初二数学下册分式知识点

初二数学下册分式知识点
初二数学下册分式知识点

初二数学下册分式知识点

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)?(a+b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式凑巧相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行合适的变形,或改变符号,直到可确定多项式的公因式.

2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,大凡步骤:

①列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,

(x-y)3=-(y-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.大凡地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.(九)含有字母系数的一元一次方程

1.含有字母系数的一元一次方程

引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。

对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

新人教版八年级数学知识点总结归纳

2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。 三、学习全等三角形应注意以下几个问题: (1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上; (3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角” 1、全等三角形的概念 能够完全重合的两个图形叫做全等形。 能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。 2、全等三角形的表示和性质 全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC 全等于三角形DEF”。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。 3、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上 三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等. 点(x, y)关于x轴对称的点的坐标为______. 点(x, y)关于y轴对称的点的坐标为______. 2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 四、(等腰三角形)知识点回顾 1.等腰三角形的性质 ①.等腰三角形的两个底角相等。(等边对等角) ②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一) 2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 五、(等边三角形)知识点回顾 1.等边三角形的性质: 等边三角形的三个角都相等,并且每一个角都等于600 。 2、等边三角形的判定: ①三个角都相等的三角形是等边三角形。 ②有一个角是600的等腰三角形是等边三角形。 3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

八年级数学下册知识点总结(全)

八年级数学下知识点总结 函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x就是自变量,y就是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值与函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法:用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数与一次函数 1、正比例函数与一次函数的概念 一般地,如果(k,b就是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)这时,y叫做x的正比例函数。 2、一次函数的图像 所有一次函数的图像都就是一条直线。 3、一次函数、正比例函数图像的主要特征: 一次函数的图像就是经过点(0,b)的直线;正比例函数的图像就是经过原点 (0,0)的直线。(如下图) 4、正比例函数的性质 一般地,正比例函数有下列性质: (1)当k>0时,图像经过第一、三象限,y随x的增大而增大; (2)当k<0时,图像经过第二、四象限,y随x的增大而减小。 5、一次函数的性质 一般地,一次函数有下列性质: (1)当k>0时,y随x的增大而增大 (2)当k<0时,y随x的增大而减小 6、正比例函数与一次函数解析式的确定

新人教版初中数学知识点总结(完整版)

人教新版初中数学知识点总结(全面最新) 目录 一、七年级数学(上)知识点 1、有理数 2、整式的加减 3、一元一次方程 4、图形的认识初步 二、七年级数学(下)知识点 5、相交线与平行线 6、实数 7、平面直角坐标系 8、二元一次方程组 9、不等式与不等式组 10、数据的收集、整理与描述 三、八年级数学(上)知识点 11、三角形 12、全等三角形 13、轴对称 14、整式的乘除与分解因式 15、分式

四、八年级数学(下)知识点 16、二次根式 17、勾股定理 18、平行四边形 19、一次函数 20、数据的分析 五、九年级数学(上)知识点 21、一元二次方程 22、二次函数 23、旋转 24、圆 25、概率 六、九年级数学(下)知识点 26、反比例函数 27、相似 28、锐角三角函数 29、投影与视图 七年级数学(上)知识点

第一章 有理数 一. 知识框架 二.知识概念 1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数. (2)有理数的分类: ① ??? ?????? ????负分数负整数 负有理数零正分数正整数 正有理数有理数 ② ???????????????负分数正分数分数负整数零正整数整数有理数 注意:0即不是正数,也不是负数; -a 不一定是负数,+a 也不一定是正数; π不是有理数; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;

0的相反数还是0; (2) a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ?? ???<-=>=) 0()0(0) 0(a a a a a a 或???<-≥=)0a (a ) 0a (a a 或???≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组; 5.有理数比大小: 两个负数比大小,绝对值大的反而小; 数轴上的两个数,右边的数总比左边的数大; 大数-小数 > 0,小数-大数 < 0. 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若 a ≠0,那么a 的倒数是a 1; 若ab=1? a 、b 互为倒数; 若ab=-1? a 、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对

初二数学 分式的计算

初二数学 分式的性质 题型1:分式、有理式概念的理解应用 1.(辨析题)下列各式a π,11x +,15x+y ,22 a b a b --,-3x 2,0?中,是分式的有 ;是整式的有 ;是有理式的有 . 题型2:分式有无意义的条件的应用 2.(探究题)下列分式,当x 取何值时有意义. (1)2132x x ++; (2)2 323 x x +-. 3.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( ) A .121x + B .21x x + C .231x x + D .2 221 x x + 4.(探究题)当x______时,分式2134 x x +-无意义. 题型3:分式值为零的条件的应用 5.(探究题)当x_______时,分式2212 x x x -+-的值为零. 题型4:分式值为±1的条件的应用 6.(探究题)当x______时,分式 435x x +-的值为1; 7.使分式||1 x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1 拓展创新题 8.(学科综合题)已知y=123x x --,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(?3)y 的值是零;(4)分式无意义. 题型1:分式基本性质的理解应用 9.(辨析题)不改变分式的值,使分式115101139 x y x y -+的各项系数化为整数,分子、分母应乘以(? ) A .10 B .9 C .45 D .90 10.(探究题)下列等式:① ()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m -中,成立的是( ) A .①② B .③④ C .①③ D .②④

初中八年级数学知识点总结

八年级数学(上)知识点 人教版八年级上册主要包括三角形、全等三角形、轴对称、整式的乘除与分解因式和分式五个章节的内容。 第十一章三角形 一.知识框架 二.知识概念 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 7.多边形的内角:多边形相邻两边组成的角叫做它的内角。 8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 11.公式与性质 三角形的内角和:三角形的内角和为180° 三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:n边形的内角和等于(n-2)·180° 多边形的外角和:多边形的内角和为360°。 多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

初二数学下册知识点总结(最新最全)

初二数学(下)应知应会的知识点 二次根式 1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0. 2.重要公式:(1))0a (a )a (2≥=,(2)? ??<-≥==)0a (a )0a (a a a 2 ; 注意使用)0a ()a (a 2≥=. 3.积的算术平方根:)0b ,0a (b a ab ≥≥?=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=?. 5.二次根式比较大小的方法: (1)利用近似值比大小; (2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (b a b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 7.二次根式的除法法则: (1) )0b ,0a (b a b a >≥= ; (2))0b ,0a (b a b a >≥÷=÷; (3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的 有理化因式,使分母变为整式. 8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它 们也叫互为有理化因式. 9.最简二次根式: (1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式, ② 被开方数中不含能开的尽的因数或因式; (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式.

人教版初二数学上知识点总结

人教版初二数学上知识点总结 第十一章全等三角形 11.1全等三角形 知识点一全等形 1、全等形:形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形。 2、全等三角形:能够完全重合的两个三角形叫做全等三角形。 知识点二全等变换 全等变换是指只改变图形的位置,而不改变图形的形状和大小的变换。 三组变换方式: (1)平移(2)翻折(3)旋转 知识点三对应顶点,对应边,对应角 1、把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做 对应角。 2、全等三角形的表示:全等用符号“≌”表示,读作”全等于”,其中”∽”表示形状相同,”=”表示大小相等, 合起来就是形状相同大小相等. 知识点四全等三角形的性质 全等三角形的对应边相等;全等三角形的对应角相等. 11.2三角形全等的判定 知识点一三角形全等的判定方法一----------边边边 三边对应相等的两个三角形全等(可以简写成”边边边”或”SSS”) 知识点二三角形全等的判定方法二----------边角边 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SA S”) 知识点三三角形全等的判定方法三----------角边角 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“A SA”) 知识点四三角形全等的判定方法四----------角角边 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”) 知识点五三角形全等的判定方法五----------斜边、直角边 斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”) 11.3 角的平分线的性质 知识点一角平分线 1、定义:角平分线是把一个角分成两个相等的角的射线。 2、角平分线的尺规作图 知识点二角平分线的性质 角的平分线上的点到角的两边的距离相等。 角平分线的性质作用:由于角平分线性质的结论是两条段相等,因此角平分线的性质常用来证明两条线段相等。 知识点三角平分线的判定 角的内部到角的两边的距离相等的点在角的平分线上. 角平分线判定的作用:由于角平分线判定的结论是”某射线是角平分线”,所以利用此结论可以用来证明两个角相等. 知识点四三角形角平分线的性质 (1)三角形三条角平分线交于一点,这点到三边的距离相等. (2)三角形两个外角的平分线的交点到三边所在的直线的距离相等.

(完整版)初中数学分式计算题及答案

2014寒假初中数学分式计算题精选 参考答案与试题解析 一.选择题(共2小题) 1.(2012?台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程 中正确的是() A.B.C.D. 解答:解:设公共汽车的平均速度为x千米/时,则出租车的平均速度为(x+20)千米/时, 根据回来时路上所花时间比去时节省了,得出回来时所用时间为:×, 根据题意得出=×,故选:A. 2.(2011?齐齐哈尔)分式方程=有增根,则m的值为() A.0和3 B.1C.1和﹣2 D.3 考点:分式方程的增根;解一元一次方程. 专题:计算题. 分析:根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.D 二.填空题(共15小题) 3.计算的结果是. 4.若,xy+yz+zx=kxyz,则实数k=3 分析: 分别将去分母,然后将所得两式相加,求出yz+xz+xy=3xyz,再将xy+yz+zx=kxyz 代入即可求出k的值.也可用两式相加求出xyz的倒数之和,再求解会更简单. 点评:此题主要考查学生对分式的混合运算的理解和掌握,解答此题的关键是先求出yz+xz+xy=3xyz.5.(2003?武汉)已知等式:2+=22×,3+=32×,4+=42×,…,10+=102×,(a,b均为正整数),则a+b= 109. 解答: 解:10+=102×中,根据规律可得a=10,b=102﹣1=99,∴a+b=109. 6.(1998?河北)计算(x+y)?=x+y.

初中数学知识点总结大全(经典版)

初中数学必考知识点总结 一、基本知识 ㈠、数与代数 A、数与式: 1、有理数 有理数: ①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴: ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两 个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于 负数。 绝对值: ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数 比较大小,绝对值大的反而小。 有理数的运算: 加法: ①同号相加,取相同的符号,把绝对值相加。 ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。 ③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法:

①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘得0。 ③乘积为1的两个有理数互为倒数。 除法: ①除以一个数等于乘以一个数的倒数。 ②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数。 平方根: ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。 ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根: ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。 ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。 ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数: ②实数分有理数和无理数。 ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。 ③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。 合并同类项:

初二数学下学期知识点总结

初二下数学期末知识点回顾 分式 知识要点 1.分式的有关概念 设A 、B 表示两个整式.如果B 中含有字母,式子 B A 就叫做分式.注意分母B 的值不能为零,否则分式没有意义 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简 2、分式的基本性质 ,M B M A B A ??= M B M A B A ÷÷=(M 为不等于零的整式) 3.分式的运算 (分式的运算法则与分数的运算法则类似). bd bc ad d c b a ±=± (异分母相加,先通分); ;;bc ad c d b a d c b a b d ac d c b a =? =÷=? .)(n n n b a b a = 4.零指数)0(10 ≠=a a 5.负整数指数 ).,0(1 为正整数p a a a p p ≠= - 注意正整数幂的运算性质 n n n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=?-+)(,)(),0(, 可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是O 或负整数. 6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去. 7、列分式方程解应用题的一般步骤: (1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。 1. (-5)0 =_____; 2. 3-2 =________;3. 当x_________时,分式 1x+1 有 意义;

人教版初中数学知识点、公式 总结(最新最全)

七年级数学(上)知识点 第一章有理数 一.知识框架 二.知识概念 1.有理数: (1)凡能写成)0 p q,p( p q ≠ 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;pai不是有理数; (2)有理数的分类: ① ? ? ? ? ? ? ? ? ? ? ? ? ? 负分数 负整数 负有理数 零 正分数 正整数 正有理数 有理数② ? ? ? ? ? ? ? ? ? ? ?? ? ? ? 负分数 正分数 分数 负整数 零 正整数 整数 有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: ?? ? ? ? < - = > = )0 a( a )0 a( )0 a( a a或 ? ? ? < - ≥ = )0 a( a )0 a( a a;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是 a 1 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.

初二下册数学分式计算题题目

一、分式方程计算: (1) 21)2(11+-?+÷-x x x x (2)32232)()2(b a c ab ---÷ (3)2323()2()a a a ÷- (4)0142)3()101( )2()21(-++-----π (5)222)()()(b a a b ab ab b a b a b -?-+-÷- (6 )(3103124π--????-?-÷ ? ????? (7)2211y x xy y x y x -÷???? ??++- 二、分式方程 1、(1)3513+=+x x ; (2) 11322x x x -+=--- (4)512552x x x =--- (5) 25231x x x x +=++. (6) (7) (8) 三、1、先化简,再求值)1121(1 222+---÷--x x x x x x ,其中31-=x 1 211422+=+--x x x x x 233321122--=++-x x x x x x x x 231392---++

2、若使 互为倒数,求x 的值。 3、若分式方程 3234=++x m mx 的解为1=x ,求m 的值。 2 3223+---x x x x 与

四、二元一次方程组 解方程组:

五、可化为一元二次方程的分式方程、二元二次方程组 56556--=--x x x 22(1)(5)2511 x y x y ?++-=?+=? 226232x x x x +---=0 |a + b + 7| + a 2b 2–10ab + 25=0 2123x x x ++-+2226x x x -+-=2632x x x --+

初二数学知识点总结

苏教版《数学》(八年级上册)知识点总结 第一章轴对称 1 轴对称图形和关于直线对称的两个图形 2 轴对称的性质 轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线; 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线; 线段垂直平分线上的点到线段两个端点的距离相等; 到线段两个端点距离相等的点在这条线段的垂直平分线上 3 用坐标表示轴对称 点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y). 4 等腰三角形 等腰三角形的两个底角相等;(等边对等角) 等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一) 一个三角形的两个相等的角所对的边也相等。(等角对等边) 5 等边三角形的性质和判定 等边三角形的三个内角都相等,都等于60度; 三个角都相等的三角形是等边三角形; 有一个角是60度的等腰三角形是等边三角形; 推论: 直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。在三角形中,大角对大边,大边对大角。 第二章勾股定理、平方根

一、勾股定理: 1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+ b 2= c 2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦股 勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个 三角形是直角三角形。 2. 勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么 ka ,kb ,kc 同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3. 判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2 +b 2 =c 2 ,那么这个三角形是直角 三角形。(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c ); (2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边) 4.注意:(1)直角三角形斜边上的中线等于斜边的一半 勾股定理和 平方根 勾股定理 平方根 立方根 实数 近似数、 有效数字 判定直角三角形 勾股定理的验证 定义、性质 开平方运算 开立方运算 定义、性质

初二数学下册知识点总结-超经典!

初二数学下册知识点总结-超经典!

初二数学下知识点总结 函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法:用图像表示函数关系的方法叫

做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果b =(k,b是常数,k≠0),那么 kx y+ y叫做x的一次函数。特别地,当一次函数b = y+ kx 中的b为0时,kx y=(k为常数,k≠0)这时,y 叫做x的正比例函数。 2、一次函数的图像 所有一次函数的图像都是一条直线。 3、一次函数、正比例函数图像的主要特征: 一次函数b =的图像是经过点(0,b)的直线; kx y+ 正比例函数kx y=的图像是经过原点(0,0)的直线。(如下图) 4. 正比例函数的性质 一般地,正比例函数kx y=有下列性质:

(完整版)人教版初中数学知识点总结(全面)

人教新版初中数学知识点总结(全面最新) 七年级数学(上)知识点 第一章 有理数 一. 知识框架 二.知识概念 1.有理数: (1)凡能写成 )0p q ,p (p q ≠为整数且形式的数,都是有理数. (2)有理数的分类: ① ?????????????负分数负整数负有理数零正分数正整数正有理数有理数 ② ???????????????负分数正分数分数负整数零正整数整数有理数 注意:0即不是正数,也不是负数; -a 不一定是负数,+a 也不一定是正数; π不是有理数;

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数; 0的相反数还是0; (2) a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ?? ???<-=>=)0()0(0)0(a a a a a a 或???<-≥=)0a (a )0a (a a 或???≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组; 5.有理数比大小: 两个负数比大小,绝对值大的反而小; 数轴上的两个数,右边的数总比左边的数大; 大数-小数 > 0,小数-大数 < 0. 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若 a ≠0,那么a 的倒数是a 1; 若ab=1? a 、b 互为倒数;

若ab=-1 a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .

八年级数学-分式与分式计算

八年级数学:分式和分式的计算 一.填空题: 1、分式的定义是 2、x 时,分式42-x x 无意义; 当x 时,分式122 3+-x x 有意义; 3、当x= 时,分式2 152x x --的值为零;当x 时,分式x x --11 2的值等于零. 二.选择题: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2x x , πx 中,分式的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 2.如果把 y x y 322-中的x 和y 都扩大5倍,那么分式的值( ) A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍 3.下列各式:()x x x x y x x x 2 225 ,1,2 ,34 ,151+---π其中分式共有( )个。 A 、2 B 、3 C 、4 D 、5 4.下列判断中,正确的是( ) A 、分式的分子中一定含有字母 B 、当B=0时,分式B A 无意义 C 、当A=0时,分式B A 的值为0(A 、B 为整式) D 、分数一定是分式 5.下列各式正确的是( ) A 、11++=++b a x b x a B 、22x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --= 6.下列各分式中,最简分式是( ) A 、()()y x y x +-8534 B 、y x x y +-22 C 、2 22 2xy y x y x ++ D 、() 222y x y x +- 7.下列约分正确的是( ) A 、 313m m m +=+ B 、212y x y x -=-+ C 、1 23369+=+a b a b D 、 ()()y x a b y b a x =-- 8.下列约分正确的是( ) A 、3 26x x x = B 、 0=++y x y x C 、x xy x y x 12=++ D 、2 14222=y x xy 9.下列分式中,计算正确的是( ) A 、32)(3)(2+=+++a c b a c b B 、b a b a b a += ++1 22 C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222

初二数学知识点归纳

初二数学应知应会知识点第一章一次函 数 1 函数的定义,函数的定义域、值域、表达式,函数的图像 2 一次函数和正比例函数,包括他们的表达式、增减性、图像 3 从函数的观点看方程、方程组和不等式 第二章数据的描述 1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点 条形图特点: (1)能够显示出每组中的具体数据; (2)易于比较数据间的差别 扇形图的特点: (1)用扇形的面积来表示部分在总体中所占的百分比; (2)易于显示每组数据相对与总数的大小 折线图的特点; 易于显示数据的变化趋势 直方图的特点:

(1)能够显示各组频数分布的情况; (2)易于显示各组之间频数的差别 2 会用各种统计图表示出一些实际的问题 第三章全等三角形 1 全等三角形的性质: 全等三角形的对应边、对应角相等 2 全等三角形的判定 边边边、边角边、角边角、角角边、直角三角形的HL定理 3 角平分线的性质 角平分线上的点到角的两边的距离相等; 到角的两边距离相等的点在角的平分线上。 第四章轴对称 1 轴对称图形和关于直线对称的两个图形 2 轴对称的性质 轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线; 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

线段垂直平分线上的点到线段两个端点的距离相等; 到线段两个端点距离相等的点在这条线段的垂直平分线上 3 用坐标表示轴对称 点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y). 4 等腰三角形 等腰三角形的两个底角相等;(等边对等角) 1 等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一) 一个三角形的两个相等的角所对的边也相等。(等角对等边) 5 等边三角形的性质和判定 等边三角形的三个内角都相等,都等于60度; 三个角都相等的三角形是等边三角形; 有一个角是60度的等腰三角形是等边三角形; 推论: 直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。在三角形中,大角对大边,大边对大角。

人教版初二数学下知识点总结

初二数学下知识点总结 平移与旋转 旋转 1.旋转的定义: 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。 2.旋转的性质: 旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。 中心对称 1.中心对称的定义: 如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。 2.中心对称图形的定义: 如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。 3.中心对称的性质: 在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。 轴对称 1.轴对称的定义: 如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 2.轴对称图形的性质: ①角的平分线上的点到这个角的两边的距离相等。 ②线段垂直平分线上的点到这条线段两个端点的距离相等。 ③等腰三角形的“三线合一”。 3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。 图形变换 图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。 函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

新人教版八年级数学知识点总结归纳

第十一章三角形 1、三角形的概念 由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 3、三角形的稳定性 三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。 4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段 (2)三条线段不在同一直线上三角形是封闭图形 (3)首尾顺次相接 三角形用符号“?”表示,顶点是A、B、C的三角形记作“?ABC”,读作“三角形ABC”。 5、三角形的分类 三角形按边的关系分类如下: 不等边三角形 三角形底和腰不相等的等腰三角形 等腰三角形 等边三角形 三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形) 三角形锐角三角形(三个角都是锐角的三角形)

斜三角形 钝角三角形(有一个角为钝角的三角形) 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 6、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。 ③证明线段不等关系。 7、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。 推论: ①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。 8、三角形的面积=2 1 ×底×高 多边形知识要点梳理 定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。 凸多边形 分类1: 凹多边形 正多边形:各边相等,各角也相等的多边形叫做正多边形。 多边形 非正多边形:

初二数学分式的运算练习题

初二数学分式的运算练习题 本文是数学分式的运算同步练习题 【一】选择题:(每题5分,共30分) 1.以下各式计算正确的选项是( ) A. ; B. C. ; D. 2.计算的结果为( ) A .1 B.x+1 C. D. 3.以下分式中,最简分式是( ) A. B. C. D. 4.x为整数,且分式的值为整数,那么x可取的值有( ) A.1个 B.2个 C.3个 D.4个 5.化简的结果是( ) A.1 B. C. D.-1 6.当x= 时,代数式的值是( ) A. B. C. D. 【二】填空题 :(每题6分,共30分) 7.计算的结果是____________. 8.计算a2÷b÷ ÷c× ÷d× 的结果是__________. 9.假设代数式有意义,那么x的取值范围是__________. 10.化简的结果是___________.

11.假设 ,那么M=___________. 12.公路全长s千米,骑车t小时可到达,要提前40分钟到达,每小时应多走____千米. 【三】计算题:(每题5分,共10分) 13. ; 14. 【四】解答题:(每题10分,共20分) 15.阅读以下题目的计算过程: =x-3-2(x-1) ② =x-3-2x+2 ③ =-x-1 ④ (1)上述计算过程,从哪一步开始出现错误?请写出该步的代号:______ . (2)错误的原因是____ _____ _. (3)此题目的正确结论是__________. 16.x为整数,且为整数,求所有符合条件的x值的和. 上文是数学分式的运算同步练习题

相关文档
最新文档