蒸发器计算说明

蒸发器计算说明
蒸发器计算说明

蒸发器设计计算

已知条件:工质为R22,制冷量3kW,蒸发温度t o 7 C,进口空气的干球

温度为t ai 21 C,湿球温度为t bi 15.5 C,相对湿度为56.34 %;出口空气

的干球温度为t a2 13 C,湿球温度为t b2 11.1 C,相对湿度为80 %;当地大气压力P b 101325Pa。

(1) 蒸发器结构参数选择

选用10mm 0.7mm紫铜管,翅片厚度f 0.2mm的铝套片,肋片间距

S f 2.5mm,管排方式采用正三角排列,垂直于气流方向管间距? 25mm,沿

气流方向的管排数n L 4,迎面风速取W f 3m/s

(2) 计算几何参数

翅片为平直套片,考虑套片后的管外径为

d b d。2 f 10 2 0.2 10.4mm

沿气流方向的管间距为

s2s1cos30 25 0.866 21.65mm

沿气流方向套片的长度为

L 4s2 4 21.65 86.6mm

设计结果为L 3S2每米管长翅片表面积:

a f 每米管长翅片间管子表面积:

25 3 21.65 25 89.95mm

.2

1000

2 3 S2 d b

4 S f

3.14 …,2 1000 2 25 21.65 10.4

4 2.5

0.3651 m2 m

P rf 0.704

d b (S f

f

)

a b

S f

3.14 10.4

2.5 0.2

1000

2.5

0.03m 2 m

每米管长总外表面积:

a °f

a f a

b 0.3651 0.03 0.3951m 2. m

每米管长管内面积:

d i 3.14 (0.01

0.0007 2) 0.027 m ^ m

每米管长的外表面积:

d b 3.14 0.0104

0.03267 m 2. m

肋化系数:

a

of

0.3951 a i

0.027

每米管长平均直径的表面积:

(3) 计算空气侧的干表面传热系数

①空气的物性 空气的平均温度为

空气在下17 C 的物性参数

f

1.215kg m 3

C p f 1005 kJ kg K

V f 14.48 10 6 m s

3.14

0.0104 0.0086

0.02983 m 2 m

a i a b0

t f

t a1 t a2

2

21 13 2

17 C

944.06kg. h

②最窄截面处空气流速

(4) 确定空气在蒸发器内的变化过程

w,该点的参数是 h w 25 kJ kg,d w 6.6 g kg,t w 8 C 。

在蒸发器中空气的平均比焓值

43.364 31.924 ’ 43.364 25 1n 31.924 25 由焓湿图查得t m 16.2 C,d m 8g.kg 析湿系数

$ S f W max W f

Si d b

S f f 25 25 10.4 2.5 2.5 5.58 m/ s

0.2 ③干表面传热系数 干表面传热系数用小型制冷装置设计指导式(

4-8)计算 0.4 0.15 4 0.0014 0.2618 W max d0 % V f a

bo

0.0014 0.2168 空空孚

14.48 10 6 0.4 0.3951 0.03267 0.15

0.00792

4

f w max

C pf

2 3

P r

0.00792 1.215

5.58 1005

0.704

68.2W. m 2

2.46

d w

t m

(5)循环空气量的计算

q m,da

Q 0

3 3600 h 1 h 2

43.364 31.924

根据给定的进出口温度

由湿空气

图可得

h 1 43.364kJ kg,h 2 31.924kJ kg,d 1

8.723g kg,d 2 7.443g kg 。 在空气的焓

湿图上连接空气的进出口状态点 1和点

2,并延长与饱和气线

1.0相交于点

h i h 2

“ h 1 h w h 2 h w

36.73kJ/kg

进口状态下干空气的比体积

R a T 1 1 0.0016d 1

V i

P b

287.4

273.15 21 1 0.0016 8.723

101325

0.846m 3. kg

循环空气的体积流量

3

q v,a q m,da V 1 944.06 0.846 798.67m /h

(6) 空气侧当量表面传热系数的计算

a f f a b

3f 3b

(4-13)计算,叉排时翅片可视为六角形,且此时翅片的长对边距离和短对边距

2.55

肋折合高度为

凝露工况下翅片效率为

th 64.06 10.7 10 64.06 10.7 10 3

当量表面传热系数

对于正三角形排列的平直套片管束,翅片效率

f

小型制冷装置设计指导式

离之比-1,且

B

B m

d^ 竺2.4 10.4

1.27

0.3

1.27

2.4

. 1 0.3

h d 2

0.35ln

号 2.55 1 1

0.35 In 2.55 10.7mm

2 68.2 1.42 236 0.2 10 3

64.06

3

-0.8683

th(mh ) mh

a f f a b

g;160 kg. m2 s。则总流通面积为

a f a b

2 85.06W /(m K)

(7) 管内R22蒸发时的表面传热系数

R22 在t07 C时的物性参数为:

饱和液体密度i 1257.3kg. m3

饱和蒸气密度g 26.43kg m3

199.56 kJ kg

液体普朗特数P d 2.62

蒸气普朗特数P rg 0.92

R22在管内蒸发的表面传热系数由小型制冷装置设计与指导式( 4-5)计算。计算查的R22进入蒸发器时的干度%0.25,出口干度X2 1.0。则R22的总质量

流量为

Q°3600 3 3600

0 x2 x1199.56 1 0.25

作为迭代计算的初值,取q i7200W m2,R22在管内的质量流速

q m 72.16 q;3600 160 3600

4 2 1.2

5 10 4m2

1.42 68.2 0.8683 0.365 0.03

0.3951

液体粘度

6 l 202.2 10 Pa s

气体粘度11.815 10 Pa s 汽化热

液体热导率

3

l 13.2 10 W/m K

蒸气热导率

3

9.93 10 W/m K

q m 72.16 kg h

207.11

207.11 1.136 0.09634 0.9 25 0.2240.3 667.2

2.1 10 4 0.7 2.2

每根管子的有效流通截面积

d i 2 A i V 2

3?14 °.0086

5.8 10 5m 2

蒸发器的分路数 A i

4

1.25 105

2.16

5.8 10 5 结合分液器的实际产品现状,取分路数为 Z=2 每一分路中 R22的质量流量为 72.16 3

6.08 kg h

每一分路中 R22在管内的实际质量流速为

g i

g m

3600 36.08 A i

3600 5.8 10 5

172.8kg.

于是 B 0

q i

7.2 172.8 199.56

4

2.1 10

C 0

Re l

0.8

0.5

1 0.625

0.8

26.43 0.5

F rl

g

i

2

g i l 2

gd i x d i

i G C0

C

2

25F d C5 0.625

1257.3

0.09634

172.8

1257.3 2

9.8 0.0086

0.224

172.8 1 0.625 0.0086

202.2 10 6

0.023 Re l 0.8 P rl 0.4」

d i 0.023 2756.08

C 3 B 0 C4 F fl

0.8

2.62

2756.08 0.4

0.0932 0.0086

16.21m

4050.35W. m 2 K

(8) 传热温差的初步计算

r 0 0.0048W m 2 K

1

49.6W m 2 K

0.3951

1

0.0048 -

4050.35 0.027

85.06

0.3951

468.2 6851W. m 2

0.027

效,可用。

(11)蒸发器结构尺寸的确定

蒸发器所需的表面传热面积

蒸发器所需传热管总长

t

a1

t

a2

t a1 t

0 ln t a2

t

21 13

c 9.44

C ,21 7 In

13 7

(9)传热系数的计算

管内污垢热阻r i 可

以忽略,接触热阻以及导热热阻之和取为

(10)核算假设的 q

k 0 m

49.6 9.44

468.2W m 2

计算表明,假设的

q i 7200Wm

2

初值与核算的值6851W m 2较接近,故假设有

I t

A 0

a of

6.408 0.3951

迎风面积

A f

仏 298旦 0.074m 2

W f 3 3600

i a

i

a

of q q ° a

i

A i

Q 0

q i

3000 7200 2

0.417m

A 0

Q 0

q o

3000 468.2

2

6.408m

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ?? -?=π ()5 .21000 4.10414.36 5.212522???? ???-??= m m 23651.0=

每米管长翅片间管子表面积: f f f b b s s d a ) (δπ-= ()5 .21000 2.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086 .00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 13 21221 空气在下C ?17的物性参数 3215.1m kg f =ρ

蒸发器的选择计算

. 新乡双赢蒸发器选择计算的任务是选择合适的蒸发器类型和计算蒸发器的传热面积,确定定型产品的型号与规格。蒸发器的传热面积计算公式为 Qe=kA△tm 式中Qe----蒸发器的制冷量,W; K-----蒸发器的传热系数,W/(M2.℃); A-----蒸发器的传热面积,M2; Tm----蒸发器的平均传热温差,℃。 对于冷却液体或空气的蒸发器,蒸发器的制冷量应为 Qe=Mc(T1-T2) Qe=M(H1-H2) 式中M---被冷却液体(水、乙二醇)或空气的质量流量,kg/s; C--------被冷却液体的比热,J/(kg.℃); T1、T2----被冷却液体进、出蒸发器的温度,℃; H1、H2----被冷却空气进、出蒸发器的比焓,J/kg。 对于制冷系统,M、c、T1、T2,通常是已知的。例如,为空调系统制备冷冻水,其流量、要求供出的冷冻水温度(T2)及回蒸发器的冷冻水温度(T1)都是已知的。因此,蒸发器的热负荷Qe是已知的。对于热泵系统,进蒸发器的温度T1与热泵的低位热源有关。例如,水作低位热源时,T1决定于水位(河水、湖水、地下水、海水等)的温度。而T2、M的确定需综合考虑热泵的COPh、经济性等因素确定。 蒸发器内制冷剂出口可能有一定的过热度,但过热所吸收的热量比例很小,因此在计算传热温差时,制冷剂的温度就认为是蒸发温度Te,平均传热温差应为 T1--T2 △tm=----------------- T1--Te LN--------- T2--Te △tm和Te的确定影响到系统的运行能耗、设备费用、运行费用等。如果Te取得低,则△tm增大,传热面积减少,降低了蒸发器设备费用;而系统的制冷量、性能系数减小,压缩机的功耗增加,运行费用增大。如果取得高,则与之相反。用于制取冷水的满液式蒸发器Te一般不低于2℃。关于△tm或(T2-Te)的推荐值列于表中。蒸发器的传热系数K与管内、外的放热系数、污垢热阻等因素有关,详细计算请参阅文献。表中还列出了常用蒸发器传热系数K的推荐值。 '.

蒸发器尺寸设计

蒸发器工艺尺寸计算? 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;????? L---加热管长度,m;? 因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 ???? 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 ?? 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 ?? 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。 管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。我们选用的设计管心距是:???? 确定加热室内径和加热管数的具体做法是:先计算管束中心线上管数nc,管子安正三角形排列时,nc=1.1* ;其中n为总加热管数。初步估计加热室Di=t(nc-1)+2b’,式中b’=(1—1.5)d0.然后由容器公称直径系列,试选一个内径作

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝 器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温 差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则 应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑? -'-=?)(1k T T t ∑?t 1T k T '∑?

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一《食品工程原理》课程设计任务书 (1) (1) ........................................................................................................................................... .设计课题 (2) (2) ........................................................................................................................................... .设计条件 (2) (3) ........................................................................................................................................... .设计要求 (2) (4) ........................................................................................................................................... .设计意义 (2) (5) ........................................................................................................................................... .主要参考资料.. (3) 二设计方案的确定 (3) 三设计计算 (4) 3.1. ......................................................................................................................................... 总蒸发水量 (4) 3.2. ......................................................................................................................................... 加热面积初算. (4) ( 1)估算各效浓度 (4) ( 2)沸点的初算 (4) ( 3)温度差的计算 (5) (4)计算两效蒸发水量V,V2及加热蒸汽的消耗量S (6) (5)总传热系数K的计算 (7) ( 6)分配有效温度差,计算传热面积 (9) 3.3. ............................................................................................................................................ 重算两效传热面积.. (10) ( 1)第一次重算 (10) 3.4 计算结果 (11) 四蒸发器主要工艺尺寸的计算 (13)

降膜蒸发器的设计说明

齐齐哈尔大学 蒸发水量为2000的真空降膜蒸发器 题目蒸发水量为2000的真空降膜蒸发器 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩

2016年12月20日

目录 摘要............................................................................................... I V Absract ............................................................................................. V 第1章蒸发器的概述 (1) 1.1蒸发器的简介 (1) 1.2蒸发器的分类 (2) 1.3蒸发器的类型及特点、 (3) 1.4蒸发器的维护 (7) 第2章蒸发器的确定 (9) 2.1 设计题目 (9) 2.2 设计条件: (9) 2.3 设计要求: (9) 2.4 设计方案的确定 (10) 第3章换热面积计算 (11) 3.1.进料量 (11) 3.2.加热面积初算 (11) 3.2.1估算各效浓度: (11) 3.2.2沸点的初算 (12)

3.2.3计算两效蒸发水量,及加热蒸汽的消耗量 (13) 3.3.重算两效传热面积 (15) 3.3.1.第一次重算 (15) 第4章蒸发器主要工艺尺寸的计算 (17) 4.1加热室 (17) 4.2分离室 (18) 4.3其他工件尺寸 (19) 第5章强度校核 (20) 5.1 筒体 (20) 5.2前端管箱 (21) 参考文献 (26) 致谢 (29)

蒸发计算方法综述

蒸发 摘要:蒸发是地球表面水量和能量平衡中的重要分量,对于区域气候、旱涝变化趋势,水资源形成及变化规律,水资源评价等方面的研究有着重要作用。本文列举了常用的几种蒸发计算方法,对每种方法的优缺点进行了简要概括,并提出了未来蒸发计算方法的发展方向。 关键词:蒸发 计算方法 1 关于蒸发的几个概念 蒸发(Evaporation )是水循环和水平衡的基本要素之一。水分从液态变为汽态的过程称为蒸发。它涉及地球表层中能量循环和物质转化最为强烈的活动层——土壤-植物-大气系统(SPAC ),常受下垫面条件(如地形、土壤质地、土壤水分状况等)、植物生理特性(如植物种类、生长过程等)和气象因素(如太阳辐射、温度、湿度、风速等)等诸多因素的影响。因此,蒸发蒸腾问题成为水文学、气象学、农学等多个学科领域的关注焦点。 发生在海洋、江河、湖库等水体表面的蒸发,称为水面蒸发,它仅受太阳辐射等气象因素的热能条件制约,故又可称为蒸发能力。发生在土壤表面或岩体表面的蒸发,通常称为土壤蒸发。发生在植物表面的蒸发,称为植物蒸腾或植物蒸散发。发生在一个流域或区域内的水面蒸发、土壤蒸发和植物蒸腾的总和称为流域蒸散发或陆地蒸发。陆地蒸发不仅取决于热能条件,还取决于可以供应蒸发的水分条件,即供水条件。 蒸发蒸腾(Evaportranspiration ,简称ET )包括土壤蒸发和植被蒸腾,在全球水文循环中起着重要的作用。 参考作物蒸发蒸腾量(0ET ):为一种假想参考作物的蒸发蒸腾速率。假想作物的高度为0.12m ,固定的叶面阻力为70s/m ,反射率为0.23,非常类似于表面开阔、高度一致、生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。0ET 的计量单位以水深表示,单位为mm ;或用一定时段内的日平均值表示,单位为mm/d 。 2 直接测定法 2.1 蒸发皿测定法 1687年英国天文学家Halley 使用蒸发器测定蒸发量揭开了水面蒸发观测的序幕。蒸发皿测定法主要包括大型蒸发池和小型蒸发器。大型蒸发池(20E 面积20m 2或100E 面积100m 2)的蒸发资料虽然能够代表大水体的实际水面蒸发,但由于造价太高,不可能所

蒸发器工艺尺寸计算

第四章蒸发器工艺尺寸计算 蒸发器的主要结构尺寸(以下均以第一效为计算对象) 我们选取的中央循环管式蒸发器的计算方法如下。 §4·1 加热管的选择和管数的初步估计 §4·1·1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. §4·1·2循环管的选择 本文由钢管世界-无缝钢管提供:https://www.360docs.net/doc/ce16101192.html,/转载注明出处!

循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 §4·1·3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。 管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。我们选用的设计管心距是: 本文由钢管世界-无缝钢管提供:https://www.360docs.net/doc/ce16101192.html,/转载注明出处!

蒸 发 技 术 要 求

蒸发技术要求 1.0本技术协议适用内蒙古百业成酒精制造有限责任公司所需的余热蒸发器,它提出了蒸 发成套装置的功能、设计、结构、性能、安装、调试、和验收等方面的技术要求。 本技术协议书提出的最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文。卖方应提供符合本技术的工业标准,证明其产品的可靠性及技术的先进性。 卖方须按照所要求的章节内容及相关提示,编制相应的技术书,如果卖方没有以书面形式为本技术书的条文提出异议,则意味着卖方提供的设备完全符合本技术书的要求。如有异议,不管多么微小,应在技术书中以“对技术的意见和同技术的差异” 为标题的相应专门章节加以详细描述。 2.0本技术协议书所使用的标准,如果遇与卖方所执行的标准不一致时,按较高标准执行。 但是,政府强制执行的标准除外。 本技术协议书作为技术依据,卖方按买方的要求,提出技术及设备设计、制造、检验、安装、调试、验收等标准清单给买方确认,并提供三份文件作为技术标准。 合同规定的文件,包括图纸,计算及说明,使用手册等均应使用国际单位制(SI)3.0卖方提供的设备必须是同类设备中技术先进,可靠性高的全新产品。 本技术协议书未尽事宜,有买卖双方协商确定。 本技术协议书与合同文件具有同等的法律效力,但形成合同文件的过程及以后,有必要对相应条款或数据做出修改的情况下,将以双方确认后的条款或数据为准。 4.0 工艺技术描述 卧式螺旋沉降离心机分离出的湿糟经螺旋输送机送至混料螺旋输送机,在此与浓缩

液和返回的干料预混合后送入干燥机进料螺旋输送机,送入干燥机干燥,干燥后的DDGS 蛋白饲料由干燥机出料螺旋输送机送出,一部分干料经返料给料器被送至混料螺旋输送机,另一部分干料被送至出料螺旋输送机,二次蒸汽供蒸发工段作为蒸发系统的加热热源,干燥机冷凝水也作为蒸发的热源,出料螺旋输送机送出的物料,被送至气流输送至包装系统。 5.0技术标准 产品的设计,原辅材料的采购,产品的制造及验收均应严格执行相应的国家(行业或企业)现行有效版本标准(该标准作为买卖双方执行的主要依据),投标时一并提供。 6.0工艺设计基础条件 (1)以玉米为原料,通过粉碎蒸煮糖化发酵工艺,经蒸馏工序提酒离心机分离后,产生的离心清液进入蒸发系统进行浓缩。 (2)进料温度70-80℃ (3)蒸发水量50t/h 进料量55t/h-60t/h (4)进料浓度>4%—<8%,含有最高不超过1.8%的悬浮物,出料浓度≥30% 温度<85℃ (5)热源:以四台1200M2 管束式干燥机产生的蒸汽冷凝水闪蒸汽和干燥机干燥过程产生的二次蒸汽为主,生蒸汽为饱和水蒸汽压力2。5kg/cm2(表压) 每 小时生蒸汽用量≤7t/h 。 (6)供电电压380V/220V 50Hz (7)循环水:上水水温28-30℃、压力0.3Mpa(G)。 (8)新鲜水压力0.3Mpa(G)。 (9)压缩空气:压力0.6Mpa(G),常温、无油、无尘,压缩空气露点-40℃

蒸发器设计说明书

KNO3水溶液三效并流蒸发系统设计 摘要:蒸发是化工生产中重要的单元操作,普遍应用于化工、医药、食品等行业中。本次课程设计的任务是设计三效并流蒸发装置,将10% KNO3溶液浓缩至40%,年处理量为5×104吨。采用中央循环管型蒸发器。设计工作主要包括工艺设计计算,蒸发器传热面积优化编程,蒸发器工艺尺寸的设计计算及辅助设备的选型计算,主要设备的强度校核,管道及各种连接件的选型,工艺流程图及蒸发器装配图的绘制。 关键词:三效并流蒸发装置;蒸发;KNO3 Abstract: Evaporation is an important unit operation in chemical process. It finds wide application in such fields as chemical industry, pharmaceutical industry, food industry and so on. The task is to design a three-effect forward flow evaporation system to concentrate 20,000 ton/year of KNO3aqueous solution from 10% to 40%. Standard evaporator (evaporator with central circulation downcomer) was chosen. The major work includes calculation of the process parameters and the heat transfer area, determination of the size and structure of the evaporator, and selection of the ancillary facilities, as well as checking the strength of the main equipments and choosing appropriate pipes. The process flow chart and the assembly drawing of one evaporator were completed with the aid of Auto CAD. Keyword: Three-effect forward flow evaporation; evaporation; KNO3 第一章概述

蒸发器冷凝器选型参数.doc

选型参数计算表 蒸发器简易选型 ( 仅供参考) 压缩机输 RT 104kcal/h 输入功率制冷量 KW 蒸发器片数 ( 冷冻水进 12°出 7°) 入功率备注 (kW)(COP3.33) (Hp) EATB25 EATB55 EATB85 小1 0.62 0.124 0.65 2.17 16 2°蒸发 1 0.7 0.2 2 0.75 2.5 18 2°蒸发 1.5 1.05 0.33 1.13 3.76 22 2°蒸发 2 1.4 0.4 3 1.50 5 26 2°蒸发 3 2.1 0.65 2.25 7.5 3 4 18 2°蒸发 4 2.8 0.86 3.00 10 44 22 2°蒸发 5 3.5 1.1 3.75 12.5 54 2 6 2°蒸发 6 4.2 1.29 4.50 15 30 2°蒸发 7 5 1.5 5.25 17.5 32 2°蒸发 8 5.7 1.7 6.00 20 36 2°蒸发 9 6.4 1.9 6.75 22.5 40 2°蒸发 10 7.1 2.1 7.50 25 46 2°蒸发 11 7.9 2.4 8.25 27.5 50 2°蒸发 12 8.5 2.6 9.00 30 56 36 2°蒸发 13 9.4 2.8 9.75 32.5 60 40 2°蒸发 14 10 3 10.50 35 64 42 2°蒸发 15 11 3.26 11.25 37.5 70 46 2°蒸发 16 11.3 3.44 12.00 40 74 48 2°蒸发 17 12.2 3.7 12.75 42.5 78 52 2°蒸发 18 12.7 3.87 13.50 45 84 56 2°蒸发 19 13.6 4.13 14.25 47.5 60 2°蒸发 20 14.2 4.3 15.00 50 64 2°蒸发 21 15 4.5 15.75 52.5 68 2°蒸发 22 15.6 4.7 16.50 55 74 2°蒸发 23 16.5 5 17.25 57.5 80 2°蒸发 24 17 5.16 18.00 60 84 2°蒸发 25 18 5.6 18.25 62.5 90 2°蒸发 26 20 6 19.00 65 98 2°蒸发 选型参数计算表

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强 及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环 蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有 效总温差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相 等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5), 直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) )110x x F W -=(n W W i =i i W W W F Fx x ---=210

对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; — 由于蒸发器中溶液的静压强而引起的温度差损失,℃; — 由于管路流体阻力产生压强降而引起的温度差损失,℃。 n p p p k '-=?1p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'?''?'''

蒸发器尺寸设计

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。

蒸发器的设计计算

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .210002.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

蒸发器的结构与设计

蒸发器的结构和

蒸发器的结构 2 循环型(非膜式)蒸发器 2 膜式(单程型)蒸发器 3 (一)中央循环管式(或标准式)蒸发器。 (2)悬筐式蒸发器 二、膜式(单程型)蒸发器 上述各种蒸发器的主要缺点是加热室内滞料量大,致使物料在高温下停留时间长,特别不适于处理热敏性物料。在膜式蒸发器内,溶液只通过加热室一次即可浓

缩到需要的浓度,停留时间仅为数秒或十余秒钟。操作过程中溶液沿加热管壁呈传 热一) 升膜蒸发器 (一) 升膜蒸发器 升膜蒸发器的结构如图所示,加热室由单根或多根垂直管组成,加热管长径之比为100~150,管径在25~50mm之间。原料液经预热达到沸点或接近沸点 上均匀布膜,且防止二次蒸汽由加热管顶端直接窜出,加热管顶部必须设置加工良 好的液体分布器。 2| 蒸发器的设计 一、蒸发器的选择 随着工业技术的发展,新型蒸发设备不断出现。在工业中常用的间接加热蒸发器分别为循环型和单程型两大类。循环型的蒸发器中有中央循环管式、悬框式、外加热式、列文式及强制循环管等,单程型的蒸发器有升膜式、降膜式、升-降膜式等。我们要根据蒸发的操作条件及各项要求选择合适的蒸发器。我们以中央循环管 式蒸发器为例。

蒸发操作条件的确定主要指蒸发器加热蒸汽的压强(或温度),冷凝器的操作压强(或温度)的确定,正确选择蒸发的操作条件,对保证产品质量和降低能耗 极为重要。 二、蒸发工艺的设计计算 多效蒸发工艺计算的主要依据是物料衡算、热量衡算及传热速率方程。计算的 为止。 三、蒸发器的主要结构工艺尺寸的设计 中央循环管式蒸发器主体分为加热室和分离室,加热室由直立的加热管束组成,管束中间为一根直径较大的中央循环管;分离室是汽液分离的空间。其主要结

满液式蒸发器的设计

满液式蒸发器的设计

3满液式蒸发器的设计 3.1制冷剂流量的确定 制冷剂压焓图: P h 图3.1 由蒸发温度50=t ℃,40=k t ℃,5=g t ℃,根据文献1《制冷原理及设备》附表13(P 341)和附图5(P 373)查得: 1407.143/(.)h kJ kg K =,)./(050.4302K kg kJ h =,)./(686.24943K kg kJ h h == )./(963.242, 4,3K kg kJ h h ==,kg m /103556.40331-?=ν,kg m /109876.17332-?=νkg m /1088392.0333-?=ν, kg m /100003.933,4-?=ν 单位制冷量: )./(180.164963.242143.407, 410K kg kJ h h q =-=-=(P 31) (3.1) 制冷剂流量: 00700.4263/164.180 m Q q kg s q = == (P 31) (3.2) 3.2载冷剂流量的确定 3301270 3.343610/()1000 4.1875 vs p s s Q q m s c t t ρ-= ==?-?? (P 246) (3.3) 3.3传热管的确定 选用φ10×1低螺纹铜管,取水流速度s m u /2.1=,则每流程的管子数Z t k t 43 2 1 3 4

为 3 226 44 3.34361055.463.14(102)10 1.2 vs i q Z d u π--??===?-??根 (3.4) 圆整后,Z=56根。 实际水流速度 3 226 44 3.343610 1.1884/ 1.2/3.14(102)1056vs i q u m s m s d Z π--??===≈?-?? (3.5) 3.4管程与有效管长 假定热流密度q=6600W /m 2,则所需的传热面积 3 20701010.616600 k Q F m q ?=== (3.6) 管子与管子有效长度的乘积 0010.61 6.033.140.0156 c F NI m d Z π= ==?? (3.7) 采用管子成正三角形排列的布置方案,管距s=14mm,对不同流程数N ,有效单管长c l ,总根数NZ,壳体直径D 及长径比D l c /进行组合计算,组合计算结果如表3.1所示: 表3.1组合计算结果 N NZ ) (m l c ) (m D D l c / 2 112 3.02 0.12 25.17 4 224 1.51 0.16 9.44 6 336 1.01 0.18 5.61 8 448 0.75 0.20 3.75 表3.1不同流程数N 对应的管长c l 及D l c / 从D 及D l c /值看, 4流程是可取的。

蒸发器尺寸设计

蒸发器尺寸设计 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m; L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则

所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。 管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。我们选用的设计管心距是: 确定加热室内径和加热管数的具体做法是:先计算管束中心线上管数nc,管子安正三角形排列时,nc=1.1* ;其中n为总加热管数。初步估计加热室 Di=t(nc-1)+2b’,式中b’=(1—1.5)d0.然后由容器公称直径系列,试选一个内径作为加热室内径并以该内径和循环管外景作同心圆,在同心圆的环隙中,按加热管的排列方式和管心距作图。所画的管数n必须大于初值n’,若不满足,应另选一设备内径,重新作图,直至合适。

蒸发器的选择计算

新乡双赢蒸发器选择计算的任务是选择合适的蒸发器类型和计算蒸发器的传热面积,确定定型产品的型号与规格。蒸发器的传热面积计算公式为 Qe=kA△tm 式中Qe----蒸发器的制冷量,W; K-----蒸发器的传热系数,W/(M2.℃); A-----蒸发器的传热面积,M2; Tm----蒸发器的平均传热温差,℃。 对于冷却液体或空气的蒸发器,蒸发器的制冷量应为 Qe=Mc(T1-T2) Qe=M(H1-H2) 式中M---被冷却液体(水、乙二醇)或空气的质量流量,kg/s; C--------被冷却液体的比热,J/(kg.℃); T1、T2----被冷却液体进、出蒸发器的温度,℃; H1、H2----被冷却空气进、出蒸发器的比焓,J/kg。 对于制冷系统,M、c、T1、T2,通常是已知的。例如,为空调系统制备冷冻水,其流量、要求供出的冷冻水温度(T2)及回蒸发器的冷冻水温度(T1)都是已知的。因此,蒸发器的热负荷Qe是已知的。对于热泵系统,进蒸发器的温度T1与热泵的低位热源有关。例如,水作低位热源时,T1决定于水位(河水、湖水、地下水、海水等)的温度。而T2、M的确定需综合考虑热泵的COPh、经济性等因素确定。 蒸发器内制冷剂出口可能有一定的过热度,但过热所吸收的热量比例很小,因此在计算传热温差时,制冷剂的温度就认为是蒸发温度Te,平均传热温差应为 T1--T2 △tm=----------------- T1--Te LN--------- T2--Te △tm和Te的确定影响到系统的运行能耗、设备费用、运行费用等。如果Te取得低,则△tm增大,传热面积减少,降低了蒸发器设备费用;而系统的制冷量、性能系数减小,压缩机的功耗增加,运行费用增大。如果取得高,则与之相反。用于制取冷水的满液式蒸发器Te一般不低于2℃。关于△tm或(T2-Te)的推荐值列于表中。蒸发器的传热系数K与管内、外的放热系数、污垢热阻等因素有关,详细计算请参阅文献。表中还列出了常用蒸发器传热系数K的推荐值。

相关文档
最新文档