中考几何证明题知识点分析

中考几何证明题知识点分析
中考几何证明题知识点分析

目录

1、考点总分析

2、知识点讲解

3、出题的类型

4、解题思路

5、相关练习题

几何证明题专题

本题的主要知识点(中考中第3道,分值为8分)

七年级上第4章几何图形初步七年级下第5章相交线及平行线

八年级上第11章三角形第12章全等三角形第13章轴对称

八年级下第17章勾股定理第18章平行四边形

九年级上第23章旋转第24章圆

九年级下第27章相似第28章投影及视图

1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:

(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;

(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;

(3)两头凑法:将分析及综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设及结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。

知识结构图

0160160??

?????==??

??

???

?”’”

直线:两点确定一条直线

线射线:线段:两点之间线段最短,(点到直线的距离,平行线间的距离)角的分类:锐角、直角、钝角、平角、周角.角的度量与比较:, ;角余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等,角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角对顶角:对顶角相等.相交线几何初步垂线:定义,垂直的判定,垂线段最短.平行?????

????????

??

??????????

??????????????????

定义:在同一平面内,不相交的两条直线叫平行线线性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行

1C S 20.??????????????按边分类:不等边三角形、等腰三角形、等边三角形

分类按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边;边面积与周长:=a+b=c ,=底高.三角形的内角和等于18度,外角和等于360度;角三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角中线:一条中线平分三角形的面积一般三角形角线段三角形.?????性质:角平分线上的点到角两边的距离相等;平分线判定:到角两边的距离相等的点在角的平分线上内心:三角形三条角平分线的交点,到三边距离相等.高:高的作法及高的位置(可以在三角形的内部、边上、外部)中位线:三角形的中位线平行于第三边且等于第三边的一半.性质:线段垂直平分线上的点到线段两端点的距离相等;中垂线判定:到线段两端点的距离相等的点在线段的垂直平分线上.外心:三角形三边垂直平分线的交点.60.6060??

?

??????????????????????????????????????????????

???,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图形性质等边三角形的三边上均有三线合一,三边相等,三角形等都为度有两边相等的三角形是等腰三角形;等腰三角形有两角相等的三角形是等腰三角形;判定有一个角为度的等腰三角形是等边三角形;有两个角是度的三角02220.30C 90.???????????????????????????????????=?形是等边三角形一个角是直角或两个锐角互余;直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,的锐角所对的直角边等于斜边的一半;勾股定理:两直角边的平方和等于斜边的平方.直角三角形证一个角是直角或两个角互余;判定有一边上的中线等于这边的一半的三角形是直角三角形;勾股定理的逆定理:若a +b =c ,则∠.ASA SAS AAS SSS HL ???????????????????????????

?????

??

????

?????????????????????????

???

????

全等三角形的对应边相等,对应角相等,周长、面积也相等;性质全等三角形全等三角形对应线段(角平分线、中线、高、中位线等)相等判定:,,,,.

00.??????????

??

?????????????????????

多边形:多边形的内角和为(n-2)180,外角和为360定义:一组对边平行而另一组对边不平行的四边形叫做梯形.直角梯形性质:两腰相等、对角线相等,同一底上的两角相等.梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平性质:平行四边形的平行四边形四边形...????????????????????????????

????????????行且相等两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形.两组对角分别相等对角线互相平分共性:具有平行四边形的所有性质性质个性:对角线相等,四个角都是直角矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;

三个角是直角的四边形是矩形.

...1S=2

???

??????

??

?????????????→→??

??

→→??

+共性:具有平行四边形的所有性质性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形性质:具有平行四边形、矩形、菱形的所有性质正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:(上底下底面积求法S=S S S ??

?

?????

????

?

??

??

????????

??

???????

?????

????

?

????

????????????

=?????????=???

)高=中位线高平行四边形:底高矩形:长宽菱形:=底高=对角线乘积的一半正方形:边长边长=对角线乘积的一半

?????????????点在圆外:d >r 点与圆的三种位置关系点在圆上:d =r 点在圆内:d <r 弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、

五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别圆的中心对称性圆009090AB CD P PA PA PC PD..????

??

?????

???????=????????相等.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦、相交于点,则圆中两条平行弦所夹的弧相等相离:d >r 直线和圆的三种位置关系相切:d =r(距离法)相交:d <r 性质:圆的切线垂直圆的切线直线和圆的位置关系2PA PB PO APB PA PC PD.?????????

??????=?????

???于过切点的直径(或半径)判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,=,平分∠切割线定理:如图,外心与内心:

相离:外离(d >R+r ),内含(d <R-r )圆和圆的位置关系相切:外切(d=R+r ),内切(d=R-r )相交:R-r <d <R+r )

圆的有关计算22n n 2360180n 1S 36021S 2(2S l r r r l r r l rl r l r rl πππππππ???

??

?????????????????

?

?????

?????????

?????

???==?????==??????

??=??=?????=+???

弧长弧长

侧全弧长公式:扇形面积公式:圆锥的侧面积:为底面圆的半径,为母线)圆锥的全面积:

????

???????

???

???????①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平 移③平移前后的对应角相等,对应线段相等且平行(或图形的变化????

?????????????共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋 转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角

①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线

视图与投影中心投影:点光源射出的光线下的投影,影子不平投影2.........0)...AB C AC BC AC BC AC BC AB a c ad bc b d a c a b c d b d b d a c m a b m k k b d n b d n b d n ????????

??????????

?=?=??±±?=?=??+++?====?=+++?+++?行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用基本性质:比例的性质合比性质:等比性质:,(条件≠黄金分割:线段被点分成、两线段(>),满足=, 相似形C AB ???????? 则点为的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与0222Rt ABC C 90CD AB AC AD AB BC BD AB CD AD BD ???????????????????????????????????=???????????????斜边对应成比例的两个直角三角形相似射影定理:在△中,∠,⊥,则=, =,=(如图)①位似图形是一种特殊的相似图形,具有相似图形的一切性质位似图形②位似图形对应点所确定的直线过位似中心

③通过位似可以将图形放大或缩小

??????????

?

?????????

?

??

?

?

?

???

?

?

??

????????????

??????????????????????????

??????????????????????????

??????????????

中考中主要考试的类型

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或及圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对

的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等。

三、证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

四、证明两直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

五、证明线段的和、差、倍、分

1.作两条线段的和,证明及第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它及较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、

三角形的重心、相似三角形的性质等)。

六、证明角的和、差、倍、分

1.作两个角的和,证明及第三角相等。

2.作两个角的差,证明余下部分等于第三角。

3.利用角平分线的定义。

4.三角形的一个外角等于和它不相邻的两个内角的和。

七、证明两线段不等

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

八、证明两角不等

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

九、证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.及圆有关的比例定理相交弦定理、切割线定理及其推论。

6.利用比例式或等积式化得。

以上九项是中考几何证明题中最常出现的内容,只要掌握了对应的方法,再根据题目中的条件进行合理选择,攻克难题不再是问题!

各知识点考查形式

一、图形的认识

1、立体图形、视图和展开图(选择题)

1)几何体的三视图,几何体原型相互推倒

2)几何体的展开图,立体模型相互推倒

2、线段、射线、直线(解答题)

1)垂直平分线、线段中点性质及应用

2)结合图形判断、证明线段之间的等量、和差、大小关系

3)线段长度的求解

4)两点间线段最短(解决路径最短问题)

3、角及角分线(解答题)

1)角及角之间的数量关系

2)角分线的性质及判定(辅助线添加)

4、相交线及平行线

1)余角、补角

2)垂直平分线性质应用

3)平分线性质及判定

5、三角形

1)三角形内角和、外角、三边关系(选择题)

2)三角形角分线、高线、中线、中位线性质应用(辅助线)

3)三角形全等性质、判定、融入四边形证明(必考解答题)

4)三角形运动、折叠、旋转、平移(全等变换)、拼接(探究问题)

6、等腰三角形及直角三角形

1)等腰三角形的性质及判定、直角三角形的性质、勾股定理及逆定理

2)等腰三角形、直角三角形及四边形或圆的综合

3)锐角三角函数、特殊角三角函数、解直角三角形(解答题)

4)等腰、直角、等腰直角三角形及函数综合形成的代几综合题(压轴题必考)

7、多边形:内角和公式、外角和定理(选择题)

8、四边形(解答题)

1)平行四边形的性质、判定、结合相似、全等证明

2)特殊的平行四边形:性质、判定、以及及轴对称、旋转、平移和函数等结合应用(动点问题、面积问题及相关函数解析式问题)

3)梯形:一般梯形及等腰、直角梯形的性质、及平行四边形知识结合,四边形计算题,辅助线的添加等

9、圆(必考解答题)

1)圆的有关概念、性质

2)圆周角、圆心角之间的相互联系

3)掌握并会利用垂径定理、弧长公式、扇形面积公式,圆锥侧面面积、全面积公式

解决问题

4) 圆中的位置关系:要会判断:点及圆、直线及圆、圆及圆(重点是圆及圆位置关

系)

5) 重点:圆的证明计算题(圆的相关性质及几何图形综合) 二、 图形及变换

1、 轴对称:会判断轴对称图形、能用轴对称的知识解决简单问题

2、 平移:会运用平移的性质、会画出平移后的图形、能用平移的知识解决简单问题

3、 旋转:理解旋转的性质(全等变换),会应用旋转的性质解决问题(全等证明),

会判断中心对称图形

4、 相似:会用比例的基本性质解题、利用三角形相似的性质证明角相等、应用相似

比求解线段长度(解答题)

几何证明中的几种技巧

一.角平分线--轴对称

1.已知在Δ中,E为BC的中点,AD平分BAC ∠,BD AD ⊥于D.AB=9,AC

=13.求DE的长.

分析:延长BD交AC于F.可得Δ≌Δ.则BD=DF.又BE=EC,即DE为Δ的中位线.∴

11

()222DE FC AC AB =

=-=.

2.已知在Δ中,108

A ∠=,AB=AC,BD平分ABC ∠.求证:BC=AB+CD.

B

B

分析:在BC上截取BE=BA,连接DE.可得Δ≌Δ.由已知可得:

18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.

∴72DEC EDC ∠=∠=,∴CD=CE,∴BC=AB+CD.

3.已知在Δ中,100

A ∠=,AB=AC,BD平分ABC ∠.求证:BC=BD+AD.

B

B

分析:在BC上分别截取BE=BA,BF=BD.易证Δ≌Δ.∴AD=ED,

100A BED ∠=∠=.由已知可得:40C ∠=,20DBF ∠=.由∵BF=BD,

∴80BFD ∠=.由三角形外角性质可得:40CDF C ∠==∠.∴CF=DF. ∵100BED ∠=,∴80BFD DEF ∠=∠=,∴ED=FD=CF,∴AD=CF, ∴BC=BD+AD.

4.已知在Δ中,AC BC ⊥,CE AB ⊥,AF平分CAB ∠,过F作FD∥BC

,交AB

于D.求 证:AC=AD.

C

B

C B

分析:延长DF交AC于G.∵FD∥BC,BC⊥AC,∴FG⊥AC. 易证Δ≌Δ.∴EF=FG.则易证Δ≌Δ.∴GC=ED. ∴AC=AD.

5.如图(1)所示,BD和CE分别是ABC 的外角平分线,过点A作AF⊥BD于

F,AG⊥CE于G,延长AF及AG及BC相交,连接FG.

(1)求证:

1

()2FG AB BC CA =

++

(2)若(a)BD及CE分别是ABC 的内角平分线(如图(2));

(b)BD是Δ的内角平分线,CE是Δ的外角平分线(如图(3)). 则在图(2)及图(3)两种情况下,线段FG及Δ的三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

B

图(1)图(2)图(3)

分析:图(1)中易证Δ≌Δ及Δ≌Δ.∴有AB=BI,AC=CH及AD=ID,

AG=GH.∴GF为Δ的中位线.∴

1

()

2

FG AB BC CA

=++

同理可得图(2)中

1

()

2

FG AB CA BC

=+-

;图(3)中

1

()

2

FG BC CA AB

=+-

6.如图,Δ中,E是BC边上的中点,DE⊥BC于E,交BAC

∠的平分线AD于D,过D作DM⊥AB于M,作DN⊥AC于N.求证:BM=CN.

B

分析:连接DB及DC.∵DE垂直平分BC,∴DB=DC.易证Δ≌Δ. ∴有DM=DN.∴Δ≌Δ(HL).∴BM=CN.

7.如图,在Δ中,2B C ∠=∠,AD平分BAC ∠.求证:AC=AB+BD.

分析:在AC上截取AE=AB,连接DE.则有Δ≌Δ.∴BD=DE. ∴B AED C EDC ∠=∠=∠+∠.又∵2B C ∠=∠,∴C EDC ∠=∠. ∴DE=CE.∴AC=AB+BD.

8.在四边形ABCD中,AC平分BAD

∠,过C作CE⊥AB于E,且

1

()2AE AB AD =

+.求ABC ADC ∠+∠的度数.

分析:延长AB到F,使得BF=AD.则有CE垂直平分AF,∴AC=FC. ∴F CAE DAC ∠=∠=∠.∴有Δ≌Δ(SAS).∴CBF D ∠=∠. ∴180ABC ADC ∠+∠=.

二.旋转

1.如图,已知在正方形ABCD中,E在BC上,F在DC上,BE+DF=EF.

求证:45EAF ∠=.

B

G

分析:将Δ绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易证Δ≌Δ.

∴ 1

45

2FAE GAE FAG ∠=∠=∠=

2.如图,在ABC 中,90ACB ∠=,AB=BC,D为AC中点.AB的延长线上任意一点E.FD⊥ED交BC延长线于F.求证:DE=DF.

分析:连接BD.则BDE 可视为CDF 绕D顺时针旋转90所得.易证BD⊥DC及 BD=CD.则BDE CDF ∠=∠.又易证135DBE DCF ∠=∠=.∴Δ≌Δ.∴DE=DF.

3.如图,点E在Δ外部,D在边BC上,DE交AC于F.若123∠=∠=∠,

AC=AE.求证:Δ≌Δ.

C

分析:若Δ≌Δ,则Δ可视为Δ绕A逆时针旋转1∠所得.则有B ADE ∠=∠. ∵12B ADE ∠+∠=∠+∠,且12∠=∠.∴B ADE ∠=∠.又∵13∠=∠. ∴BAC DAE ∠=∠.再∵AC=AE.∴Δ≌Δ.

4.如图,Δ及Δ均为等腰直角三角形,且C在AD上.AE的延长线交BD于F.请

你在图中找出一对全等三角形,并写出证明过程.

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

中考几何题中新定义型题集锦.doc

中考几何题中的新定义型题集锦 在近年的中考试题中,涌现出了许多创意新颖、情境熟悉的几何新定义型试题,为了便于同学们了解掌握这方面的信息,现从近年的中考试题中精选数例,供同学们参考与借鉴。 一、定义一种新的几何体 例1(2001年泰州市)我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体,如图1,甲、乙是两个不同的正方体,正方体都是相似体。 (1)下列几何体中,一定属于相似体的是( ) A. 两个球体 B. 两个圆锥体 C. 两个圆柱体 D. 两个长方体 (2)请猜想出相似体的主要性质: ①相似体的一切对应线段(或弧长)的比等于_______; ②相似体表面积的比等于_______; ③相似体体积的比等于_______。 (3)假定在完全正常发育的条件下,不同时期的同一个人的人体是相似体,一个小朋友上幼儿园时身高为1.1m ,体重为18kg ,到了初三,身高为1.65m ,问他的体重为多少?(不考虑不同时期人体平均密度的变化) 解:(1)由相似体的定义可知,应选A 。 (2)①相似比;②相似比的平方;③相似比的立方。 (3)设初三时体重为x kg ,则由题意,得 ()3 1.1:65.118:x =, 解之,得()kg 75.60x ≈ 故到了初三时,他的体重约为60.75kg 。 二、定义一种新的规则 例2 (2003年安徽省)如图2,这些等腰三角形与正三角形的形状有差异,我们把它与正三角形的接近程度称为“正度”,在研究“正度”时,应保证相似三角形的“正度”相等。 设等腰三角形的底和腰分别为a 、b ,底角和顶角分别为α、β,要求“正度”的值是非负数。 同学甲认为:可用式子|b a |-来表示“正度”,|b a |-的值越小,表示等腰三角形越接近正三角形。

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

年重庆中考数学几何证明题--(专题练习+答案详解)

2015年重庆中考数学24题专题练习 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF. (1)当CE=1时,求△BCE的面积; (2)求证:BD=EF+CE. 4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥ CA,交CD于点F,连接OF. (1)求证:OF∥BC; (2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6. (1)求线段CD的长; (2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC. 6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm,,求梯形ABCD的面积; (2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

中考几何证明题及答案(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 几何证明练习题及答案 【知识要点】 1.进一步掌握直角三角形的性质,并能够熟练应用; 2.通过本节课的学习能够熟练地写出较难证明的求证; 3.证明要合乎逻辑,能够应用综合法熟练地证明几何命题。 【概念回顾】 1.全等三角形的性质:对应边( ),对应角( )对应高线( ),对应中线( ),对应角的角平分线( )。 2.在Rt△ABC 中,∠C =90°,∠A =30°,则BC :AC :AB=( )。 【例题解析】 【题1】已知在ΔABC 中,,AB =AC ,BD 平分.求证:BC =AB +CD . 【题2】如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF. 【题3】如图,AD 为ΔABC 的角平分线且BD =CD .求证:AB =AC. 【题4】已知:如图,点B 、F 、C 、E 在同一直线上,BF=CE ,AB ∥ED ,AC ∥FD ,证明AB=DE ,AC=DF. 【题5】已知:如图,△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数. 【题6】如图:△ABC 中,∠ACB=90°,AC=BC ,线,过C 作CF ⊥AE ,垂足是F ,过B 作BD ⊥BC 交108A ∠=ABC ∠

2文档来源为:从网络收集整理.word 版本可编辑. (1) 求证:AE=CD; (2) 若AC=12㎝,求BD 的长. 【题7】等边三角形CEF 于菱形ABCD 边长相等. 求证:(1)∠AEF=∠AFE (2)角B 的度数 【题8】如图,在△ABC 中,∠C=2∠B ,AD 是△ABC 的角平分线, ∠1=∠B ,求证:AB=AC+CD. 【题9】如图,在三角形ABC 中,AD 是BC 边上的中线,E 是AD 的中点,BE 的延长线交AC 于点F. 求证:AF=2 1FC 【题10】如图,将边长为1的正方形ABCD 绕点C 旋转到A'B'CD'的位置,若∠B'CB=30度,求AE 的长. 【题11】AD,BE 分别是等边△ABC 中BC,AC 上的高。M,N 分别在AD,BE 的延长线上,∠CBM=∠ACN.求证AM=BN. 【题12】已知:如图,AD 、BC 相交于点O ,OA =OD ,OB =OC ,点E 、F 在AD 上,且AE =DF ,∠ABE =∠DCF . 求证:BE‖CF . 【巩固练习】 【练1】 如图,已知BE 垂直于AD ,CF 垂 直于AD ,且BE=CF. (1)请你判断AD 是三角形ABC 的中线还是角

最新中考数学超好几何证明压轴题汇编

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. E B F C D A 图13-2 图13-3 图13-1 A ( E )

4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。 (1)若sin∠BAD=3 5 ,求CD的长; (2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π)。 5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB 于点G. (1)求证:点F是BD中点; (2)求证:CG是⊙O的切线; (3)若FB=FE=2,求⊙O的半径. 6、如图,已知O为原点,点A的坐标为(4,3), ⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动. (1)当点P在⊙O上时,请你直接写出它的坐标; (2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

中考几何证明题集锦(主要是与圆有关的)

中考几何证明题 1、如图:A 是⊙O 外一点,B 是⊙O 上一点,AO 的延长线交⊙O 于C ,连结BC ,∠C =22.50,∠BAC =450。 第 1 题图 C 2. 如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD . ⑴求证:AD 是⊙O 的切线; ⑵如果AB =2,AD =4,EG =2,求⊙O 的半径. . 3.,正三角形ABC 的中心O 恰好为扇形ODE 的圆心,且点B 在扇形内.要使扇形ODE 绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的3 1 ,扇形的圆心角应为多少度?说明你的结论。 4、如图:已知在Rt △ABC 中,∠B =900,AC =13,AB =5,O 是AB 上的点,以O 为圆心,0B 为半径作⊙O 。 (1)当OB =2.5时,⊙O 交AC 于点D ,求CD 的长。 (2)当OB =2.4 时,AC 与⊙O 的位置关系如何?试证明你的结论。 第 4 题图 C B D E 第3 题图 第2题 ⌒

5、如图:已知A 、D 两点分别是正三角形DEF 、正三角形ABC 的中心,连结GH 、AD ,延长AD 交BC 于M ,延长DA 交EF 于N ,G 是FD 与AB 的交点,H 是ED 与AC 的交点。 (1)写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程); (2)问FE 、GH 、BC 有何位置关系?试证明你的结论。 第 5 C M B D H G A E N F 6.如图(a ),已知直线AB 过圆心O ,交⊙O 于A 、B ,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C 、D ,交AB 于E ,且与AF 垂直,垂足为G ,连结AC 、AD . 求证:①∠BAD =∠CAG ;②AC ·AD =AE ·AF . (2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变. ①请你在图(b )中画出变化后的图形,并对照图(a ),标记字母; ②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由. 7. 如图,△ABC 中,∠BAC 的平分线AD 交BC 于D ,⊙O 过点A ,且和BC 切于D ,和AB 、AC 分别交于E 、F 。 设EF 交AD 于G ,连结DF 。 (1) 求证:EF ∥BC ; (2) 已知:DF =2 ,AG =3 ,求 EB AE 的值。 8、 已知:如图,CD 是Rt △ABC 的斜边AB 上的高,且BC =a ,AB =c ,CD =h ,AD =q ,DB =p 。 求证:q p h ?=2 ,c p a ?=2 8 题 · B D C F E A G O 图(a) B O A F D C G E l · B O A 图(b) 第6题·

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初二几何全等证明题集锦

B O D C E 图 2 初二几何全等证明题集锦 1.(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等 边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . 求∠AEB 的大小; (2)如图2,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小. 2.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以 CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断. (2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b , k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由. (3)在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k = 1 2 ,求22BE DG +的值. C B O D 图1 A E

3.如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题: (1)如果AB=AC ,∠BAC=90o. ①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ▲ ,数量关系为 ▲ . ②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什 么? (2)如果AB ≠AC ,∠BAC ≠90o,点D 在线段BC 上运动. 试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法) CF 相交于点P ,求线段CP 长的最大值. 4.已知:如图5—132,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作正三角形△ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:PQ ∥AB . A B C D E F 图甲 图乙 F E B A F E D C B A 图丙

中考数学几何证明题专题复习汇总.doc

eei A(D) 最新中考数学几何证明题专题复习汇总 1、 如图1, E 是边长为1的正方形初仞的对角线劭上一点,且BE= BC, P 为CE 上任意一点,PQLBC 于点0, PRIBE 亍点、R,则PQ+PR 的值是【 】A.二些 B. C. D. 2、 如图2,在梯形初切中,AD//BQ 对角线AC1BD,且J^12,锯9,则此梯形的中位线长是 A. 10 B. — C. — D. 12 2 2 3、小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图3所示的风筝,点上; G, 〃 分别是四边形加^.0各边的中点.其中阴影部分用甲布料,其余部分用乙布料(裁剪两种布料时,均不 计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料 A. 15 匹 B. 20 匹 C. 30 匹 D. 60 匹 4、 如图4,若将四根木条钉成的矩形木框变形为平行四边形月测的形状,并使其面积为矩形面积的一半,则这 个平行四边形的一个最小内角的值等于 ___________ . 5、 一个正方形和两个等边三角形的位置如图5所示,若Z3二50。,则Z1+Z2二( ) A. 90° B. 100° C. 130° D. 180° 6、 把三张大小相同的正方形卡片A, B, C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影 表示.若按图6-1摆放时,阴影部分的面枳为若按图6-2摆放时,阴影部分的面积为乂,则J —S2(填 “>”、“V” 或“二”). 7、 如图7-1,两个等边△ABD, ACBD 的边长均为1,将AABD 沿AC 方向向右平移到AA' B' D'的位置,得到图 7-2,则阴影部分的周长为 __________ ? 8、 用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形, 如图8-1,用“个全等的正六边形按这种方式拼接,如图8-2,若阖成一圈后中间也形成一个正多边形,则的 值为 . 9、 如图10,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图 形(阴影部分)外轮廓线的周长是( ) A. 7 B. 8 C. 9 D. 10、 平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图10,则Z3+ Zl-Z2= ____________ . 图7-1 图7-2 图8-2 A D A n C 图3 图6-1 图6-2 A B B B B 图8-1 图10 图11 图12 图13 图14

中考几何证明练习题复习及的答案.doc

精品文档

【题4】已知:如图,点B、F、C、E在同一直线上,BF=CE,AB ∥ED,AC∥FD,证明AB=DE,AC=DF. 【题5】已知:如图,△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. 求:∠APB的度数. 【题6】如图:△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中

线,过C作CF⊥AE,垂足是F,过B作BD⊥BC交CF的延长线于D。 (1)求证:AE=CD; (2)若AC=12㎝,求BD的长. 【题7】等边三角形CEF于菱形ABCD边长相等. 求证:(1)∠AEF=∠AFE (2)角B的度数 【题8】如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,求证:AB=AC+CD.

【题9】如图,在三角形ABC 中,AD 是BC 边上的中线,E 是AD 的中点,BE 的延长线交AC 于点F. 求证:AF=2 1FC 【题10】如图,将边长为1的正方形ABCD 绕点C 旋转到A'B'CD'的位置,若∠B'CB=30度,求AE 的长.

【题11】AD,BE分别是等边△ABC中BC,AC上的高。M,N分别在AD,BE 的延长线上,∠CBM=∠ACN.求证AM=BN. 【题12】已知:如图,AD、BC相交于点O,OA=OD,OB=OC,点E、F在AD上,且AE=DF,∠ABE=∠DCF. 求证:BE‖CF. 【巩固练习】 【练1】如图,已知BE垂直于AD,CF垂直于AD,且BE=CF. (1)请你判断AD是三角形ABC的中线还是角平分线?请证明你的结论。 (2)链接BF,CE,若四边形BFCE是菱形,则三角形ABC中应添加一个什么条件?

中考几何证明专题

一、中考几何证明题的解法 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF; (2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形 (3)如图3,若AB= ,过点M作 MG⊥EF交线段BC的延长线于点G. ①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由. 2、(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程); (2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果).

3、已知梯形ABCD ,AD ∥BC , AB ⊥BC ,AD=1,AB=2,BC=3, 问题1:如图1,P 为AB 边上的一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ ,DC 的长能否相等,为什么? 问题2:如图2,若P 为AB 边上一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. 问题3:若P 为AB 边上任意一点,延长PD 到E ,使DE=PD ,再以PE ,PC 为边作平行四边形PCQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. 4、如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°.点D 是直线BC 上的一个动点,连接AD ,并以AD 为边在AD 的右侧作等边△ADE . (1)如图①,当点E 恰好在线段BC 上时,请判断线段DE 和BE 的数量关系,并结合图①证明你的结论; (2)当点E 不在直线BC 上时,连接BE ,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论; (3)若AC =3,点D 在直线BC 上移动的过程中,是否存在以A 、C 、D 、E 为顶点的四边形是梯形?如果存在,直接写出线段CD 的长度;如果不存在,请说明理由. B D A C E 图① B D A C E 图② B A C 备用图

中考数学几何证明压轴题

北京优学教育中考专题训练 1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 E B F C D A 图13-2 图13-3 图13-1 A ( B ( E )

初中数学几何证明题含答案

初中数学几何证明题含答 案 Newly compiled on November 23, 2020

初中几何证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) .如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO ,所以CD=GF 得证。 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) .如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO ,所以CD=GF 得证。 .如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO ,所以CD=GF 得证。 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是 AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 点,AD 、BC 的延长线交MN 于E 、F . A P C D B C D A F G C E B O D

求证:∠DEN=∠F. 经典题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC 于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) 2、设MN是圆O外一直线,过O作OA⊥MN于A,自 圆于B、C及D、E,直线EB及CD分别交MN于P、求证:AP=AQ.(初二) 3、如果上题把直线MN 设MN是圆O的弦,过MN的中点A任作两弦分别交MN于P、Q. 求证:AP=AQ.(初二) 4、如图,分别以△ABC的AC和BC为一边,在△ABC 和正方形CBFG,点P是EF的中点. 求证:点P到边AB 1、如图,四边形ABCD 求证:CE=CF 2、如图,四边形ABCD 长线于F. 求证:AE=AF

中考几何证明题及答案

几何证明练习题及答案 【知识要点】 1.进一步掌握直角三角形的性质,并能够熟练应用; 2.通过本节课的学习能够熟练地写出较难证明的求证; 3.证明要合乎逻辑,能够应用综合法熟练地证明几何命题。 【概念回顾】 1.全等三角形的性质:对应边( ),对应角( )对应高线( ),对应中线( ),对应角的角平分线( )。 2.在Rt△ABC 中,∠C =90°,∠A =30°,则BC :AC :AB=( )。 【例题解析】 【题1】已知在ΔABC 中,,AB =AC ,BD 平分.求证:BC =AB +CD . 【题2】如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF. 108A ∠=ABC ∠B D A C F E

【题3】如图,AD为ΔABC的角平分线且BD=CD.求证:AB=AC. 【题4】已知:如图,点B、F、C、E在同一直线上,BF=CE,AB ∥ED,AC∥FD,证明AB=DE,AC=DF. 【题5】已知:如图,△ABC是正三角形,P是三角形内一点,PA =3,PB=4,PC=5. 求:∠APB的度数. 【题6】如图:△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中 E C D G A B A P C B

线,过C作CF⊥AE,垂足是F,过B作BD⊥BC交CF的延长线于D。 (1)求证:AE=CD; (2)若AC=12㎝,求BD的长. 【题7】等边三角形CEF于菱形ABCD边长相等. 求证:(1)∠AEF=∠AFE (2)角B的度数 【题8】如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,求证:AB=AC+CD.

初三经典几何证明练习题(含答案)

初三几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 2、已知:如图,P是正方形ABCD内部的一点,∠PAD=∠PDA= 15°。 求证:△PBC是正三角形.(初二)

3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F. 求证:∠DEN=∠F. 经典题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.

2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P. 求证:AP=AQ. 3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF 的中点,OP⊥BC 求证:BC=2OP 证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N ∵OF=OD,DN∥OP∥FL ∴PN=PL ∴OP是梯形DFLN的中位线 ∴DN+FL=2OP ∵ABFG是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL 又∠FLB=∠BMA=90°,BF=AB ∴△BFL≌△ABM ∴FL=BM 同理△AMC≌△CND ∴CM=DN ∴BM+CN=FL+DN ∴BC=FL+DN=2OP 经典题(三) 1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

中考数学几何证明题分类汇编

N 几何证明题分类汇编 一、证明两线段相等 1、真题再现 (20XX 年深圳)18.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. (20XX 年)21、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 1、(汕头2010)如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 2.(梅州2010)如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 图3 A B C D M E A B C D E F 第20题图

1、真题再现 (20XX 年)22、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是 BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 (20XX 年)20.(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) (深圳2010)(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、(肇庆2010) (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. 2、(佛山2010)已知,在平行四边形ABCD 中,EFGH 分别是AB 、BC 、CD 、DA 上的点,且AE=CG ,BF=DH , 求证:AEH ?≌CGF ? 图8 O A B C D F E 图9 A O D B H E C

中考几何证明题集锦

中考几何证明题 (为配合初三数学毕业与升学考试的综合复习,分类选编了中考数学题,按照选择题、填空题、几何证明题、代数计算题、数学应用题、函数解答题、压轴题分类编辑,并给答案与解答!) 1、 如图:A 是⊙O 外一点,B 是⊙O 上一点,AO 的延长线交⊙O 于C ,连结BC ,∠C =22.50, 0是⊙O 的切线。 第 1 题图 C 2. 如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD . ⑴求证:AD 是⊙O 的切线; ⑵如果AB =2,AD =4,EG =2,求⊙O 的半径. . 3.,正三角形ABC 的中心O 恰好为扇形ODE 的圆心,且点B 在扇形内.要使扇形ODE 绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的31 ,扇形的圆 心角应为多少度?说明你的结论。 D A O B C E 第3题图 第2题图 E ⌒

4、如图:已知在Rt △ABC 中,∠B =900,AC =13,AB =5,O 是AB 上的点,以O 为圆心,0B 为半径作⊙O 。 (1)当OB =2.5时,⊙O 交AC 于点D ,求CD 的长。 (2)当OB =2.4时,AC 与⊙O 的位置关系如何?试证明你的结论。 第 4 题图 C B 5、如图:已知A 、D 两点分别是正三角形DEF 、正三角形ABC 的中心,连结GH 、AD ,延长AD 交BC 于M ,延长DA 交EF 于N ,G 是FD 与AB 的交点,H 是ED 与AC 的交点。 (1)写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程); (2)问FE 、GH 、BC 有何位置关系?试证明你的结论。 第 5 C M B D H G A E N F

相关文档
最新文档