CO2泡沫压裂液的研究与应用

CO2泡沫压裂液的研究与应用
CO2泡沫压裂液的研究与应用

刍议CO2泡沫压裂液的研究与应用

[摘要]本文首先优选出二氧化碳压裂液的配方,然后对其性能进行了评价,结果表明二氧化碳压裂液是可以满足低渗、低压油气藏压裂施工的要求,某油田的低渗油藏中使用了二氧化碳压裂液取得了良好的效果,可供参考。

[关键词]二氧化碳压裂液;研究;应用

中图分类号:tq016 文献标识码:a 文章编号:1009-914x(2013)09-0315-01

水力压裂作为低渗油藏有效的增产方法在油田的开发中起到的

作用是不可忽视的。通常在水力压裂中会给地层中注入很多压裂液;这时地层就会受到一定的伤害在很大成上给增油效果造成了影响。基于此种情况,二氧化碳泡沫压裂液具有很多的优点,在减小压裂液对地层的伤害方面表现的尤为明显,对于低渗低压的油藏来说更加适用。为了保证二氧化碳泡沫压裂液在油田中应用效果,就需要对其进行深入的研究,不断优化其配方,使其的性能得到优化。

1 优选二氧化碳泡沫压裂液的配方

二氧化碳泡沫压裂液主要由二氧化碳、凝胶压裂液、表面活性剂以及各种添加剂共同组成,这些都会直接决定其性能,因此需要对其的配方进行优选,确保其具有良好的性能。

1.1 优选起泡剂

起泡剂作为二氧化碳泡沫压裂液的主要添加剂之一,其会直接给二氧化碳泡沫压裂液的气泡和稳定性。表面活性剂具有良好的气泡

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

水基压裂液增稠剂的研究进展

水基压裂液增稠剂的研究进展 李超颖1,王英东2,曾庆雪1 (1.东北石油大学化学化工学院;2.中国石油大庆石化分公司,黑龙江大庆 163711) 摘 要:本文综述了水基压裂液增稠剂的研究进展。低伤害、耐高温的改性胍胶研究广泛。除香豆胶、魔芋胶的改性物外,新型低损害苦苈胶综合性能优于羟丙基胍胶。疏水缔型聚合物,与传统聚丙烯酰胺类比较,热稳定性更好、抗剪切性能更强,具有广阔的应用前景。 关键词:压裂液;增稠剂;植物胶;疏水缔合型聚合物 中图分类号:T E357.1+2 文献标识码:A 文章编号:1006—7981(2011)05—0008—03 增稠剂是水基压裂液中的主要添加剂,其性能好坏对压裂液综合性能、压裂施工效果都有着重要影响。尤其面临高温、低渗、碱敏储层的开发,寻求增稠能力更强、对地层伤害更小、高温稳定性更好的增稠剂成为国内外学者研究的方向。目前使用的水基压裂液增稠剂种类繁多,可分为天然聚合物、人工合成聚合物两大类,本文分别就其研究进展进行评述。1 天然聚合物 1.1 植物胶衍生物 植物胶衍生物增稠能力强、易交联成冻胶、性能稳定,是国内外压裂作业主要使用的增稠剂。由于受分子精细结构、加工工艺、加工设备的影响,植物胶品种不同,性能有差异。 1.1.1 胍胶 胍胶原粉取自瓜尔豆内胚乳,直接使用具有不能快速溶胀和水合,溶解速度慢,水不溶物含量高,粘度不易控制,易被微生物分解而不能长期保存等缺点。而各种改性胍胶可改善胍胶原粉不足,但增稠能力均有所下降。目前,在广泛应用的改性胍胶:羟丙基胍胶(HP G)、羧甲基胍胶(CM G)、羧甲基羟丙基胍胶(CM HPG)、阳离子胍胶等基础上,适应当前要求的其他改性物出现。 1.1.1.1 低分子量胍胶 胍胶的低分子量化,是为了降低常规胍胶压裂液的造壁性和破胶后分子量依然很大的破胶液对低渗储层细小喉道的伤害。 程巍等[1,2]研究了硼交联低分子量胍胶凝胶体系的流变性,具有良好的粘弹性和剪切变稀性。J. Weaver等[3]提出的低分子量胍胶压裂液体系无需内部破胶剂,优良的支撑剂传输性能和低滤失性能,适合高砂比作业。 胍胶降解后分子量降低,为常规胍胶的1/20- 1/10,水不溶物降低,同样条件下压裂液破胶液分子量也降低,减少了对地层的伤害。但基液浓度下降,只有10mP a?s左右(常规压裂液现场应用的基液粘度一般在36m Pa?s以上),不适合高温作业。使用硼交联后,形成致密的聚合物网络结构,因为聚合物的短链和高紧密聚合物网络形成的交联液具有更好的粘性和弹性,液体链的体积也较小,粘弹性较高,提高了压裂液的携砂性能。 1.1.1.2 酸性交联胍胶 大多数植物胶压裂液都是在碱性条件下交联,为了保留植物胶稠化剂的优势并使其适应对碱敏性地层的压裂改造、进行酸性压裂和CO2泡沫压裂,需研制酸性条件下交联的植物胶压裂液,其中一个方向是研制可酸性交联的稠化剂。 郭吉清等[4]研究表明,改性胍胶M GG水不溶物含量及1%基液粘度优于特级羟丙基胍胶,与一种金属化合物可在pH值2.5~5.5范围内交联而形成稳定冻胶体系,其冻胶可用过硫酸铵破胶,破胶残渣质量浓度可降至180mg/L。 王博涛等[5]将羧甲基酸性交联冻胶压裂液应用于安塞油田长(10)储层,施工平稳,增产效果明显。周际春等[6,7]向普通胍胶分子中引入亲水基团钠羧甲基和羟丙基,研制出酸性条件下交联的新型压裂液增稠荆GXG。该增稠剂溶解和增黏性能都很好,破胶后残渣含量少,破胶液黏度低,有利于压裂液的破胶返排。由该增稠剂作为基液的压裂液有很好的流变性、破胶性,对储层伤害小。 胍胶改性后,除了本身具有适合碱性交联的羟基外,还具有酸性交联的官能团,而常规硼砂交联pH>9,因此,除了在稠化剂方面进行改性外,还需研制与其配伍的酸性交联剂。 1.1.1.3 高温改性胍胶 压裂施工趋于深井或超深井,而现有高温压裂液一般只满足150℃以下作业,因此需要研制适合180℃以上的超高温压裂液,其中一个方向是研制具有抗高温分子结构的稠化剂。 辛军等[8]研制了超高温改性胍胶(CHPG)稠化剂,与有机硼锆交联后,198℃下显示出优异的抗温抗剪切性能。张应安等[9]研制了新型羧甲基胍胶压裂液,有耐高温(180℃)、低浓度、低残渣、低伤害、低摩阻的特点,压裂施工获得很好的增产效果。疏水改性胍胶[10,11]具有疏水缔合物特殊的流变性:超过临 8内蒙古石油化工 2011年第5期  收稿日期:2011-01-15 作者简介:李超颖(1986-),女,在读硕士研究生,东北石油大学化学工艺专业。

(工艺技术)油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1) 黑油模型的基本假设:(1)油藏中的渗流是等温渗流。 (2)油藏中最多只有油、 气、水三相,每一相均遵守达西定律。 (3)油藏烃类只含有油、气两个组分。在油 藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可 以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层 内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分 挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相 瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 煤层气:赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于 煤孔隙中或溶解于煤层水中的烃类气体。 全国煤层气试验区分布图 J3-K1 哈尔滨 28 3、页岩气 页岩气形成的条件 (1) 岩性:形成页岩气的岩石除页岩外,还包括泥岩、粉砂岩、甚至很细的砂岩 (2) 物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微 达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3 )矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。 (4)裂缝: 裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向 压裂、控缝高压裂等压裂技术得到了成功应用, 特别是水平井分段压裂技术的推广应用, 保障油气田增储上产方面发挥了巨大作用。 较好指标: 2、 乌鲁木齐 J1-2 J3-K1 J3-K1 J3-K1 J3-K1 J2 J1-2 J1-P2 J1-2 J1-2 西宁 兰州 J1-2 1-2 西安 P2 成都 2"| C-P 北京1 ? 济南3 9 C-P 长春 E J3-K1 1开滦 15 韩城 2大城 16 蒲县 3济南 17 柳林 4淮北 18 吴堡 5淮南 19 三交 6平顶山 20 临县 7荥巩 21 兴县 8焦作 22 丰城 9安阳 23 冷水江 10晋城 24 涟邵 11屯留 25 沈北 12阳泉 26 红阳 29 阜新 13澄合 27 铁法 30 辽河 14彬长 28 鹤岗 T3 武汉二 长沙 2 : P2 上海 P2 P2 福州 卢台北

浅论二氧化碳泡沫压裂液

浅论二氧化碳泡沫压裂液 发表时间:2019-03-04T14:41:44.420Z 来源:《防护工程》2018年第34期作者:李振连 [导读] 吉林油田储层较为复杂,非均质性强,绝大多数油藏属于低压、低渗、水敏性。常规的水基冻胶压裂液对油层有较大的伤害 李振连 吉林油田公司油气工程研究院吉林松原 138000 摘要:吉林油田储层较为复杂,非均质性强,绝大多数油藏属于低压、低渗、水敏性。常规的水基冻胶压裂液对油层有较大的伤害,反映到如排液困难、压后效果不好等。通过CO2泡沫压裂增产机理,压裂液综合性能评价,以及现场应用情况,取得了较好的效果,为低渗低产能油田开辟了新的增产措施。 关键词:增产机理;泡沫压裂;室内试验 压裂是提高油气藏早期产能、保持长期稳产的主要措施。压裂液是压裂技术的重要组成部分,其性能的好坏直接关系到压裂施工的成败与压裂的效果的好坏,优质低伤害低成本是其发展方向。 1 CO2压裂现状及发展 利用CO2压裂,国外已有三十多年的历史。六十年代初,CO2作为添加剂与冻胶压裂液混合助排;七十年代初,水基压裂液中CO2浓度达到50%,这类压裂液既可满足设计的裂缝长度,又可大大减少压裂液的用水量;八十年代,CO2浓度超过了50%,通过吸收地层热量,减少以CO2气体为分散相的泡沫,具备了泡沫压裂液的优良性能,减少了因液堵对地层相对渗透率的破坏,特别适用于水敏性地层;同时,美国和加拿大的一些公司已用100%的液态CO2压裂,每年几百口井以上,取得了很好的效果,其主要特点是对地层无损害,不留残液,排液快,经济效益好。 2 探究CO2压裂增产机理 (1)在CO2压裂施工过程中,注入了大量的CO2,在地层温度下,CO2快速汽化,混溶于原油中,将大幅度降低原油粘度。另一方面,还增加了溶解气驱能量,达到助排的目的。液体从地层向井筒流动的基本规律: 在地层条件都不变的情况下,原油的粘度若降低一半,原油的产量就可提高一倍。 (2)饱和CO2的液体,PH值在3.2-3.7之间,相对来说是无腐蚀的,PH值是CO2能成为一种有效的油井强化增产介质,如当PH值降至4.5-5.0以下时,膨胀的粘土矿物可以被减少,能保持地层的渗透性,可能解除裂缝的堵塞。 (3)由于CO2泡沫压裂液具有造缝面积大、所造的裂缝导流能力高等特点,将大大提高增油能力,效果显著。 3 室内研究 3.1 基液性能及泡沫液半衰期 使用RV-20旋转粘度计在20℃、170 1/s剪切速率下,未形成泡沫之前的基液黏度见下表,PH值为7.0,形成泡沫之后,在25℃,0.1MPa下测得泡沫流体的半衰期为300分钟,具有良好的泡沫稳定性,PH值为4.0。 3.2 泡沫压裂液综合性能评价 压裂液综合性能评价严格按照中国石油天然气股份公司颁布标准SY/T5107--2005 《水基压裂液性能评价方法》进行。结果见表1。

国外低伤害压裂液体系研究进展

国外低伤害压裂液体系研究进展 2014-05-30能源情报 文/胡忠前马喜平何川王红杜剑,中海石油研究中心西南石油大学深圳同德化工 压裂液自从1947年首次用于裂缝增产以来已经历了巨大的演变。早期的增产处理是通过向汽油中添加形成足以压开和延伸裂缝的黏性流体;后来,现场工程师开始采用胍胶及其衍生物基工作液,随着井深的增加和井温的升高,对压裂液黏度的要求也比以前使用的线性凝胶所能提供的黏度要高。为了在高温储层中达到足够的黏度和提高其高温稳定性能,开始采用硼、锆、钛等无机和有机金属离子交联线性凝胶。上世纪80年代,泡沫压裂液因其对地层伤害小而受到广泛研究和应用。20世纪90年代,人们通过使用高效化学破胶剂和降低聚合物浓度的方法来减少胍胶对地层的伤害。选择何种压裂液时主要考虑的因素包括安全、易得,混配和使用方便,和地层的相容性,返排能力以及成本。按照组成不同,压裂液可分为:(1)油基或水基,(2)油水混合物组成的乳状液,(3)油基或水基泡沫(氮气或二氧化碳)体系。压裂工作流体已从20世纪50年代的油基体系,发展到20世纪90年代乃至目前仍广泛使用(超过90%)的水基体系。氮气和二氧化碳体系约占压裂施工总数的25%。 表1列出了目前常见的压裂液体系,压裂液组成中,除了表中所列交联剂和胶凝剂外,还有杀菌剂、滤失添加剂、破胶剂、减阻剂、表面活性剂、起泡剂和黏土稳

定剂。据估计,压裂增产过程中,材料和泵注成本中组成比例为:泵注约占46%,支 撑剂为25%,压裂化学剂为19%,酸液为10%。 低伤害或零伤害压裂液体系给决策人员和现场工程师提供了一个在地层下和地 面环境友好的选择,另外,技术的进步可以使化学剂成本不增加或增加很少。美国环境保护局发起的一项调查研究表明压裂施工对地下饮用水环境几乎没有危害 或危害很小。 1 斯伦贝谢公司 1.1 清洁压裂液 1997年斯伦贝谢公司成功地将黏弹性表面活性剂应用于压裂液,这种压裂液是由EHAC、异丙醇、氯化钾和氯化铵组成。之后,黏弹性表面活性剂因其独特的清洁性能而得到广泛研究应用。这类压裂液与胍胶和羟乙基纤维素不同,它是由黏弹 性表面活性剂和其它添加剂构成的,属于新一代压裂液,通常称之为“黏弹性表面活性剂”(VES)压裂液体系或“清洁压裂液”。这类压裂液施工和现场混配简单,不需要聚合物预水化工序,也不需要交联剂和破胶剂,遇地层流体转变成球状胶 束或乳状液;另外,相对于聚合物体系而言,对地层伤害小或无伤害。为了解决黏弹性表面活性剂价格过高的问题,相应的黏弹性表面活性剂与疏水缔合聚合物的复 合体系也被考虑用做压裂液和堵水。而向其中添加聚合物,也可以改善其抗温和 抗压性能。为了提高黏弹性流体在高矿化度下的稳定性能。Schlumberger技术公司的Lungwitz,Bernhard等人开发了一种由盐(有机盐或无机盐或它们的复合物)、助表面活性剂和两性离子表面活性剂组成的复合体系。目前,黏弹性表面活性剂 在油田上遇到的主要技术问题是抗温性和在高速剪切条件下,蠕虫状结构的快速 恢复能力。 1.2 PrimeFRAC3压裂液体系 该压裂液体系由于减少了聚合物的加量(聚合物加量减少了35%以上)从而减少 了对地层和裂缝的伤害,油气层使用温度200~375υ,使用的黏土稳定剂为KCl, 在较少的聚合物加量的情况下就能达到guar和CMG所能达到的流体黏度。 1.3 FiberFRAC3压裂液技术 FiberFRAC3压裂液技术减弱了支撑剂输送中流体黏度所起的作用,它在压裂液 中形成纤维素基网络,从而通过机械手段输送、悬浮和置放支撑剂。由于支撑剂 的输送不再依赖压裂液黏度,因此可以调节压裂液的流变性质来优化裂缝尺寸。 如果裂缝高度增长是关注的焦点,即使在高温下,也可以使用低黏度流体,同时满 足支撑剂输送的要求。另外,由于减少了聚合物的加量,保留裂缝导流能力得到显著提高。实验室研究表明减少40%的聚合物加量可以使保留裂缝渗透率提高24%。 1.4 GreenSlurry3体系

压裂液调研报告

压裂液的研究进展调研报告 压裂已经广泛应用于增产当中, 压裂液的性能在作业中起到至关重要的作用。压裂液存在着破胶难,污染环境,污染储层,抗温抗盐性能差的问题。为此,在研究大量文献的基础上,回顾了压裂液技术的发展和现状,总结了适合不同地层条件的国内外压裂液新技术,以及现阶段存在的问题,展望了未来的发展方向。研究结果表明,目前仍是以聚合物增黏剂为主的水基体系,并且研究出了抗高温清洁压裂液,微束聚合物压裂液,无聚合物压裂液以及新型原油基压裂液等等。水基压裂液残液五步处理法,在现场应用效果明显,残渣,破胶性能,相容性,水锁伤害是储层伤害的主要原因。压裂液将主要朝着地层伤害小,抗温抗盐,地层适应性强,环境友好的方向发展。 压裂液的类型:水基压裂液、油基压裂液、酸基压裂液、泡沫压裂液。 压裂液自从1947年首次用于裂缝增产以来经历了巨大的演变。早期的压裂液是向汽油中添加足以压开和延伸裂缝的黏性流体;后来,随着井深的增加和井温的升高,对压裂液的黏度提出了更高的要求,开始采用瓜胶及其衍生物基压裂液。为了在高温储层中达到足够的黏度和提高其高温稳定性,研究出了高温油基压裂液。最初使用的压裂液是炼制油和原油,由于最初担心压裂液和含有非酸性水液的油气储层接触,可能产生不利影响,后来实验已经证明,用适当的添加剂(粘土控制物质,表面活性剂等),使用水基液能处理大部分油气储层,在一个已知储层的压裂液处 理中,最好是通过实验室地层岩心实验(或者一贯的现场结果)来确定水基压裂液的可用性。 水基压裂液体系及技术包括:非交联型黄原胶/魔芋胶水基冻胶压裂液技术、pac阳离子聚合物压裂液体系、有机硼交联水基压裂液技术、哈利伯顿微束聚合物压裂液体系、高黏度水基压裂液、无聚合物压裂液体系、低凝胶硼酸压裂液、无固相压裂液、无破胶剂压裂液技术压裂液。 油基压裂液体系及技术:低渗、低压、水敏性油气藏储量占每年探明储量的1/3 而且有继续上升的趋势,有效合理地开发这部分油气藏对稳定增加油气产量意义重大。国内油基压裂液主要由原油、胶凝剂、交联剂、破胶剂等组成,其中胶凝剂是压裂液中关键组分,因为其结构中的烷基碳链分布与所选原油或柴油之间存在一定的对应关系,并且其性能直接影响到压裂液的质量。 油基压裂液交联机理:柴油为非极性物质,无活泼官能团,化学惰性大难以形成交联结构,所用成胶剂是低分子量的表面活性剂,本身不增加黏度,但可以在油中形成胶束成胶剂扩散进入初交联剂液滴内时其中所含的酸性磷酸酯溶解在滴中并被中和引起铝酸根离子浓度减小,铝离子浓度增大,在适当条件下形成铝离子的八面向心配价体,初成胶剂中所含的磷酸酯通过该配价体与铝离子形成桥架网状结构产物,与初成胶剂中的烷基磷酸酯形成长链大分子,使油的黏度大幅度升高。 酸基压裂液:用植物胶或纤维素稠化酸液得到稠化酸或非离 子型聚丙烯酰胺在浓盐酸溶液中,与甲醛交链而得到酸冻胶。酸基压裂液适用于碳酸盐类油气层的酸压。 针对低渗低压油层存在的压力系数低,渗透率低、污染严重、返排困难等现象,开发研制了hct-酸化压裂液,该酸化压裂液集酸化压裂于一体,且使挤入的液体产生热和气,形成多组分泡沫认为中速残液返排,减少对地层的伤害。以丙烯酰胺(am)、2-丙烯酰胺基-2-甲基丙磺酸(amps)为共聚单体,采用一种复合多段低温引发体系来引发聚合,制得了一种酸液稠化用聚合物,将由此聚合物配制的稠化酸液与交联剂yq-2、破胶剂共同使用得到了一种耐高温的冻胶酸体系。用转子旋转法评价了聚合物种类及浓度、交联剂加量对成胶时间的影响;以体系粘度为指标,使用旋转粘度计评价了聚合物种类及浓度、交联剂加量对冻胶酸体系

关于水力压裂设备及技术的发展及应用

关于水力压裂设备及技术的发展及应用 【摘要】水力压裂技术经过了半个多世纪的发展,在设备和技术应用上都取得了较大的发展,在全球各地的石油开采中也发挥了关键性的作用,是目前仍在广泛应用的评价认识储层的一种重要方法,水力压裂技术也是油田煤矿等产业生产中确保安全、降低危险的重要技术。近年来,水力压裂的几部发展很快,在压裂设备材料上也有了较大突破,压裂技术在油田勘探开发应用中和其他行业的应用中的前景还是十分广阔的。 【关键词】水力压裂;发展现状;趋势 随着技术进步和应用范围的扩大,施工对压裂技术也提出了更高的要求,对压裂设备性能、压裂液等材料的要求也越来越高,不同地理环境下的压裂技术应用也有不同的需求,所以水力压裂设备和技术的研究也在不断进行,笔者在此对水力压裂技术的发展应用现状和今后的发展前景进行了展望,具体内容如下。 一、水力压裂设备技术的发展应用现状 (一)端部脱砂压裂技术 现代油气田勘探开发技术发展应用速度快,各种新技术工艺也都得到了综合运用,过去压裂设备和技术主要应用于低渗透油田,现在应用范围有了明显的扩大,在国内许多大型油田的中高渗透地层中不但应用了压裂设备和技术,且在技术上有了更大的突破。压裂技术应用于中高渗透地层时,实现短宽型的裂缝能够更好的控制油气层的开发,所以端部脱砂压裂技术应运而生,并在应用中取得了非常好的效果,近年来端部脱砂压裂技术在浅层、中深地层、高渗透以及松软地层都得到了应用,该技术的相关设备也在应用中得到了不断的改进。 (二)重复压裂技术 随着油田开发的不断深入,出现越来越多的失效井和产量下降的压裂井,二重复压裂技术正是针对该类油井改造和提高产量的有效技术措施。全球范围内各个国家对重复压裂设备和技术的研究都很重视,经过实践检验其应用效果也十分显著,重复压裂的成功率能够达到75%左右。在美国还有油田企业在应用重复压裂技术的同时还采用了先进的强制闭合技术和端部脱砂技术,取得了很好的经济效益。重复压裂技术设备能够用于改造低渗透和中渗透的油层,在直井、大斜度井以及水平井中都具有很高的应用效果,对提高产能具有很好的作用。 (三)高渗层防砂压裂技术 高渗层防砂压裂技术不但能够实现高渗透油藏的压裂,还能够同时完成充填防砂作业。传统的砾石充填防砂技术很容易造成对高渗透油层的破坏,导致导流能力下降,而高渗透防砂压裂技术是结合的端部脱砂技术,使裂缝中的支撑剂浓

国外减阻水压裂液技术发展历程及研究进展

国外减阻水压裂液技术发展历程及研究进展国外减阻水压裂液技术发展历程及研究进展 发布时间:2019-07-30 11:11 来源:特种油气藏 摘要:致密页岩气储层具有低孔、低渗的特点,勘探开发难度较大,大多数页岩气井 需要储层改造才能获得比较理想的产量。目前,国外页岩气开发最主要的增产措施是减阻 压裂,即利用减阻... 致密页岩气储层具有低孔、低渗的特点,勘探开发难度较大,大多数页岩气井需要储 层改造才能获得比较理想的产量。目前,国外页岩气开发最主要的增产措施是减阻压裂, 即利用减阻水压裂液进行体积改造。减阻水压裂液体系是针对页岩气储层改造而发展起来 的一种新的压裂液体系。在美国、加拿大等国,减阻水压裂液的使用获得了显著的经济效 益并且已经取代了传统的凝胶压裂液而成为最受欢迎的压裂液。近年来,页岩气能源的 开采在中国受到越来越高的重视。作为页岩气体积改造的关键技术,减阻水压裂液在中国 具有广阔的应用前景。 一、减阻水压裂液发展历程 减阻水压裂液是指在清水中加入一定量支撑剂以及极少量的减阻剂、表面活性剂、黏 土稳定剂等添加剂的一种压裂液,又叫做滑溜水压裂液。减阻水最早在1950 年被引进用 于油气藏压裂中,但随着交联聚合物凝胶压裂液的出现很快淡出了人们的视线。在最近的 一二十年间,由于非常规油气藏的开采得到快速发展,减阻水再次被应用到压裂中并得到 发展。1997 年,Mitchell 能源公司首次将减阻水应用在Barnett 页岩气的压裂作业中并取得了很好的效果,此后,减阻水压裂在美国的压裂增产措施中逐渐得到了广泛应用,到2019 年减阻水压裂液的使用量已占美国压裂液使用总量的30%以上(表1) 。 表1 2019年美国油气田各类压裂液用量所占百分比 早期的减阻水中不含支撑剂,产生的裂缝导流能力较差,后来的现场应用及实验表明,添加了支撑剂的减阻水压裂效果明显好于不加支撑剂时的效果,支撑剂能够让裂缝在压裂 液返排后仍保持开启状态。目前在国外页岩气压裂施工中广泛使用的减阻水的成分以水 和支撑剂为主,总含量可达99%以上,其他添加剂(主要包括减阻剂、表面活性剂、黏土稳定剂、阻垢剂和杀菌剂) 的总含量在1%以下,尽管含量较低,这些添加剂却发挥着重要作用(表2) 。 表2 减阻水压裂液中的主要添加剂 二、减阻水压裂液技术研究进展 1、新型减阻水压裂液体系

压裂液国内外研究现状

1. 压裂液国内外发展概况 压裂技术是我国油气田开发必不可少的重要措施之一,它在增加产量和储量动用方面起到了重要的作用。压裂的目的主要是形成具有一定几何形状的高导流能力裂缝,改善油气通道,从而增加油气产量。而压裂液在压裂中起着非常重要的作用,压裂液体系的性能是关乎整个压裂施工作业成败及压裂效果的关键点之一,性能好的压裂液不但能够保障压裂施工的顺利进行,而且能够保护储层,获得理想的增产效果[1]。压裂液通常是由各种化学添加剂按一定比例配制成具有良好粘弹性的冻胶状物质,主要分为水基压裂液、油基压裂液、泡沫压裂液、清洁压裂液[2]。 1947年,水力压裂首次在现场成功应用的初期,主要使用以原油、成品油所配成的油基压裂液,原因是水基压裂液会对水敏地层造成损害。五十年代,出现了控制水敏地层损害的方法以后,水基压裂液才被应用在压裂作业中,但油基压裂液仍为主要的压裂液。到六、七十年代,增稠剂瓜胶及其衍生物的出现,使水基压裂液迅速发展并占据主要地位。到了八十年代,由于致密气藏开采和部分低压油井压后返排困难等问题,出现了泡沫压裂液。到九十年代及以后,为了解决常规压裂液在返排过程中由于破胶不彻底对油藏渗透率造成很大伤害的问题,又开发研制了粘弹性表面活性剂压裂液,即清洁压裂液。 1.1 水基压裂液 水基压裂液是以水作溶剂或分散介质,向其中加入稠化剂、添加剂配制而成的,主要采用三种水溶性聚合物作为稠化剂,即植物胶(瓜胶、田菁、香豆、魔芋等)、纤维素衍生物及合成聚合物。这几种高分子聚合物在水中溶胀成溶胶,交联后形成粘度极高的冻胶。具有低摩阻、稳定性好、携砂能力强、低损害、施工简单、货源广、廉价等特点。通常,水基压裂液按加入稠化剂种类大致可分为三种类型: 天然植物胶压裂液、纤维素压裂液以及合成聚合物压裂液。 1.1.1 天然植物胶压裂液 国内外最先研究和应用的是天然植物胶压裂液,因而这类压裂液使用最多,其中瓜胶及其改性产品为典型代表[3]。美国BJ公司开发了一种新型低聚合物浓度的压裂液体系,稠化剂是一种高屈服应力的羧甲基瓜胶,一般使用浓度是0.15-0.30%,可适用底层温度为93-121℃。该压裂液体系具有较高的粘度,良好的携砂能力。目前,国外已经进行了350口井以上的压裂施工,获得了较理想的缝长和较彻底的清洁返排,增产效果好于使用HPG交联冻胶的结果。田菁胶是国内植物胶中大分子结构与瓜胶十分相似的一种,最早于20世纪70年代末由胜利油田开发应用。继田菁胶之后而出现的香豆胶最早由石油勘探开发科学研究院研制成功。用无机硼酸盐交联的香豆胶压裂液常用在30-60℃的地层,用有机硼交联的香豆胶可用于60-120℃的地层。90年代中期开发了一种GCL锆硼复合交联剂使耐受温度达到140℃[4]。从20世纪90年代以来,香豆胶已在大庆、吉林、玉门、塔里木、吐哈等各大油田得到了推广使用[5]。20世纪80年代,四川、华北油田研究并应用了魔芋胶压裂液。 1.1.2 纤维素压裂液 纤维素衍生物主要是纤维素醚,用于石油行业的是高取代度的纤维素醚,它以每年3%-5%的速度增长。其中CMC、HEC和HPMC应用最多,在我国,这三类衍生物的用量曾占10%左右[6],CMC、HEC冻胶的热稳定性及滤失性能好,可用于140℃下井下施工,其主要问题是摩阻偏高,尚有待进一步改进。由于纤维素衍生物对盐敏感、热稳定性差,增稠能力不大,不如植物胶应用广泛。2010年李永明等[7]配制出了含纤维的超低浓度稠化剂压裂液,其稠化剂浓度为0.2%、BF-2纤维加量为0.7%,该压裂液携砂性能好,残渣量较少,储层损害小,现场应用取得成功,川孝270井用该压裂液对储层改造后获得天然气产量为

超临界二氧化碳压裂研究装置

超临界二氧化碳压裂研究设备 1.前言 超临界流体是指处于临界点以上的温度和压力区域的流体,此时气液界面消失,流体既非气态也非液态,处于即使提高压力也不液化的非凝聚态。超临界流体的物理性质兼具也液体与气体的双重性质,密度接近液体,扩散都接近气体,黏度介于气体和液体之间。 2.超临界二氧化碳压裂技术的特点 超临界二氧化碳的临界温度和临界压力较低,分别为31.06℃和7.38MPa,易于制备;超临界CO2 价格低易得到,安全非易燃易爆,无毒,无腐蚀性;流体粘度低、密度高,密度接近液体;表面张力很低,扩散系数高,具有很强的渗透能力,能渗透到岩石中的天然微裂缝,压裂中有利于复杂网络裂缝的形成;使用此压裂液储层不易被污染,对储层没有伤害,可有效的避免近井地层堵塞、保护油气层、改善储层渗透性,,增产潜力大,而且超临界二氧化碳非常容易返排。 因此,超临界二氧化碳对于低渗透油页岩矿藏、低渗和超低渗油气田、页岩气藏、煤层气等矿藏的开发具有很大的优势。在常规油气田的开发生产中,比普通的压裂液也具有更多的优点。 3.应用研究 超临界二氧化碳压裂技术应用前景广阔,所以需要对于其压裂工艺、总结描述CO2状态变化流程、临界CO2增黏剂的研制、增产原理等各个方向进行研究。 在实验室研究过程中,需要专门的仪器模拟地层压裂的过程。北京华盛海天科技发展有限公司为此研制的“超临界二氧化碳压裂装置”具有以下特点: 1.用于超临界CO2生成、泵注; 2.有专门的搅拌混合装置,适用于不同的增稠剂; 3.破裂压力与裂缝延伸压力在线监测; 4.系统自动化控制,数据采集与处理分析; 5.能够实现储层温度≤150℃,上覆地层压力≤70MPa、注入压力≤45MPa、注 入排量≤45ml/min的压裂施工模拟实验研究。 主要技术参数: 1.工做压力分别为:围压0~70MPa 轴压0~70MPa

油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1)黑油模型的基本假设:(1)油藏中的渗流是等温渗流。(2)油藏中最多只有油、气、水三相,每一相均遵守达西定律。(3)油藏烃类只含有油、气两个组分。在油藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 (2)物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3)矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。(4)裂缝:裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向压裂、控缝高压裂等压裂技术得到了成功应用,特别是水平井分段压裂技术的推广应用,在保障油气田增储上产方面发挥了巨大作用。 较好指标:

水平井压裂分段数:9段 深层气压裂最大支撑剂量: 908.5t (角64-2H井) 最大注入井筒液量: 4261.1m3 最大酸压规模:1603 m3 ?水力喷射分层加砂压裂在四川、长庆地区施工20余井次,平均单井次缩短施工周期20天以上;气井应用不动管柱分层压裂技术307井次,施工成功率99%;平均单井缩短试气周期20天以上;连续混配压裂施工405井次,累计配液88898 m3,累计缩短施工周期425天。 ?裸眼封隔器分段压裂取得突破性进展。全年在苏里格等地区现场应用22井次,并取得良好效果。长城钻探在苏里格气田采用裸眼封隔器进行压裂投产后产量是临近直井的5倍以上。 ?川庆钻探与美国EOG公司合作,在角64-2H井应用水平井泵送电缆桥塞压裂技术,成功完成水平井9段分层加砂压裂施工,注入液体4261.1m3,支撑剂908.5t,刷新此项工艺技术作业时间最短、段数最多(9段)、注入砂量最大、注入液量最多、累计作业时间最长等5项亚洲记录, ?2010年,国产水平井裸眼封隔器及配套工具的成功研发和推广应用,打破了外国公司的垄断,取得了很好的增产效果,产量是临近直井的3倍以上。 ?2010年,川庆钻探在合川 2口井成功进行了连续油管喷砂射孔环空6-7级分段压裂现场施工;西南油气田的威201页岩气井也已进行了2次的页岩气压裂改造施工,为非常规气藏有效开发探索出了新的途径。 5、机械分段压裂技术 机械分段压裂技术包括裸眼封隔器分段压裂技术、动管柱套管内多封隔器卡封分段压裂技术、不动管柱套管内多封隔器卡封分段压裂技术、封隔器+桥塞分段压裂技术等。 1、裸眼封隔器分段压裂 ◆裸眼封隔器分段压裂是苏里格水平井储层改造的主要方式:到目前苏里格共完成裸眼分段压裂36井(167段),占整个水平井改造总井数的81.8%。 ◆应用规模逐年扩大: 09年8井次、10年1~7月28井次。 ◆技术水平逐步提高:分段数从3段到10段(工具已下井,近期压裂施工),最长水平段1512m,最大下入深度5235m。 套管鞋:3698.81

CO2泡沫压裂液的研究及现场应用

第23卷第1期2006年1月 钻井液与完井液 DRILLlNGFLUID&COMPLETIONFLUID V01.23NO.1 Jan.2006 文章编号:100l一5620(2006)01005卜03 CO:泡沫压裂液的研究及现场应用 李阳1翁定为1于永波2尹喜永2 (1.中石油勘探开发研究院分院,河北廊坊;2.大庆油田有限责任公司采油九厂,黑龙江大庆) 摘要在水力压裂过程ee,由于向地层中注人大量的压裂液,对地层造成了一定程度的伤害,特别是低渗透油赫压裂液对地层的伤害更加严重,从而影响了增油效果。由于CO:泡沫压裂液具有滤失量低,返排能力强、-5地层流体配伍性髓好等优点,采甩c魄泡沫压裂技术,可减小压裂液对地层的伤害。经过对COz泡沫压裂液的各种添加荆进行优选与评价,确定了适合低渗油藏使用的CO:泡沫压裂液体系,并对其综旮性能进行了评价。结果表明,CO:泡沫压裂液体系具有泡沫质量高、稳定性好、半衰期长、粘弹性大的特点,并有良好的耐温耐剪切性能和流变性能,破腋彻底,界面张力低,对储层伤害小,可以满足低渗、低压油气藏压裂施工的需要。C嘎泡沫压裂液在吉林油田和大庆亍由田的低渗透)自藏中进行应用,取得了良好的效果。 关键词增产措施CO:泡沫压裂防止地层损害流变性能耐温耐剪切低渗透油藏 中图分类号:TE357.12文献标识码:A 水力压裂是低渗透油藏增产的有效手段,在油田开发中起到了重要作用。但是在水力压裂过程中,由于向地层中注人大量的压裂液,对地层造成一定程度的伤害,从而影响了增油效果。为探索油层改造新途径,从油层保护人手,采用了COz泡沫压裂技术。CO:泡沫压裂液由于具有滤失量低、返排能力强、与地层流体配伍性良好等优点,减小了压裂液对地层的伤害,比普通压裂液更适合于低渗低压油井、水敏性地层的压裂改造。而COt泡沫压裂技术在低渗透油田油层改造中应用效果的好坏,起关键作用的是CO。泡沫压裂液。为此,开展了COz泡沫压裂液优化研究。 1C02泡沫压裂液添加剂优选 COz泡沫压裂液由CO。和凝胶压裂液组成,并加有表面活性剂和其他添加剂以形成乳状液,靠一定的粘度和稳定的泡沫来达到携砂、造缝的目的。CO:泡沫压裂液具有滤失量低、耐温能力强、破胶快、防膨好、返排率高、伤害低等特点,非常适合作低渗、低压储层压裂改造的工作液。其性能优劣与各种添加剂的优选有关,对起泡剂、稳泡剂、交联剂、破乳助排剂等添加剂进行优选评价并从中筛选出起泡性能较好、半衰期长、水不溶物含量低、增粘效果好的添加剂,是c0。泡沫压裂液研究的重点。 lI1起泡剂优选 起泡剂是泡沫压裂液的关键添加剂之一,起泡剂性能的好坏直接影响着泡沫压裂液起泡能力和稳泡能力,具有良好起泡性能的表面活性剂必须具备两个条件,即易于产生泡沫和产生的泡沫有较好的稳定性。通过调研,选用r3种起泡剂进行起泡效率和泡沫稳定性对比试验,结果见表1。由表1可看出,FI。48起泡剂性能最好,B18和YPF一1起泡剂性能柑当。FL48在常温下为浅黄色液体,pH值为5~6,密度为1.00~1.05g/cm3,0.2%水溶液表面张力为2j.08mN/m,界面张力为0.71mN/m。1.2稳泡剂的优选 在施工过程中保持泡沫的稳定极为重要,为此 表1不同起泡剂起泡性能和泡沫稳定性对比 第一作者简介:李船,工程师,1995年毕业于北京化工大学,获应用化学学士学位,现在攻读油气藏开发工程硕士学位,主要从事压裂工艺技术研究,曾获石油勘探院标准一等装、石油勘探院科技进步一等奖。地址:河北省廊坊市444信箱压裂中心;邮政编码065007;电话(OLO)69213668。  万方数据 万方数据

压裂工艺原理介绍)

水力压裂 水力压裂水力压裂水力压裂在油田开发中,人们发现,在对油层进行高压注水时,油层的吸水量开始随注水压力的上升而按一定比例增加。开始当压力值突破某一限度时,就会出现吸水量成几倍或几十倍的增加,远远超出了原来的比例,而且当突破某一限度后即使压力降低一些,其吸水量仍然很大。实践中的这一偶然发现,给人们以认识油的新启示:既然油层通过高压作用能提高注入量,那么通过高压作用能否提高油层的产量呢?经过多次证明:油层通过高压作用后,不但可以提高产量,而且能较大幅度的提高产量。最早进行压裂工作的是1947年在美国的湖果顿气田克列帕1号井进行的,苏联是1954年开始的,而我国是1952年在延长油矿开始的。40年代末水力压裂常作为一口井的增产措施来对待,但发展至今在油气田开发中的意义,已远远超过了一口井的增产增注作用。在一定条件下能起到改善采油或注水剖面,提高注水效果,加快油田开发速度和经济效果的作用。近些年来,国外在开发极低渗透率(以微达西计)的气田中,水力压裂起到了关键性的作用。本来没有开采价值的气田,经大型压裂后成为有相当储量及开发规模很大的气田。从这个意义上讲,水力压裂在油气资源的勘探上起者巨大的作用。由于上述原因,水力压裂无论在理论上、设备上、工艺上,在短短的几十年来发展的很快。现今的压裂设备能力,一次施工可用液量3000~4000米3,加砂300米3,可压开6000米的井深,裂缝长达1000米。从实践中,我们认识到压裂是油气井增产、注水井增注的一项重要措施。其优点是:施工简单、成本较低、增产(注)显著。适用于岩性微密、低渗透地层。§§§§4.1 压裂的增产原理压裂的增产原理压裂的增产原理压裂的增产原理一一一一. 压裂的过程压裂的过程压裂的过程压裂的过程压裂是靠水(液体)传导压力的,故也叫水力压裂。其过程是:在地面采用高压大排量的泵,利用液体传压的原理,将具有一定粘度的液体以大于油层吸收能力的排量向井内注入,使井筒内的压力逐渐提高。当压力增高到大于油层破裂所需要的压力时,油层就会形成一条或几条水平或垂直裂缝。当继续注入液体时,裂缝也会向油层深处延伸与扩展,直到液体注入速度等于油层渗透速度时,裂缝才会停止延伸与扩展。如果地面停止注入夜体,油层由于外来压力消失,又会使裂缝闭合,为了防止停泵后裂缝闭合,在挤入的液体中加入支撑剂(如石英砂、核桃壳等),使油层中形成导流能力很强的添砂裂缝。 导流能力导流能力导流能力导流能力=添砂裂缝渗透率添砂裂缝渗透率添砂裂缝渗透率添砂裂缝渗透率Kf××××裂缝宽度裂缝宽度裂缝宽度裂缝宽度W 二二二二. 增产

非常规压裂液发展现状及展望_许春宝

非常规压裂液发展现状及展望 许春宝1,何春明 2 (1.中国石化西南油气田分公司装备管理处,成都610017; 2.西南石油大学研究生院“油气藏地质及开发工程”国家重点实验室,成都610500)[摘 要]系统总结了国内外已经广泛应用的非常规压裂液体系,包括表面活性剂类压裂液 体系、醇类压裂液体系、二氧化碳类压裂液体系以及凝胶液化石油气类压裂液体系等;并对各种非常规压裂液的性能、储层类型以及现场应用进行了介绍。 [关键词]非常规压裂液 储层 发展现状 现场应用 收稿日期:2012-03-29。 作者简介:工程师,从事工程设备材料管理与研究工作。 随着勘探开发的不断深入以及对能源需求的日益增加,非常规油气资源已成为当前勘探开发的新热点。非常规油气资源主要包括致密砂岩气、 煤层气以及页岩气(致密油)等[1] 。 压裂改造是非常规油气资源勘探开发的最重要措施,但非常规油气藏与常规油气藏的储层特征存在巨大差异,非常规油气藏(如页岩气及致密砂岩气)岩心通常表现为水湿, 且储层原始条件下其含水饱和度往往远低于束缚水饱和度,这种情况下外界流体进入储层后会发生自吸现象,造成近井地带或近裂缝壁面区域发生水相圈闭伤害,严重影响储层流体的流动能力。 非常规油气藏压裂改造的思路以及对压裂改造工作液性能的要求与常规储层存在较大差异。由于非常规储层的物性很差,因此对压裂改造工作液性能提出了更高的要求,主要包括低伤害性、与储层良好的配伍性、良好的返排性等。依据储层对压裂液性能的要求, 国内外已开发出多种适合非常规储层压裂改造的非常规压裂液体系,包括表面活性剂类压裂液体系、醇类压裂液体系、二氧化碳类压裂液体系以及凝胶液化石油气类压裂液体系等。1表面活性剂类压裂液 1.1 黏弹性表面活性剂基压裂液早在1980s ,Nehmer [2] 就报道了表面活性剂 流体作为携砂液在砾石充填作业中的应用,表面活性剂流体在砾石充填领域的成功应用为其在压裂液领域的应用提供了依据。1997年,Samuel 等 [3] 成功研制了无聚合物水基压裂液(VES 压裂 液), VES 压裂液以季铵类表面活性剂为主要成分, 加入反离子使表面活性剂分子缔合形成蠕虫状胶束, 赋予流体黏弹性具有较好的携砂性能。VES 压裂液体系不需外加化学破胶就能自动破胶, 破胶液表面张力很低,返排能力强,且压裂液残渣含量几乎为零;同时,体系含有大量阳离子表面活性剂能够有效地稳定黏土,压裂过程中较低的表皮效应和油层污染能有效提高油气井压裂改造后的产能 [4-5] 。 目前,作为VES 压裂液使用较多的表面活性剂包括:阳离子型表面活性剂、阴离子型表面活性剂、 两性离子表面活性剂、双子型表面活性剂(Gemini 表面活性剂)。VES 压裂液体系配制简单, 只需加入表面活性剂以及无机盐(反离子)或带不同电荷的表面活性剂, 就能形成具有黏弹性的流体。体系不需要加入杀菌剂,因为体系中加入的阳离子表面活性剂本身就具有杀菌的能力;体系也不用加助排剂,因为VES 压裂液体系本身就具有很低的表面张力以及界面张力;同时也不用加黏土稳定剂,因为体系含有大量无机盐类物质(如KCl ,NaCl 等)以及阳离子表面活性剂,具有很好的防止黏土膨胀和微粒运移的能力。 压裂液的携砂性能是保证压裂施工成功以及支撑剂在产层良好铺置的关键。2002年,Asadi 等 [6] 提出,零切黏度是压裂液携砂的关键参数, VES 压裂液具有很强的黏弹性,在低剪切速率下压裂液表现出一定的屈服应力,支撑剂沉降速率

相关文档
最新文档