信号瞬时频率的估算

信号瞬时频率的估算
信号瞬时频率的估算

中山大学

硕士学位论文

信号瞬时频率的估算姓名:王国栋

申请学位级别:硕士专业:计算数学

指导教师:毕宁

20100525

信号瞬时频率估计的研究

信号瞬时频率估计方法的研究: 在信号处理中,信号本身有很多重要的属性,频率特性有:带宽、各频率分量的相对幅值、频率分量间的相对相位关系等;时域特性有信号时宽等。在很多时候,对信号的处理都涉及到需要对平稳或者非平稳信号的频率特性进行估计。平稳信号的频率特性是时不变的,而非平稳信号的频率特性往往是时变的,因此,瞬时频率的定义主要是针对非平稳信号而提出的。Ville 给出了一种统一的瞬时频率的定义: 1()[arg ()] 2i d f t z t dt π= 其中,z(t)是实信号()cos(())s t A t φ=的解析信号。 瞬时频率估计的方法可以分为时频分析和时域分析两类。 就平稳信号而言,由于其功率谱密度函数是不随时间变化的,因此可以直接用参数化或者非参数化谱估计的方法来得到其功率谱,将功率谱中峰值所对应的频率值作为组成该平稳信号的各频率分量的频率的估计值。但是,对于非平稳信号而言,由于其功率谱密度函数是时变的,因此如果要在频域估计其瞬时频率,最简单的方法就是先将其视为短时平稳的信号,每次都用足够短的时间内的数据来构建其功率谱密度函数,将估计得到的结果作为该短时间内的信号瞬时频率,这也就是时频分析中的短时傅立叶变换方法。当然,时频分析还有诸如小波变换等其他的性能更好的变换方法这里不再展开叙述。 下图是用短时傅立叶变换得到的一个非线性调频信号的时频分布图:

时域处理方法则主要是根据信号瞬时频率的定义,先将实信号变换为复信号,再通过对复信号的相位进行求导(模拟)或者差分(数字)的方法来求得瞬时频率。时频分析处理的好处是对于有多个频率分量的信号可以根据功率谱密度函数的各个峰值点估计出对应分量的瞬时频率。而基于相位求导或者差分的时域处理方法却是无法对多频率分量的信号进行瞬时频率估计的。针对这一问题,HUANG. N. E 提出了局域波分解方法,首先将复杂的信号分解成有限个基本模式分量,再对这些基本模式进行相位求导或者差分以估计各分量的瞬时频率。通过局域波分解的方法可以很好的解决相位求导或差分方法的缺陷。时域处理的好处是计算量远小于时频分析处理。 这里主要讨论时域的处理。而要进行时域处理,则通常要首先将物理上的实信号变换为复信号以便取其相位。现有的两种的方法分别是正交变换和hilbert变换。

频谱及信号分析技术

频谱及信号分析技术 【摘要】随着电子技术的发展,世界各国加速了对电子领域的研究,具体体现在竞相提高通信、雷达、遥控、导航等无线电电子设备的威力和效能等方面。在这些方面,频谱分析成为必不可少的信号分析手段。频谱分析可以对信号的频率、电平、频谱纯度及抗干扰特性进行分析,使其成为电子领域必不可少的测量手段。对于信号分析,使用的仪器也是重中之重。其中使用最广泛的事频谱分析仪和矢量信号分析仪等。 【关键词】频谱、信号分析、应用、频谱分析仪、矢量信号分析仪首先介绍一下信号频谱分析的方法,信号又分为周期和非周期两种。下面就连续周期和非周期信号频谱分析的方法做一个介绍和研究。在信号处理过程中,频域分析方法往往比时域分析方法更方便和有效。对于确知连续时间信号,其频域分析可以通过连续时间傅里叶变换来进行,但是,这样计算出来的结果仍然是连续函数,计算机不能直接加以处理。为了实现数值计算,还需要对其进行离散化处理,即采用离散傅里叶变换(DFT)进行分析。DFT 的快速算法的出现,使 DFT 在数字通信、图像处理、功率谱估计、系统分析与仿真、雷达信号处理、光学、医学等各个领域都得到广泛应用。对于时间连续信号f(t),其频谱分析可以通过连续时间傅里叶变换(CTFT)来进行。连续时间傅里叶变化特别适合于对时间连续信号的理论分析,但是,由于函数 f(t)和其频谱函数都是连续函数,不能够直接用计算机来处理,因此在进行数值计算时必须将其离散化,然后利用离散傅里叶变换(DFT)实现近似计算。在已知连续信号数学解析式的情况下,非周期信号的频谱可以根据傅里叶变换的定义进行解析计算。实际应用中的多数信号不存在数学解析式,信号的频谱无法利用傅里叶分析公式方法直接计算,一般需采用数值方法进行近似计算分析频谱,在进行数字计算时,需对计算的连续变量进行离散化。由于连续非周期信号 x(t) 的频谱函数 X(jω)是连续函数,因此,需要对其进行离散化处理得到 x[n]以近似分析相应的频谱。通过建立序列 x[n]的离散傅里叶变换 X[m]与连续非周期信号 x(t)的傅里叶变换 X(jω)之间的关系,可以利用DFT对连续非周期信号频谱进行近似分析。在利用DFT分析连续时间信号的频谱时,涉及频谱混叠、频率泄漏及栅栏现象。频率混叠与连续信号的时域抽样间隔有关,频率泄漏与信号的时域加窗截短的长度及窗型有关,栅栏现象与DFT的点数有关。在大多数情况下,一般已知待分析连续信号的最高频率,以及希望的DFT的频率分辨率。 频谱分析仪是功能强大并广泛应用于射频信号检测的一种仪器。现代外差式频谱分析仪由射频前端、第1级混频、多级中频处理、视频处理、检波和踪迹输出5部分组成,如图1所示。

基于S变换的信号瞬时频率特征提取

基于S 变换的信号瞬时频率特征提取 摘要: S 变换是一种优越的时频分析方法,能够清晰表达信号瞬时频率的变化特征。与传统时频分析方法相对比,S 变换的抗噪性较强,无交叉项干扰。本文提出了采用S 变换来提取调制信号的瞬时频率。仿真实验结果表明,S 变换时频谱能够清晰表示出不同信号的瞬时频率特征。 关键词:时频分析;S 变换;时频图;调制信号;瞬时频率 1 引言 信号的瞬时频率特征可以反映信号在不同时刻的频率变化规律。与传统的时频分析方法相比较,S 变换的时频分析方法具有频率分辨率高、抗噪性强、无交叉项干扰等优点,这使得S 变换能够准确提取信号的瞬时频率。 2S 变换的基本原理 2.1S 变换的提出 S 变换由短时傅里叶变换发展而来,借鉴了短时傅里叶变换加窗的思想。将短时傅里叶变换中的高斯窗函数进行相关伸缩和平移,从而使信号的频率分辨率具备随频率的适应性。这个特点使得S 变换在信号的时频分析中具有明显的优势。 S 变换[1]是由地球物理学家Stockwell 于1996年首次提出的。它可由短时傅里叶变换推导而来,对于连续信号()h t 的短时傅里叶变换为: 2(,)()()j ft STFT f x t w t e dt π+∞ --∞τ=-τ?(1) 其中, 22()t t -δω= (2) 若窗函数为归一化的高斯函数,且对窗函数进行依赖频率的伸缩和平移,那么 22()2(,)t f t f τ τ--ω-= (3) 这样就得到了连续信号()h t 的S 变换定义式: 22()22(,)(f t i ft ST f h t e dt πτ-+∞---∞τ=? (4) 其中,τ为时移因子。 利用S 变换与傅里叶变换之间的紧密联系,可实现信号从S 变换中的无损恢复。S 变换的逆变换形式如式(5)所示: {} 2()(,)j ft h t S f d e df πττ+∞ +∞-∞-∞=?? (5) S 变换还可以看成是信号的小波变换与相位因子的乘积。它采用平移、伸缩的局部高斯窗函数作为母小波,具有频率分辨率高、抗噪性强的优点,且不需满足小波变换的容许性条件。因此,S 变换并不是严格意义上的小波变换,但可以看成是小波变换的一种扩展。 2.2S 变换的瞬时频率表达 由于S 变换为复数,包含实部和虚部,所以S 变换可以表示为: (,)(,)(,)j f S f A f e τττΦ= (6) 其中(,)A f τ为振幅谱,(,)f τΦ为相位谱: (,)f τA =[][]Im (,)(,)arctan Re (,)S f f S f τττ????Φ=?????? (8)

基于EMD的信号瞬时频率估计_刘小丹

第32卷第1期2009年3月 辽宁师范大学学报(自然科学版)Journal of Liaoning Normal University (Natural Science Edition ) Vol.32 No.1Mar. 2009 文章编号:100021735(2009)0120051207 基于EMD 的信号瞬时频率估计 刘小丹, 孙晓奇, 沈 滨 (辽宁师范大学计算机与信息技术学院,辽宁大连 116029) 收稿日期:2008209224基金项目:辽宁省教育厅科学技术研究项目(20060466) 作者简介:刘小丹(19572),男,吉林蛟河人,辽宁师范大学教授,硕士.E 2mail :xdliu @https://www.360docs.net/doc/cd18272729.html, 摘 要:分析了信号瞬时频率的定义及其两种主要的获得信号相位的方法:解析信号法和正交模型法.提出了一种基 于经验模式分解的新的瞬时频率估计方法———正交包络法.该方法计算简单,克服了正交模型法无法由一个时间函数 确定两个时间函数的困难.与Hilbert 变换方法相比,正交包络法使边界问题得到了明显改善.实验证明这是一种有效 的瞬时频率估计方法. 关键词:瞬时频率;正交包络法;EMD ;Hilbert 变换 中图分类号:TP202.4 文献标识码:A 根据Fo urier 分析理论,任何一个平稳信号都可以表示为多个谐波的加权和,对于谐波的某一特定频率,其幅值和相位是常数.而对于非平稳信号,由于其谱特性是随时间变化的,因此不能简单地用Fourier 变换作为非平稳信号的分析工具[1],平稳信号的频率概念也就无法准确解释非平稳信号的时变特性,于是就需要引入一个随时间变化的频率的概念,即瞬时频率. 瞬时频率的一个重要特性是作为时间的函数,用它可以确定信号谱峰的位置.基于这一特性,瞬时频率的概念有着极其重要的应用,因此瞬时频率的估计也就成为许多实际的信号处理应用中一项很有意义的工作.一些信息探测系统只要系统与目标之间有相对运动,多普勒效应就会使频率改变,传播媒质的扰动也会使频率变化,雷达、声呐、移动通信、医疗设备和天文观测都存在这一问题.以雷达信号处理为例,其主要目的是对目标实行检测、跟踪和成像,而像军用飞机一类的目标为了逃避被跟踪,其径向速度是随时间改变的,这使得雷达的多普勒频率具有非平稳的谱.因此,跟踪这类目标需要用到瞬时频率估计技术.瞬时频率估计技术也应用于生物医学.例如,血流的多普勒变化直接关系到心脑血管疾病的诊断.同时,在地震信号处理中,可以利用瞬时频率来确定不同的地质构造.在语音处理等其他诸多领域都有瞬时频率估计技术的应用,详见文献[223]. 从物理学的角度,信号可以分为单分量信号和多分量信号.单分量信号在任意时刻都只有一个频率,该频率称为信号的瞬时频率,而多分量信号则在某些时刻具有多个不同的瞬时频率. 瞬时频率的定义最早是由Carson 和Fry 在研究调频信号时分别提出的,在Gabor 提出了解析信号的概念之后,Ville 将二者结合起来,提出了现在普遍接受的实信号的瞬时频率的定义[4],即:实信号的瞬时频率就是该信号所对应的解析信号的相位关于时间的导数.上述定义只对单分量信号有意义.下面分析一下将瞬时频率定义为复信号相位关于时间的导数的原因. 设一复信号c (t )=A (t )e j φ(t ),A (t )、 φ(t )分别称为信号c (t )的幅度和相位.c (t )的频谱为C (ω)=12 π∫+∞-∞c (t )e -j ωt d t c (t )的总能量E =∫+∞-∞|c (t )|2d t =∫+∞-∞ |C (ω)|2d ω 于是,归一化的函数|c (t )|2/E 和|C (ω )|2/E 可分别作为信号c (t )在时域和频域的能量密度函数,从而得到信号频谱C (ω )的平均频率: 〈ω〉=1E ∫+∞-∞ω|C (ω)|2d ω=1E ∫+∞-∞ ωC (ω)C 3(ω)d ω (3表示共轭运算)

基于分段波形的信号瞬时频率计算方法

龙源期刊网 https://www.360docs.net/doc/cd18272729.html, 基于分段波形的信号瞬时频率计算方法 作者:张亢,程军圣,杨宇,邹宪军 来源:《湖南大学学报·自然科学版》2011年第11期 摘要:针对局部均值分解(Local Mean Decomposition,LMD)中乘积函数(Product Function,PF)分量的瞬时频率计算问题,引入了一种新的信号瞬时频率计算方法.该方法基于分段波形,先将信号分成若干个全波段(full wave),然后以一组递增的反正弦函数定义每个全波段的瞬时相位,进而得到信号的瞬时频率.由该方法得到的瞬时频率理论上是正的、稳定的并且能够确保信号局部特征信息的完整.应用该方法计算了仿真信号和实际齿轮故障振动信号的瞬时频率,并与其他方法求得的瞬时频率进行了对比.结果表明,本文方法非常适合求取信号的瞬时频率. 关键词:故障检测;局部均值分解;乘积函数;纯调频信号;瞬时频率;分段波形 中图分类号:TN911.7 文献标识码:A A Piece-wise Based Signal Instantaneous Frequency Computing Method ZHANG Kang, CHENG Jun-sheng, YANG Yu, ZOU Xian-jun (State key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan Univ, Changsha,Hunan 410082,China) Abstract:To address the computing instantaneous frequency of the product function (PF) in local mean decomposition (LMD), a new instantaneous frequency of a signal computing method was introduced. This method is piece-wise wave based. Firstly, a signal was separated to a number of full waves. Then, the instantaneous phase of each full wave was defined by a set of monotonic increasing arcsine functions. Therefore, the instantaneous frequency of a signal was obtained. Theoretically, the instantanoues frequency obtained in this method was positive, stable and could guarantee the characteristic information of signal integrity. This method was applied to compute the instantaneous frequency of simulated signals and actual gear fault vibration signals, and the results were compared with those obtained in other methods. It has been shown that this method is quite suitable for extracting the instantaneous frequency of a signal. Key words: fault detection;local mean decomposition; product function; pure frequency modulated signal; instantaneous frequency; piece-wise wave

电子测量实验4 信号频率与相位分析 实验报告

实验四 信号频率与相位分析 一、实验目的 1 理解李沙育图形显示的原理; 2 掌握用李沙育图形测量信号频率的方法; 3 掌握用李沙育图形测量信号相位差的方法; 4 用示波器研究放大电路的相频特性。 二、实验原理和内容 1 李沙育图形 扫描速度旋钮置”X-Y ”位置时,Y1通道变成x 通道,在示波器的y 通道(Y2)和x 通道(Y1,与Y2通道对称) 分别加上频率为f y 和f x 的正弦信号,则在荧光屏上显示的图形称为李沙育(或李萨如)图形。李沙育图形的形状主要取决于f y 、f x 的频率比和相位差。 例如,当f y /f x =1,且相位差为0时, 屏幕上显示一条对角线;当f y /f x =2,且相位差为0时,屏幕上显示“∞”;当f y /f x =1,但相位差不为0时,屏幕上显示一个椭圆。图4-1所示为f y /f x =2且相位差为0时的李沙育图形。 2 李沙育图形法测量未知信号的频率 扫描速度旋钮置”X-Y ”位置,被 测信号加到Y2通道,用信号发生器输出一个正弦信号加到X 通道(Y1),Y1、Y2的偏转灵敏度置相同位置,由小到大逐渐增加信号发生器输出信号频率,当屏幕上显示一个稳定的椭圆时,信号发生器指示的频率即为被测未知信号的频率。 3 李沙育图形法测量信号相位差 设u x = U xm sin (ωt+θ),u y = U ym sin ωt ,分别加到x 通道(Y1通道)和Y2通道,扫描速度旋钮置”X-Y ”位置,荧光屏上显示的李沙育(或李萨如)图形如图5-2所示。则 m x x 01sin -=θ (4-1) 4 放大电路的相频特性研究 放大电路的相频特性是指输出信号与输入信号的相位差与信号频率的关系。采用李沙育图形法可以测量相位 差。保持输入信号幅度不变,改变输入信号频率,逐点测量各频率对应的相位差,采用描点法作出相频特性曲线。 三、实验器材 1、信号发生器 1台 2、示波器 1台 3、实验箱 1台 图4-1 f y /f x =2且相位差为0时的李沙育图形 U x t t U y 图4-2李沙育图形法测相位差 x 0 x m

详细讲解频率和相位之间的关系

频率和相位是周期函数的两个独立参数,想像一下两个人围着一个圆形场地跑步,离起跑点的圆弧距离是运动位置与起跑点所夹圆心角的函数,这个夹角就是相位,而一定时间所跑圈数是频率,如果两人速度相同(即频率相同),则两人之间的距离是始终不变的,也就是相位差是一定的,这个相位差大小取决于后跑者比先跑者延后起跑的时间。如果两人速度不一样,则之间距离(相位差)不断变化。所以频率不同,相位差不固定。鉴相器不管频率只比较相位,只要相位变化,就给信号给控制器对频率加以控制,使其二者频率一致。 “F(t) = sin(2πft +α):f就是频率;2πft + α 就是相位;α是t = 0时的相位,即初相位。就是这么简单。 首先,我们通常说的“相位”这个词其实有两个含义: 一、特指周期信号的初相位 二、一般意义上的相位,即“瞬时相位” 频率和相位,一开始都是周期信号的属性,频率是单位时间内的周期数,初相位指周期信号相对所选时间原点的位置,瞬时相位则是指周期信号在任一时刻“走到了一个周期中的哪一步”。 对上面的公式,如果从数学角度理解: 频率就是相位的微分(相位的“行进速度”)或者相位是频率的积分; 这种关系,从数学上推广一步,即使f是变量也成立,再回到物理世界,就发现,不必强求“严格的”周期信号,频率和相位都可以是瞬时值。 频率不同,“初相位”之差是没有意义的,但“瞬时相位”之差仍然存在,不就是两个2πft + α 之差么? 所谓鉴相器的“相”,指的是就是这种瞬时相位,所以自然不必局限于周期信号,当然也不必局限于“同频”信号,否则“鉴相器”就是个错误的词了。鉴相器的功能,理论上把这种瞬时相位差变换成电压值(当然实际电路总需要经过一段时间才能得出结果,不可能完全“瞬时”) 锁相环的工作原理,表面看是用鉴相器的输出控制VCO的频率,但实际是通过瞬时频率的积分达到相位控制,最终使反馈到鉴相器的瞬时相位与输入的瞬时相位之差趋于零。

MATLAB程序分析小波变换和FFT变换后信号的频率成分

clear all clc close all fs=1000; T=20; t=0:1/fs:T-1/fs; f0=50; f1=200; % 线性调频信号 s=chirp(t,0,5,300); figure plot((0:length(s)-1)/length(s)*fs,abs(fft(s))); xlim([0 fs/2]) xlabel('f/Hz'); ylabel('幅度') % 单频信号 % s=sin(2*pi*f0*t)+2*sin(2*pi*f1*t); % s=sin(2*pi*f0*t); y=s+0.5*randn(1,length(t)); % 加高斯白噪声

% 加泊松分布的噪声 % lambda = 0.5; % r = poissrnd(lambda,1, length(t)); % y=s+r; % 不同小波核函数及尺度的小波变换,可以选择操作 % c = cwt(s,1:32,'cgau4'); % c = cwt(s,[64 32 16:-2:2],'morl'); c = cwt(s,[3 18 12.9 7 1.5],'db2'); % c = cwt(s,1:32,'sym2'); % c = cwt(s,1:64,'sym4','abslvl',[100 400]); Nfft=fs/4; NN=(T*fs/Nfft); for kk=1:5 for ii=1:NN mu(:,ii)=abs(fft(s((1+(ii-1)*Nfft):(Nfft+(ii-1)*Nfft)))); aa(:,ii)=abs(fft(y((1+(ii-1)*Nfft):(Nfft+(ii-1)*Nfft)))); bb(:,ii)=abs(fft(c(kk,(1+(ii-1)*Nfft):(Nfft+(ii-1)*Nfft)))); end figure

多线性调频信号瞬时频率估计迭代算法

密级:无 多线性调频信号瞬时频率估计迭代算法 二炮工程大学士官学院 作者 于鹏鹏 黄向阳 艾名舜 摘要:针对多线性调频信号的瞬时频率估计问题提出一种快速算法,该算法以特征子空间跟踪算法为基础,结合矩阵线性变换和多项式方程求根得到参数估计。该算法的优点是计算量小,其计算量仅与短时傅里叶变换相当;频率分辨力较高;多信号情况下不存在交叉项问题;当多信号的功率差异达到14dB 时仍能有效估计瞬时频率。由于采用了矩阵求逆的步骤,该算法在低信噪比环境下性能较差。仿真实验显示在信噪比不低于6dB 时本文算法具有明显的优越性。 关键词:线性调频 瞬时频率 时频分析 一、引言 线性调频 (Linear Frequency Modulation, LFM) 信号在雷达、声纳、通信等领域有着广泛的应用,由于瞬时频率随时间变化,LFM 信号具有非平稳特性,因此通常采用时频分析的方法对其进行分析及参数估计。短时傅里叶变换是一种简单的时频分析方法,但是时频聚集性较差;Wigner-Ville 分布 [1] (WVD )的时频聚集性较好,但由于采用了二次型变换,在多LFM 信号情况下不可避免地存在 交叉项,为信号参数估计造成了一定的困难;在Cohen 类时频分布[2]的框架下各种核函数被设计出来用于抑制交叉项,自适应核函数[3-4]的提出进一步提高了交叉项的抑制能力,然而性能较优的时频分析方法计算量也较大,因此在一定程度上较低了此类算法的实用性。 上述方法都是描述信号功率在时频平面上的分布,即信号的功率谱,其频率分辨率受限于信号时窗长度的倒数,这个限制被称为“瑞利限”。超分辨算法利用信号特征子空间的正交性得到信号在频域上的“伪谱”,使有限长信号的频率分辨率能够突破“瑞利限”,从而获得更优的参数估计,但由于传统的超分辨频率估计算法的计算量较大,该类算法很少被用于估计非平稳信号参数。 本文提出一种基于子空间跟踪的信号瞬时频率估计算法,该算法利用数据投影实现信号特征子空间的跟踪,对特征子空间矩阵进行线性变换后得到多项式系数,进而利用多项式方程求根的方法获得信号瞬时频率的估计。本文算法得到的是信号在时频平面上的 “伪谱”,不仅具有较好的时频聚集性,而且在多LFM 信号情况下不存在交叉项的问题,更重要的是,本文算法的计算量仅与短时傅里叶变换相当,因此是一种快速算法。 二、信号模型 考虑一维时间序列S (t )由M 个调频信号线性叠加而成 1 ()()(),1,2,...,M m m m t A t t t T ==+=∑S s n (1) 这里21()exp(2())2m m m t j f t k t π=-+s ,m =1,2,…,M , A m 、f m 和m k 分别表示第m 个信号的幅度、起 始频率和调频斜率。T 表示有限长采样点数,设采样频率为f s ,测向无模糊范围不大于1 2s f 。n (t )表 示通道噪声,这里假设为零均值高斯白噪声,设等间隔采样,将N 个连续的采样点构成的向量称为一个快拍,N > M ,忽略噪声,t 0时刻的快拍向量0()t y 可以表示为 []0 000 022(1)1111122()(),(1),...,(1)(),(),...,()[(),(),...,()]m m t t M M M j f t j f N t m m m m m m m m m t t M M t t t t t t N A t A t e A t e A t A t A t ππ=-?--?======--+??=??????=?∑∑∑y S S S s s s s s s F (2) 其中,F 是包含当前瞬时频率的矩阵,表达式为

实验一-LabVIEW中的信号分析与处理

实验一 LabVIEW中的信号分析与处理 一、实验目的: 1、熟悉各类频谱分析VI的操作方法; 2、熟悉数字滤波器的使用方法; 3、熟悉谐波失真分析VI的使用方法。 二、实验原理: 1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法:·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。 ·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。 ·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。 2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。 3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。 三、实验容: (1) 时域信号的频谱分析 设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。

信号分析中的频率细化基本概念

研究数字频谱最有效方法通常是离散傅里叶变换。频率分辨率是指对两个相邻谱峰进行区分的能力,表现形式为频谱中能够分辨的两个频率分量的最小间隔。 在信号处理中,人们为了把整个频率范围内的某段重点频区局部放大,获得比整个频率范围的频率分辨率更高的频率分辨率,从而观察频谱中的细微部分。因此提出频谱细化这一课题。 考虑到数字信号分析中,虽然提高信号的采样频率可以改善信号分析的频率分辨率,但是提高信号的采样频率通常需要付出额外的硬件代价,往往受制于可实现性与成本问题而难以实现。因此,就需要使用频谱细化技术在尽可能低的采样频率下提高数字信号分析的频率分辨率的措施。 频谱细化的基本思路是对信号频谱中的某一频段进行局部放大,也即在某一频率附近局部增加谱线密度,实现选带频段分析。 常见的经典方法有:复调制细化法、Chirp-Z变换、FFT+FT细化法、DFT补零法等很多方法。 复调制细化法:又称为选带频率细化选带频谱分析,是20世纪70年代发展起来的。其传统的分析步骤为:移频(复调制)--低通滤波器--重抽样--FFT及谱分析--频率成分调整,因其物理概念非常明确,所以一直沿用至今。 FFT+FT细化法:该方法的原理本质是将连续傅里叶变换经过将积分化成求和、时域离散化和时域截断为有限长三个步骤变换得到时间离散、频率连续的特殊傅里叶变换形式。FF T+FT连续细化分析傅里叶变换法先用FFT做全景谱,再对指定的一个频率区间进行细化计算:先确定频率分辨率,再确定计算频率序列,最后用FT连续谱分析方法进行实部和虚部计算,合成幅值谱和相位谱。 Chirp-Z变换:最早提出于1969年,CZT是一种在Z平面上沿着螺旋线轨道计算有限时宽的Z变换方法。基本原理是在折叠频率范围内,任意选择起始频率和频率分辨率,在这有

频率响应的波特图分析

《模拟集成电路基础》课程研究性学习报告频率响应的波特图分析

目录 一.频率响应的基本概念 (2) 1. 概念 (2) 2. 研究频率响应的意义 (2) 3. 幅频特性和相频特性 (2) 4. 放大器产生截频的主要原因 (3) 二.频率响应的分析方法 (3) 1. 电路的传输函数 (3) 2. 频率响应的波特图绘制 (4) (1)概念 (4) (2)图形特点 (4) (3)四种零、极点情况 (4) (4)具体步骤 (6) (5)举例 (7) 三.单级放大电路频率响应 (7) 1.共射放大电路的频率响应 (7) 2.共基放大电路的频率响应 (9) 四.多级放大电路频响 (10) 1.共射一共基电路的频率响应 (10) (1)低频响应 (11) (2)高频响应 (12) 2.共集一共基电路的频率响应 (13) 3.共射—共集电路级联 (14) 五.结束语 (14)

一.频率响应的基本概念 1.概念 我们在讨论放大电路的增益时,往往只考虑到它的中频特性,却忽略了放大电路中电抗元件的影响,所求指标并没有涉及输入信号的频率。但实际上,放大电路中总是含有电抗元件,因而,它的增益和相移都与频率有关。即它能正常工作的频率范围是有限的,一旦超出这个范围,输出信号将不能按原有增益放大,从而导致失真。我们把增益和相移随频率的变化特性分别称为幅频特性和相频特性,统称为频率响应特性。 2.研究频率响应的意义 通常研究的输入信号是以正弦信号为典型信号分析其放大情况的,实际的输入信号中有高频噪声,或者是一个非正弦周期信号。例如输入信号i u 为方波,s U 为方波的幅度,T 是周期, 0/2ωπ=T ,用傅里叶级数展开,得...)5sin 5 1 3sin 31(sin 22000++++= t t t U U u s s i ωωωπ 各次谐波单独作用时电压增益仍然是由交流通路求得,总的输出信号为各次谐波单独作用时产生的输出值的叠加。但是交流通路和其线性化等效电路对低频、中频、高频是有差别的,这是因为放大电路中耦合电容、旁路电容和三极管结电容对不同频率的信号的复阻抗是不同的。电容C 对K 次谐波的复阻抗是C jK 0/1ω,那么,放大电路对各次谐波的放大倍数相同吗?放大电路总的输出信号能够再现输入信号的变化规律吗?也就是放大电路能够不失真地放大输入信号吗?为此,我们要研究频率响应。 3.幅频特性和相频特性 幅频特性:放大电路的幅值|A|和频率f(或角频率ω)之间的关系曲线,称为幅频特性曲线。由于增益是频率的函数,因此增益用A (jf )或A (ωj )来表示。在中频段增益根本不随频率而变化,我们称中频段的增益为中频增益。在中频增益段的左、右两边,随着频率的减小或增加,增益都要下降,分别称为低频增益段和高频增益段。通常把增益下降到中频增益的0.707倍(即3dB )处所对应的频率称为放大电路的低频截频(也称下限频率)L f 和高频截频(也称上限频率)H f ,把L H f f BW -=称为放大器的带宽。 相频特性:放大电路的相移?和频率f(或角频率ω)之间的关系曲线,称为相频特性曲线。

信号常用术语

A Absolutely integrable 绝对可积 Absolutely integrable impulse response 绝对可积冲激响应Absolutely summable 绝对可和 Absolutely summable impulse response 绝对可和冲激响应Accumulator 累加器 Acoustic 声学 Adder 加法器 Additivity property 可加性 Aliasing 混叠现象 All-pass systems 全通系统 AM (Amplitude modulation ) 幅度调制 Amplifier 放大器 Amplitude modulation (AM) 幅度调制 Amplitude-scaling factor 幅度放大因子 Analog-to-digital (A-to-D) converter 模数转换器 Analysis equation 分析公式(方程)Angel (phase) of complex number 复数的角度(相位)Angle criterion 角判据 Angle modulation 角度调制Anticausality 反因果 Aperiodic 非周期 Aperiodic convolution 非周期卷积Aperiodic signal 非周期信号Asynchronous 异步的 Audio systems 音频(声音)系统Autocorrelation functions 自相关函数Automobile suspension system 汽车减震系统Averaging system 平滑系统 B Band-limited 带(宽)限的 Band-limited input signals 带限输入信号 Band-limited interpolation 带限内插 Bandpass filters 带通滤波器Bandpass signal 带通信号 Bandpass-sampling techniques 带通采样技术Bandwidth 带宽 Bartlett (triangular) window 巴特利特(三角形)窗Bilateral Laplace transform 双边拉普拉斯变换Bilinear 双线性的

第七章信号分析与处理1

第六章信号处理与分析 6.1概述 数字信号在我们周围无所不在。因为数字信号具有高保真、低噪声和便于信号处理的优点,所以得到了广泛的应用,例如电话公司使用数字信号传输语音,广播、电视和高保真音响系统也都在逐渐数字化。太空中的卫星将测得数据以数字信号的形式发送到地面接收站。对遥远星球和外部空间拍摄的照片也是采用数字方法处理,去除干扰,获得有用的信息。经济数据、人口普查结果、股票市场价格都可以采用数字信号的形式获得。因为数字信号处理具有这么多优点,在用计算机对模拟信号进行处理之前也常把它们先转换成数字信号。本章将介绍数字信号处理的基本知识,并介绍由上百个数字信号处理和分析的VI构成的LabVIEW分析软件库。 目前,对于实时分析系统,高速浮点运算和数字信号处理已经变得越来越重要。这些系统被广泛应用到生物医学数据处理、语音识别、数字音频和图像处理等各种领域。数据分析的重要性在于,无法从刚刚采集的数据立刻得到有用的信息,如下图所示。必须消除噪音干扰、纠正设备故障而破坏的数据,或者补偿环境影响,如温度和湿度等。 通过分析和处理数字信号,可以从噪声中分离出有用的信息,并用比原始数据更全面的表格显示这些信息。下图显示的是经过处理的数据曲线。

用于测量的虚拟仪器(VI) 用于测量的虚拟仪器(VI)执行的典型的测量任务有: ●计算信号中存在的总的谐波失真。 ●决定系统的脉冲响应或传递函数。 ●估计系统的动态响应参数,例如上升时间、超调量等等。 ●计算信号的幅频特性和相频特性。 ●估计信号中含有的交流成分和直流成分。 在过去,这些计算工作需要通过特定的实验工作台来进行,而用于测量的虚拟仪器可以使这些测量工作通过LabVIEW程序语言在台式机上进行。这些用于测量的虚拟仪器是建立在数据采集和数字信号处理的基础之上,有如下的特性: ●输入的时域信号被假定为实数值。 ●输出数据中包含大小、相位,并且用合适的单位进行了刻度,可用来直接进行 图形的绘制。 ●计算出来的频谱是单边的(single_sided),范围从直流分量到Nyquist频率(二 分之一取样频率)。(即没有负频率出现) ●需要时可以使用窗函数,窗是经过刻度地,因此每个窗提供相同的频谱幅度峰 值,可以精确地限制信号的幅值。 一般情况下,可以将数据采集VI的输出直接连接到测量VI的输入端。测量VI的输出又可以连接到绘图VI以得到可视的显示。 有些测量VI用来进行时域到频域的转换,例如计算幅频特性和相频特性、功率谱、网路的传递函数等等。另一些测量VI可以刻度时域窗和对功率和频率进行估算。 本章我们将介绍测量VI中常用的一些数字信号处理函数。 LabVIEW的流程图编程方法和分析VI库的扩展工具箱使得分析软件的开发变得更加简单。LabVIEW 分析VI通过一些可以互相连接的VI,提供了最先进的数据分析技术。你不必像在普通编程语言中那样关心分析步骤的具体细节,而可以集中注意力解决信号处理与分析方面的问题。LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze 子模板和Methematics子模板。这里主要涉及前者。 进入Functions模板Analyze》Signal Processing子模板。 其中共有6个分析VI库。其中包括: ①.Signal Generation(信号发生):用于产生数字特性曲线和波形。 ②.Time Domain(时域分析):用于进行频域转换、频域分析等。 ③.Frequency Domain(频域分析): ④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。 ⑤.Digital Filters(数字滤波器):用于执行IIR、FIR 和非线性滤波功能。

复数信号探讨

号是信息的载体,实际的信号总是实的,但在实际应用中采用复信号却可以带来很大好处,由于实信号具有共轭对称的频谱,从信息的角度来看,其负频谱部分是冗余的,将实信号的负频谱部分去掉,只保留正频谱部分的信号,其频谱不存在共轭对称性,所对应的时域信号应为复信号。 通信一般具有载波,早期通信的载波为正弦波,通过调制传输信息,发射和接收的都是实信号,接收后要把调制信号从载波里提取出来,通常的做法是将载频变频到零(通称为零中频)。我们知道,通常的变频相当于将载频下移,早期的调幅接收机将下移到较低的中频,其目的是方便选择信号和放大,然后通过幅度检波(调幅信号的载波只有幅度受调制)得到所需的低频信号,现代通信信号有各种调制方式,为便于处理,需要将频带内的信号的谱结构原封不动的下移到零中频(统称为基带信号)。很显然,将接收到的实信号直接变到零中频是不行的,因为实信号存在共轭对称的双边谱,随着载频的下移,正、负相互接近,到中频小于信号频带一半时,两部分谱就会发生混叠,当中频为零时混叠最严重,使原信号无法恢复,这时应在变频中注意避免正、负谱分量的混叠,正确的获取基带信号。 实际表示复数变量使用实部和虚部两个分量。复信号也一样,必须用实部和虚部两路信号来表示它,两路信号传输会带来麻烦,实际信号的传输总是用实信号,而在信号处理中则用复信号。《通信信号处理》张贤达国防工业出版社 对于虚数的难于理解,一定程度上是由于难以想像它究竟是个什么东西,就像4维以上的空间,难以在脑子里建立其形象的影像一样。对于j,这个-1的平方根,容易产生一种直觉的排斥,除了掌握能够解出数学题目的运算规则以外,一般人都不会去琢磨它有没有实际意义,有什么实际意义。在“达芬奇的密码”里,Langdon关于科学家对j的信仰以及教徒对宗教的信仰的类比,是对j之虚无缥缈和其重要性的绝妙诠释。但是,对于一个搞通信或是信号处理的人来说,由于quadrature signal 的引入,j被赋予了确确实实的物理含义。下面说说我的一知半解。 从数学上说,虚数真正确立其地位是在十八世纪欧拉公式以及高斯复平面概念建立起来之后。欧拉公式告诉我们实数的正弦余弦与任意一个复数的关系;高斯复平面则给出了形象表示复数的方法,并暗示了实部与虚部的正交性。 对于一个时域复数信号,实部和虚部分别代表了正交的信息。就像QPSK的modulating signal,这一点不难理解。另一个时域的重要性质是两个complex exponential 的和,是一个实数余弦。 在考虑复频域的概念之前,先回忆一下傅利叶变换的物理意义:一个任意信号可以分解成谐波相加的形式。对于一个实数周期信号,可以直观的将其分解成多个不同相位的余弦谐波。但是,在傅利叶变换中,基本信号是complex exponential,也就是说,频域信号是在复频域上表现的。对于实数信号,复频域上的共轭对称,保证了所有基本信号的虚部抵消;当然,傅利叶变换是适用于所有复数信号的。 对于复频域,一个频率上的模的平方,表示这个频率分量能量的大小;相位,表示时域上初始相位;正负频率分别表示,在时域复平面内,向两个逆顺时针不同方向转动rotating phasor 所展现的频率。

信号分析中的频率细化基本概念

研究数字频谱最有效方法通常是离散傅里叶变换.频率分辨率是指对两个相邻谱峰进行区分地能力,表现形式为频谱中能够分辨地两个频率分量地最小间隔. 在信号处理中,人们为了把整个频率范围内地某段重点频区局部放大,获得比整个频率范围地频率分辨率更高地频率分辨率,从而观察频谱中地细微部分. 因此提出频谱细化这一课题. 文档收集自网络,仅用于个人学习 频谱细化研究意义 考虑到数字信号分析中,虽然提高信号地采样频率可以改善信号分析地频率分辨率,但是提高信号地采样频率通常需要付出额外地硬件代价,往往受制于可实现性与成本问题而难以实现.因此,就需要使用频谱细化技术在尽可能低地采样频率下提高数字信号分析地频率分辨率地措施.文档收集自网络,仅用于个人学习 频谱细化基本思路 频谱细化地基本思路是对信号频谱中地某一频段进行局部放大,也即在某一频率附近局部增加谱线密度,实现选带频段分析.文档收集自网络,仅用于个人学习 频谱细化常见方法 常见地经典方法有:复调制细化法、变换、细化法、补零法等很多方法. 复调制细化法:又称为选带频率细化选带频谱分析,是世纪年代发展起来地.其传统地分析步骤为:移频(复调制)低通滤波器重抽样及谱分析频率成分调整,因其物理概念非常明确,所以一直沿用至今.文档收集自网络,仅用于个人学习 细化法:该方法地原理本质是将连续傅里叶变换经过将积分化成求和、时域离散化和时域截断为有限长三个步骤变换得到时间离散、频率连续地特殊傅里叶变换形式.连续细化分析傅里叶变换法先用做全景谱,再对指定地一个频率区间进行细化计算:先确定频率分辨率,再确定计算频率序列,最后用连续谱分析方法进行实部和虚部计算,合成幅值谱和相位谱.文档收集自网络,仅用于个人学习 变换:最早提出于年,是一种在平面上沿着螺旋线轨道计算有限时宽地变换方法.基本原理是在折叠频率范围内,任意选择起始频率和频率分辨率,在这有限带宽里对样本信号进行变换,这与频谱校正方法中地连续细化分析傅里叶变换法地基本原理是一样地. 文档收集自网络,仅用于个人学习 频谱细化应用场合 频谱细化技术在生产实践和科学研究中获得了日益广泛地应用.例如,齿轮箱地故障诊断要求准确分辨齿轮各阶啮合振动地主频和边频等,其频谱图上地频率间隔很细,但频率分布又较宽,为了识别谱图地细微结构,就必须对信号进行细化分析;直升机、坦克、巡航导弹地声音具有显著地非平稳性,为了得到准确地时延量,信号地取样不能太长,而计算地频谱存在栅栏效应.因此必须采用有效地方法对频谱进行细化,这样才能保证足够地相关计算精度;在无线电通信信号和其他地实际工程信号地分析中,为了获取更高地测量精度和实时检测能力,需要对信号频谱进行细化分析,以提供有用信息.因此对频谱细化技术地研究受到普遍重视,也是当前信号处理技术研究中地一个十分活跃地课题.文档收集自网络,仅用于个人学习 频率细化是年代发展起来地一种新技术,其主要目地是识别谱图上地细微结构.从通常地分析方法中我们已经知道,在频谱图上地有效频率分布范围是从到奈魁斯特频率为

相关文档
最新文档