,各取200 ml,100 ml,200 ml混合。3)G/V比:用的较少,如计算灰分中某种元素如Fe的含量。 2、摩尔浓度计算:注:药品的分子量一般在标签中注明。 1)、0.1M或0.1mol/L NaCl配100ml。 M=质量/体积(L)称取NaCl0.1×0.1×40=0.4g 摩尔数=G(g)/摩尔质量2)、0.1mMNaCl配100ml mM=毫摩尔数/体积(L)称取NaCl0.1×0.1×40=0.4g 毫摩尔数=G(mg)/摩尔质量 3)、0.1uNaCl配100ml mM=微摩尔数/体积(L)称取NaCl0.1×0.1×40=0.4mg 微摩尔数=G(ug)/摩尔质量称取NaCl0.1×0.1×40=0.4ug 3、混合溶液配制的计算: 如配3uMEDTA,2.25mM NBT以及60uM 溶液100ml,用50mM磷酸缓冲液配制。 注意:1、分别标定体积计算 2、分别配制再混合,但总体积不能为100ml

曲线拟合的数值计算方法实验.

曲线拟合的数值计算方法实验 郑发进 2012042020022 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,Y i)(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型,式中c=(c1,c2,…c n)是一些待定参数。

ELISA标准曲线制作方法.pdf

ELISA标准曲线制作方法 一般而言,我们拟合ELISA标准曲线选用比较经典的Curve Expert 1.3或者Curve Expert 1.4软件。现在我们以Curve Expert 1.4为例,对ELISA标准曲线绘制方法进行详述。 Generally speaking, the standard fitting curve of ELISA is based on the classic software of Curve Expert 1.3 or Curve Expert 1.4. Now we will use the Curve Expert 1.4 to illustrate how to construct the ELISA standard curve. 1.点击Curve Expert 1.4,打开应用程序,截图界面如下: Click Curve Expert 1.4, and then open the application programs. You will see the following screen shot.

2.在X轴输入标准品的OD值,Y轴输入相应的标准品的浓度,截图界面如下: Input the value of OD on the X-axis against the concentration of samples on the Y-axis. The following screen shot will appear like this.

3.单击上图界面中的图标,出现如下界面 Click the icon showed on the above screen shot and you will see the following picture. 4.单击上图界面中的ALL OFF 按钮,出现如下界面 Click the ‘All Off’ button , you can see the following screen shot.

曲线拟合方法

今天帮同学做了一个非线性函数的曲线拟合,以前没做过,所以是摸着石头过河。费了一下午时间,终于把曲线拟合出来了,顺道也学习了使用Matlab进行曲线拟合的方法,把学习所得记录下来,和大家共享。 一、单一变量的曲线逼近 Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。 假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。 1、在命令行输入数据: 》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475]; 》y=[5 10 15 20 25 30 35 40 45 50]; 2、启动曲线拟合工具箱 》cftool 3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)点击“Data”按钮,弹出“Data”窗口; (2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图; (3)点击“Fitting”按钮,弹出“Fitting”窗口; (4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有: ?Custom Equations:用户自定义的函数类型 ?Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) ?Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) ?Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2) ?Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving ?Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ ?Power:幂逼近,有2种类型,a*x^b 、a*x^b + c ?Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型 ?Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思) ?Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)?Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b) 选择好所需的拟合曲线类型及其子类型,并进行相关设置: ——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待

标准曲线的绘制

标准曲线绘制 在分析化学实验中,常用标准曲线法进行定量分析,通常情况下的标准工作曲线是一条直线。 标准曲线的横坐标(X)表示可以精确测量的变量(如标准溶液的浓度),称为普通变量,纵坐标(Y)表示仪器的响应值(也称测量值,如吸光度、电极电位等),称为随机变量。当X取值为X1, X2,…… Xn时,仪器测得的Y值分别为Y1, Y2, …… Yn。将这些测量点Xi, Yi描绘在坐标系中,用直尺绘出一条表示X与Y 之间的直线线性关系,这就是常用的标准曲线法。用作绘制标准曲线的标准物质,它的含量范围应包括试祥中被测物质的含量,标准曲线不能任意延长。用作绘制标准曲线的绘图纸的横坐标和纵坐标的标度以及实验点的大小均不能太大或太小,应能近似地反映测量的精度。 由于误差不能完全避免,实验点完全落在工作曲线的的情况是极少的,尤其是在误差较大时,实验点比较分散,它们通常并不在同一条直线上,这样凭直觉很难判断怎样才能使所连接的直线对于所有实验点来说误差是最小的,目前较好的方法是对实验点(数据)进行回归分析。 研究随机现象中变量之间相关关系的数理统计方法称为回归分析,当自变量只有一个或X与Y在坐标图上的变化轨迹近似一直线时,称为一元线性回归。 2.6.1一元线性回归方程的求法 确定回归直线的原则是使它与所有测量数据的误差的平方和达到极小值,设回归直线方法为 (2-15) 式中a表示截距,b表示斜率。 假设Xi和Yi (i=1,2,3,……,n)是变量X和Y的一组测量数据。对于每一个Xi值,在直线() 上都有一个确定的值。但值与X轴上Xi处的实际测定值Yi是不相等的,与Yi之差 为: (2-16) 上式表示与直线()的偏离程度,即直线的误差程度。如果全部n个测定引起的总偏 差用表示,则偏差平方和s为 (2-17)

标准曲线的绘制吸光度标准曲线绘制

标准曲线的绘制-吸光度标准曲线绘 制 生物化学实验报告ALT与其吸光度的标准曲线绘制 采集样本:广西医科大学口腔医学2016级13班四个组中7组生物化学实验数据采集时间:2016年11月15日2016~2016上学期第十一周周一下午采集人:何洁梅 一、几组ALT与其吸光度的标准曲线数据记录 ALT活力单位A520吴修团1组A520黎丁菱1组A520杨璇璇1组A520谢晓兰2组A520莫雪玲2组A520李文良3组A520文全海4组 00000000

二、各采集样本汇总图 样本1测定得待测血清ALT活力单位为50U/L 样本2测定得待测血清ALT活力单位为 97U/L 样本3测定得待测血清ALT活力单位为 135U/L 样本4测定得待测血清ALT活力单位为 70U/L 样本5测定得待测血清ALT活力单位为 148U/L 样本6测定得待测血清ALT活力单位为

45U/L 样本7测定得待测血清ALT活力单位为 98U/L 四、采集数据处理结果分析 1.数据总结 样本编号测定的ALT活力单位是否大于40U/L正常/非正常 150是非正常 297是非正常 3135是非正常 470是非正常 5148是非正常 645是非正常 798是非正常 平均值92均为“是”均为“非正常” 2.针对数据处理结果的分析 采集的7组数据经标准曲线测量后,得到的ALT活力单位值均大于40,即均为非正常值,综上,认为待测血清中ALT 含量超于正常值。 3.针对源数据的分析

采集的7组数据中样本4、5、6的数据经画图后可基本分布呈过原点的线性关系,符合理论规律,但其他的数据误差较大。另外,比较符合理想标准曲线的4、5、6样本的三个ALT活力单位值也存在较大的出入。 4.经分析,总结可能的误差来源如下 配置丙酮酸标准溶液、底物溶液、磷酸缓冲液的混合溶液时,丙酮酸标准溶液的剂量都很小,容易造成误差。 加入2,4—二硝基苯肼的时间可能有误差,保温的时间,以及加入NaOH 以停止反应的时间都有可能有偏差,容易造成较大。如何用EXCEL绘制标准曲线 Excel是Microsoft offices系统的重要组成,它是界于WORD字处理软件与ACCESS数据库软件之间的电子表格工具,功能十分强大,特别适合于日常工作使用。使用得好,完全比目前所有的检验科办公系统优秀。 现就先介绍一下如何使用Excel绘

origin两条曲线拟合步骤知识讲解

o r i g i n两条曲线拟合 步骤

以英文版origin75为例: 首先是输入数据(以两个拟合曲线为例): 一、在origin里面增加两列:点击鼠标右键,选择add new column, 二、选择C 列,并将其 设为X(点击 鼠标右键选 择)

三、从excel表格中选择需要的数据复制过来 然后是曲线拟合: 一、画散点图 全选数据后点击表格左下角的散点符号即可画出散点图 二、断开两组数据的关联 任选一点,双击,将dependent改为independent 三、第一条曲线拟合 单击最小梯度数据点,然后选择analysis→fit exponential decay→first order

这样第一条线就拟合出来了 四、第二条曲线拟合 拟合之前需要将第一条线的拟合方程剪切,因为直接拟合第二条会将第一条曲线方程覆盖 先选择需要拟 合的数据,选 择data→2g1 data1:C(X),D(Y)

然后依旧是analysis→fit exponential decay→first order,然后将剪切的方程粘贴上去,这样两个方程就出来了。 然后双击进行修改。 去掉方程的文本框:鼠标放在文本框上,右键→properties→选择none即可 增加 图名,右 键add text即可。 最后是输出图件 一、输出图片格式二、输出工程文件 file→export page file→save project as

单曲线拟合在输入数据的时候不需要增加列数,直接输入,然后拟合即可。带有异常值的数据在输入时就要再增加两列输入异常值,并将其中一列设置为X,然后和两条曲线一样进行拟合即可。

相关文档
最新文档