功率放大器研究

功率放大器研究
功率放大器研究

功率放大器研究

及乙类功率放大器的实例分析

姓名

学号

班级:

指导教师

时间

功率放大器研究及乙类功率放大器实例分析

摘要:功率放大器在生活中的应用广泛,功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。

关键字:功率放大器功放分类功率放大器的指标

一、功率放大器综述及应用

功率放大器(功放)是在给定失真率条件下,能产生最大功率输出以驱动某一负载(例如扬声器)的放大器。它的作用是为放大器的输出级驱动负载而提供所需的输出功率,同时要求在负载一定的时候输出功率尽可能的大,并且信号的非线性失真尽可能的小,效率尽可能的高,电路安全性好。

功率放大器的原理是利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。对于输入的交流小信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。

经过不断的电流及电压放大,就完成了功率放大。无论AV放大器和Hi-Fi功放对功率放大器要求十分严格,在输出功率、频率响应、失真度、信噪比、输出阻抗和阻尼系数等方面都有明确要求。功率放大器的分类

功率放大器通常按照其功率开关管的工作方式可分为线性功率放大器和非线性功率放大器两类。线性功率放大器即为传统的模拟功率放大器,常分为A(甲)类、B(乙)类、AB(甲乙)类,C(丙)类三种,其主要特点是保真度高,但是效率低。非线性功率放大器又称为数字功率放大器(D类功率放大器),其功率开关管工作于开关状态,具有很高的工作效。

1.A(甲)类功率放大器

功放管在整个周期都是完全导通的,这样的功放我们称之为A 类功放。由于功放管在整个周期都是导通的,信号可以得到完整的放大。所以对线性度要求较高的场合,这类功放的应用很高。

A 类功放的电路图如图1-1:

U i

Uo

(a )甲类功率放大器

图1-1甲类功率放大器

A 类功率放大器的静态工作点一般设置得比较高,使输入信号的整个波形都处于零点的上方,所有输出元器件在输入信号的整个周期内均有电流流过,都处于良好的线性工作状态,因此该类功率放大器的非线性失真非常的小。

在整个放大周期中,三极管一直处于导通状态,当输入为零时,三极管自身消耗的功率最大,输出的平均功率为

直流电源的平均功率为

最大转换效率为

在实际应用中,输出的最大电压以及最大电流都达不到计算的理想数值,同时,计算时忽略了偏置电路的功率以及消耗,标准的甲类功放的实际最大转换效率为20%左右。

2. B (乙)类功率放大器

为了解决甲类功率放大器的效率低下的问题,设计了乙类的功率放大器。它由两只特性对称的 NPN 管和PNP 管组成,输入电压加在两管的基极,输出电压由两管的射极取出,采用正负电源供电,在输入信号的正负周期两管分别导通。电路图如图1-2:

U i

乙类功率放大器

图1-2乙类功率放大器

当U i >0,VT1导通,

VT2截止,输出电压最大值U

o 约等于直流电压的最大值。当U

i <0,VT2导通,

VT1截止,输出电压最大值Uo 约等于直流电压的最大值。输出的平均功率为

直流电源的平均功率为

最大转换效率为

其中每个管子的最大集电极功耗为

乙类功率放大器很好的解决了甲类功放的效率问题,利用了两支对称的三极管,使得三极管的工作点近似为零,从而极大地提高了转换效率,但是这只是近似的结果,实际中三极管还有一个截止区,只有工作点在截止区之上才能有放大作用,也就是说一类放大器存在着交越失真(图1-3)。

图1-3交越失真

3.AB(甲乙)类功率放大器

与乙类功放的出现一样,为了消除乙类的交越失真,使放大电路能够像甲类一样完全无失真的放大信号,设计了新的类型的功率放大器,即甲乙类功率放大器。

甲乙类功率放大器的电路图如图1-4:

图1-4中Q4工作在甲类放大状态,Q1,Q2连成二极管,产生直流压降,为后边的Q2,Q5提供所需的最低门限电压。从Q2输出的信号经过Q2,Q5组成的乙类功率放大器放大,在R1上输出。

甲乙类功率放大器利用电路为乙类功放的三极管提供一定的电压偏置,使得在输入为零时,三极管依然处于微导通状态,很好的解决了门限电压带来的交越失真,但是由于三极管的静态工作电流提高,甲乙类的效率低于乙类功放。

与甲类相比,他的效率高,与乙类相比,他很好的消除了交越失真,而且线性度较好。

4.C(丙)类功率放大器

C类功率放大器是一种特殊用途的功率放大器,可用于无线电台和电视发射系统等射频电路中。这种功率放大器只有在输入信号的正半周期足够大时,晶体管才会导通,即晶体管的导通时间小于半个周期,这就是C类放大的特点。C类放大器可提供高效率,其功率转换效率大于78.5%。原理图如图1-5:

图1-5丙类功率放大器

令基极偏执电压VBB 小于三极管的门限电压,这样静态工作点为零。输入的必须是大信号才能使得功放正常工作,即Vin+VBB>VBE 时才能正常工作,导通角为

im

BB

on V V V -=

θcos

射极输出的电流不是一个完整的周期,经过后级电路处理以后可使其输出完整的波形。

二、 功率放大器的指标

1. 最大输出功率

功率放大器的最大输出功率是指输出电压最大不失真时的输出功率,它等于放大电路最大不失真输出电压和电流有效值的乘积。

在设计功率放大器时,表征功率放大器的输出功率的最常用单位是dBm ,它表示0dBm 的参照功率是1mW ,输出功率表示式如下:

式中P 的单位为瓦特,1W 为30dBm 。 2. 转换效率

所谓的功率放大电路,并不是真的放大了功率,它是在交流小信号的控制下,把直流功率转换为交流功率,通常把交流输出功率与电流的直流输出功率的比值为功

率放大电路的转换效率。

对于理想的没有损耗的放大电路的效率为100%,目前的功率放大器的研究主要是提高其转换效率。

转换效率并没有考虑到功率管的放大作用,所以又有了功率附加效率。功率附加效率的计算公式为:

功率附加效率考虑了功率管的放大作用,更加合理的描述了放大电路的效率。 3. 非线性失真

为提供足够大的功率,功率放大电路工作在大信号状态。由于管子的非线性,使输出信号产生非线性失真。

对于功放的线性度的指标有增益压缩和三阶互调。

但是在不同的场合,对线性失真的要求也不一样。有时为了得到较高的效率以及输出功率,会在允许的范围内对非线性失真的要求降低。

4.功率增益

在输入输出匹配良好的情况下,输出功率和输入功率的比值成为功率放大器的功率增益。

三、一个简单的功率放大器设计

1.设计指标

经中间放大后的信号电压最大值为1V,要求放大器的输出负载为8,输出最大功率为1W。

2.电路图设计

设计的电路图如图1-6。

图1-6 设计图

此电路由3个放大电路组成,输入级是Q3,Q4组成的单端输出差分放大电路,Q1和Q5,Q2和Q6组成的准互补的输出级,

D1和D2,R2的作用是消除输出级的交越失真,

R15,C的作用一方面改善放大器的频率特性,防止自激,同时对感性负载起补偿作用,R f构成电压串联负反馈,其作用为改善放大电路的性能

最大输出功率

P omax=10.7W

3.电路图仿真

利用multisim 10.0 进行电路的仿真。输入利用信号发生器输入交流正弦小信号。调节R4,R5的电阻值,使得输出完整不失真的交流信号。并且放大倍数满足设计指标的要求。

信号发生器的频率设为1kHz,输入从1V递增。调剂滑变电阻器的阻值,使得在最大不失真的情况下输出最大放大电路,找到合适的静态工作点。

四、评估设计的功率放大器

1.最大输出功率

由最大输出功率的定义可知,要求电路在最大不失真的情况下最大输出功率。

实时的增加信号发生器的输出电压,并用示波器观测输出的波形,当输出电压达到最大并且失真较小时(输出波形如图)。用万用表测量负载上的交流信号的有效值。

输出最大功率

2.转换效率

转换效率需要测得电路的输出效率和电路的直流功率。

输出功率由输入为1V时的输出计算:

电流的直流功率可在电源的输入端接入一个小的电阻,利用万用表测得两端的电压转换为电路的电流。利用间接法测得电路的直流功率。

转换效率为:

同理,在输入端串接小电阻利用变换法测得输入功

由于输入功率与输出功率相比太小可以忽略,所以

3.功率增益

在波形的失真较小时,利用变换法测得电路的输出与输入功率,得电路的功率增益

五、结语

我们在实际生活中对于信息的快速、准确的传输以及及时、高效的处理有很高的要求。其中语音信号的处理在现实中有较大的应用。功率放大器也在许多电路中有了很大的应用。

功率放大器是三极管工作在线性状态,利用较小的电流(电压)控制较大的电流(电压)而实现信号的功率放大的作用,并非是三极管放大了功率,因此功率放大电路的最重要的指标就是电路的转换效率(将直流功率转换为所需的交流功率的能力)。同时,又要考虑到输出的失真,功率的增益等一系列的因素。

在我们的应用过程中,需要根据实际情况决定用什么类型的功率放大器,一般的音频放大器对输出的失真度要求较高,可选用甲类或者甲乙类的功率放大器,减小失真。

六、参考文献

[1]戈素贞,模拟电子技术基础与应用实例[M].北京;北京航空航天出版社,2006

[2]童诗白.模拟电子技术基础[M].北京;高等教育出版社,2004

[3]谭一秋.音频功率放大器在笔记本电脑中的应用研究[D].苏州;苏州大学.2009

[4]王靖.射频功率放大器及其线性化方法研究[D].湖北:湖北工业大学.2009

音频功率放大器设计报告分析

目录 课程设计任务书 (2) 摘要 (3) 1 模电课设概述 (5) 1.1设计背景 (5) 1.2音频放大类别 (5) 1.3设计目的及意义 (6) 1.4开发环境Multisim 10.0简要介绍 (7) 2 课程设计内容 (8) 2.1功放电路方案的选择 (8) 2.2 BTL电路的组成 (10) 2.3 电路仿真 (13) 3 实物焊接及调试过程 (18) 3.1 焊接实物 (18) 3.2 调试过程遇到的问题及解决方法 (19) 4 总结与心得 (20) 附录 (21) 附件一实验原理图 (21) 附录二元件清单 (22) 附录三参考文献 (23) 成绩评定表 (24)

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:、 题目: 音频功率放大器 初始条件:芯片:TDA2030A、极性电容、非极性电容、可变电阻、定值电阻、扬声器、 要求完成的主要任务: 1.选择合适的功放电路,如:OCL、OTL、或BTL电路。完成对高 保真音频功率放大器的设计、装备与调试; 2.输入信号Uid≤100mv,频率响应范围30Hz-3KHz; 3.在8Ω扬声器的负载下,输出功率连续可调,最大输出功率达 到6W; 4.音频信号放大后,失真≤5%。 5.效率≥60% 时间安排: 安装调试,地点: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 这学期刚学习模电课,学校要求我们完成一次课程设计任务。模电这门课程主要讲 直流稳压电源。功率放大器的作用是给音响放大器的负载RL 率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器 BTL功 TDA2030A集成功放,并采用双电源电源供电。TDA2030A集成电路的特点是输出功率大,而且保护性能比较完善,其工作电压范围较广,信号失真度较小,使用两块TDA2030A组成BTL电路,输出功率可增至35W。实验用multism软件对BTL multism软件模拟 该电路由于价廉质优,使用方便,广泛应用于各种款式收录机和高保真立体声设备中。 BTL、TDA2030A、功率放大、multism。

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

功放喇叭保护电路

功放喇叭保护电路 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

功放喇叭保护电路 大功率的家用功放的主声道均采用了OCL电路作功率放大。这种电路出现故障时,其输出端的直流电位常常会偏离零电平,出现较高的正或负的直流电压。输出的直流电流流过扬声器的音圈时,轻者会产生固定磁场,使音圈移位,难以恢复,重者会将其烧毁。另外。在部分特大功率功放中,由于输出功率非常大,在用户操作不当时,可能会持续输出数安培甚至十几安培的峰值电流,使该声道的最大输出功率远远超过功放的额定输出功率,致使扬声器烧毁。本文以奇声AV-713功放的扬声器保护电路为例介绍其工作原理。功放扬声器保护电路原理框图如图1所示,图中含有了三种保护方式。 (1)直流保护: 当功率放大电路发生故障,其输出端出现的直流电压的绝对值超过设计限度时,保护电路中的直流检测电路即把它检测出来,变成控制信号。控制信号经放大后控制触发器翻转,驱动保护继电器动作,断开功率输出电路,使扬声器得到保护。同时,控制信号还启动指示电路工作,使保护指示灯闪烁报警。(2)过载保护: 当输出电流超过额定输出电流的1倍左右时,过载检测电路输出保护控制信号,控制输出电路断开,保护扬声器及功放。

(3)开机延时接通保护: 通过开机延时电路控制继电器驱动电路的工作状态,使继电器在开机时延时1—4秒钟接通扬声器,以避免开机过程中产生的浪涌电流冲击扬声器。使其音圈移位。具体电路如图2所示。该电路以 Q4、Q5为中心,组成了直流电压取样检测电路。图中的Q1、Q2等系右声道功率输出电路(左声道功率输出电路图中未画出)。右声道的直流电压取样信号经由R6(左声道取样信号经由R21)衰减、隔离,C2、C3滤波,送往Q4、Q5、R7组成的互补式直流检测电路进行监测。当右(或左)声道的功率输出电路出现正极性的较大的直流失调电压时,电流经R6(或R21)、Q4的be结到地,Q4导通,其集电极输出控制电平,经R8、D2送Q7放大后,输往R-S触发器。同样。功率输出电路中出现负的直流失调电压时,电流经地、Q5的be 结、R6(或R21)、OCL电路中点。Q5导通,也输出控制电平。这种取样检测方式为互补方式。 R1、R2、R3、R4、Q3等组成了过载检测电路(左声道的过载检测电路未画出)。R1、R2分别用来对输出级上、下臂功率管的过载情况

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

音响灯光汽车功放电源电路分析

音响灯光汽车功放电源电路分析 时间:2010-09-20 10:13来源:unknown 作者:admin 点击:5次 汽车功放电源电路分析2010-06-10 18:43一。电源电路采用开关电源方式,将蓄电池的+12V直流电变换成为±22V供功放电路使用。它由一片集成电路TL494CN和几只大功率场效应管以及一只开关变压器等组成了比较典型的并联型开关稳压电路。为了提高输出功率。两路开关管均采用双管并联的方式,即Q1和Q2并联,Q3和Q4并联。在电路中,B+端接蓄电池的正极,REMOTE为开机控制端。开机时,控制电压+12V通过D4加到TL494的电源脚12脚,其14脚输出基准电压5V,13脚为输出状态控制端,当13脚接地时,两路输出晶体管同时导通或截止,形成单端工作状态。在图中,13脚与14脚相连,形成双端工作状态,其内部两路输出晶体管交替导通。TL494的⑤脚和⑥脚上外接的电阻R9和电容c4及内部电路组成振荡电路,可输出约几十千赫的振荡信号。该信号经片内处理后,从⑨脚和⑩脚输出两路相位差180度、宽度可变的调制脉冲,加到Q1、Q2和Q3、Q4的基极,使两路开关管轮流处于饱和与截止状态。在变压器B1初级得到的交流脉冲电压感应到次级绕组,经高频整流滤波后获得末级功放所需的±22V直流电压;再经过7815、7915稳压后得到±15V的直流电压作为功放前级的电源。从次级输出电压反馈回来的电压分别经R15与R13和R14与R12分压送到TL494的误差放大器的同相输入端①脚和反相输入端②脚。当输出的±22V电压不稳时,反馈到①脚和②脚的电压经片内误差放大器放大后,调整振荡脉

OCL功率放大器

带三段均衡的OCL 功率放大器(C题)设计报告

功率放大器 摘要:本设计主要是音频放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,输出的功率尽可能大(功放管的电压和电流变化范围很大),输出信号的非线性失真尽可能的小(在大信号状态下,电压、电流摆动幅度很大,极易超出管子特性曲线的线性范围而进入非线性区),效率尽可能高(负载上得到的信号功率与电源供给的直流功率之比),实现了对功率的放大作用。 功率放大电路的电路形式很多,有双电源供电的OCL互补对称功放电路,单电源供电的OTL功放电路,BTL桥式推挽电路和变压器耦合功放电路,等等。我选用的是双电源供电的OCL互补对称功放电路。 本次设计选用了双运放LM358、二端接口若干、三极管9013、9012、BD237、BD238、TIP41、TIP42、L7812、L7912、电阻若干、电容若干、构成了三段均衡电路和功率放大电路。经测试成功的使功率放大,达到了对声音的放大效果。 关键字:LM358 功率放大

1 方案比较与论证 方案一:采用LM358双运放设计电路和四个三极管组成,运放为电路的驱动级电路。差分电压±30V,输入电压±16.5V。四个三极管构成功率输出级由双电源供电的OCL互补功放电路构成。为了克服交越失真,由二极管和电阻构成输出级的偏置电路。为了稳定工作状态和功率增益并减小失真,电路中引入电压串联负反馈。功率放大器的作用是给音响放大器的负载(一般是扬声器)提供所需要的输出功率。 方案二:采用LM324通用四运算放大器,双列直插8脚封装,其内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放,输出端V o的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。 方案选取:本设计选择方案一采用LM358和三级管就能满足实验要求了,这样设计电路简单,应用简单。

射频功率放大器的发展现状

1.1 研究背景 随着人类社会进入信息化时代,无线通信技术有了飞速的发展,从手机,无线局域网,蓝牙等,到航空航天宇宙探测,已经深入到当今社会生活的各个方面,成为社 会生活和发展不可或缺的一部分。无线通信设备由最初体积庞大且功能单一的时代, 发展到如今的口袋尺寸,方寸之间集成了各类功能强大的电路。这些翻天覆地的变化,都离不开射频与微波技术的支持。而急速增长的应用需求又促使着射频微波领域不断 的研究,更新换代。快速的发展使得射频微波领域的研究进入了白热化阶段,而在几乎所有的射频与微波系统中,都离不开信号的放大,射频与微波功率放大器作为系统中功耗最大,产生非线性最强的模块,它的性能将直接影响系统性能的优劣,由于其在射频微波系统中的突出位置,功率放大器的研究也成为射频微波领域研究的一个十 分重要的方向[1]。 功率放大器作为射频微波系统中最重要的有源模块,其理论方面已经十分成熟。 A 类、 B 类、 C 类、 D 类、AB 类、E/I E 类、F/I F 类、Doherty等各类功率放大器也已经成功应用到各个领域。 1.2射频功率放大器的发展现状 射频功率放大器的核心器件为其功率元器件——晶体管,它是一种非线性三端口有源半导体器件,它的放大作用,并不是晶体管能凭空产生能量,使能量放大,而是 完全由集电极(BJT)或漏极(FET)电源的直流功率转换而来的。晶体管只是起到了一种控制作用,即用比较小的信号去控制直流电源产生随小信号变化的大信号,从而把电源的直流功率转换成为负载上的信号功率。功率放大器的理论知识发展已经十分完 善,其面临的更多是一些工程的问题。所以,射频功率放大器性能的提升主要来自于 晶体管性能的提升,即半导体技术的发展,和放大器本身电路形式的改进。根据晶体管所用的半导体材料的不同,可以大体将其分为三个不同的发展阶段。第一代半导体材料以硅(Si)和锗( Ge)等元素半导体为主。第二代半导体材料以砷化镓(GaAs)、磷化铟( InP)、锗硅(SiGe)等化合物半导体为代表,相比于第一代半导体材料,其禁带更宽、

音频功率放大器的设计毕业论文

音频功率放大器的设计毕业论文

单刀音频功率放大器的设计 摘要 本次课程设计题目为音频功率放大器,简称音频功放,音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放。 设计中主要采用OP07进行音频放大器的设计,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。设计中的音频功率放大器主要由直流稳压电源、前置放大电路、二级放大电路和功率放大电路组成。前置放大电路采用了反相比例运算放大器,二级放大电路用一个低通滤波器和一个高通滤波器组成一个带通滤波器,功率放大电路采用了OCL电路。直流电源采用桥式电路进行整流,输出则采用了三端集成稳压器。 对前置放大电路和二级放大电路进行了输入、输出分析和频率响应分析。对功率放大电路进行了输入和输出功率分析。对直流电源进行了输出电压验证。最后对总电路进行了输入、输出

分析、频率响应分析、噪声分析。 关键词: OP07 音频功率放大器

目录 摘要................................................................ I Abstract.......................... 错误!未定义书签。第一章音频放大器的概述.. (1) 1.1音频放大电路的回顾 (1) 1.2音频功率放大器的介绍 (2) 1.2.1 A类(甲类)功率放大器 (3) 1.2.2 B类(乙类)功率放大器 (3) 1.2.3 AB类(甲乙类)功率放大器 (4) 1.2.4 C类(丙类)功率放大器 (4) 1.2.5 D类(丁类)功率放大器 (5) 1.3放大器的技术指标 (5) 第二章音频功率放大器的设计 (11) 2.1设计方案分析 (11) 2.2前置放大电路设计 (11) 2.3二级放大电路设计 (15) 2.2.1 低通滤波器设计 (15) 2.2.2 高通滤波器设计 (17) 2.2.3 二级放大电路电路设计 (20) 2.4功率放大器设计 (21) 2.5 直流稳压电源设计 (23)

奇声AV-757DB功放电路原理与分析

奇声AV-757DB功放电路原理与分析 奇声A V-757DB功放电路原理与分析整机电路由系统控制、信号源选择、杜比定向逻辑解码、卡拉OK、前置、功放与保护等电路组成,如图2-63所示。 (1).系统控制电路 系统控制电路由IC501(767DB)和有关外围元件组成,如图2-64所示。 767DB是微处理器集成电路,内部结构及引脚功能(见表2-6)均与89C55基本相同。 767DB根据键矩阵电路送入的键控指令脉冲,去控制杜比环绕声解码等电路的工作,同时驱动LED显示电路显示整机的工作状态。 767DB⑦脚为复位端,外接复位电容C501。在每次开机时,+5V电压均会经C501在⑨脚产生一个高电平脉冲电压,使微处理器内部电路清零复位,进入初始化状态。 767DB⑦脚为工作模式控制端,外接控制开关K702-2,可分别选择DSP声场处理、PRO杜比定向逻辑解码、3CH三声道和2CH二声道共四种工作模式。 IC502(4094)在微处理器767DB的作用下,通过C1~C3、D1和D2的输出信号去控制杜比定向逻辑解码电路。

(2).信号源选择电路 信号源选择电路由电子开关集成电路IC001(4052)、转换开关K001和有关外围元件组成,如图2-65所示。 K001为四挡转换开关,可控制IC001⑨脚和⑩脚的电平,从而控制其内部的电子开关,分别选择ID,VCD、TAPE和TUNER四路音频信号。

(3).杜比定向逻辑解码电路 杜比定向逻辑电路由IC704(M69032P)和IC2701(YSS228)、IC702(4053)等组成,见图2-66和图2-67。 信号源选择电路选出的左、右声道音频信号分别从IC2704的(15)脚和(22)脚输人,经环绕声解码处理后的左、右声道信号分别从(32)脚和(33)脚输出,经信号直通/解码处理转换继电器J801送往前置放大电路的E端和F端。中置声道信号从(38)脚输出,经C761送往前置放大电路的C端。 解码后的环绕声道信号从IC704(39)脚输出,经IC702转换后送入IC701进行延时处理。延时处理后的环绕声信号经IC704(47)脚内部的7kHz低通滤波器滤波后从其(42)脚馈入,再经杜比B降噪电路降噪后,从(29)脚输出,经C762送往前置放大电路的D端。 IC704的(36)脚外接中置声道模式控制电路,(23)脚~(25)脚接受来自微处理器IC501的测试控制信号和IC502的调配组合转换控制信号。IC501还通过DA TA、CLK和REQ信号对IC701进行控制。 IC704(34)脚输出L+R信号,经C765、11743加至前置放大器的B端。

功放喇叭保护电路

功放喇叭保护电路 大功率的家用功放的主声道均米用了 OCL电路作功率放大。这种电路出现故障时,其输出端的直流电位常常会偏离零电平,出现较高的正或负的直流电压。输出的直流电流流过扬声器的音圈时,轻者会产生固定磁场,使音圈移位,难以恢复,重者会将其烧毁。另外。 在部分特大功率功放中,由于输出功率非常大,在用户操作不当时,可能会持续输出数安培甚至十几安培的峰值电流,使该声道的最大输出功率远远超过功放的额定输出功率,致使扬声器烧毁。本文以奇声AV-713功放的扬声器保护电路为例介绍其工作原理。功放扬声器保护电路原理框图如图1所示,图中含有了三种保护方式。 (1)直流保护: 当功率放大电路发生故障,其输出端出现的直流电压的绝对值超过设计限度时,保护电路中的直流检测电路即把它检测出来,变成控制信号。控制信号经放大后控制触发器翻转,驱动保护继电器动作,断开功率输出电路,使扬声器得到保护。同时,控制信号还启动指示电路工作,使保护指示灯闪烁报警。(2)过载保护: 当输出电流超过额定输出电流的1倍左右时,过载检测电路输出保护控制信号,控制输出电路断开,保护扬声器及功放。 (3)开机延时接通保护:

通过开机延时电路控制继电器驱动电路的工作状态, 使继电器在开机时延时1—4秒钟接通 扬声器,以避免开机过程中产生的浪涌电流冲击扬声器。使其音圈移位。 具体电路如图2 所示。该电路以Q4、Q5为中心,组成了直流电压取样检测电路。图中的 Q1、Q2等系右 声道功率输出电路(左声道功率输出电路图中未画出 )。右声道的直流电压取样信号经由 R6(左声道取样信号经由R21)衰减、隔离,C2、C3滤波,送往Q4、Q5、R7组成的互补式 直流检测电路进行监测。当右(或左)声道的功率输出电路出现正极性的较大的直流失调电压 时,电流经R6(或 R21) Q4的be 结到地,Q4导通,其集电极输出控制电平,经 R8、D2 送Q7放大后,输往R-S 触发器。同样。功率输出电路中出现负的直流失调电压时,电流经 地、Q5的be 结、R6(或 R21)、OCL 电路中点。Q5导通,也输出控制电平。这种取样检测 方式为互补方式。 R1、R2、R3 R4、Q3等组成了过载检测电路(左声道的过载检测电路未画出)。R1、R2分 别用来对输出级上、下臂功率管的过载情况进行取样。 Q3对输出电路进行过载状态监测。 R1两端的电压与功率管 Q1的发射极电流成正比,该电压经过 R3、R4、R2衰减分压,成 为Q1发射结的正向偏压。调整 R3、R4的阻值,可使此电压在额定输出状态下不能使 Q3 导通。当功放工作异常致使 Q1严重过载时,流过R1的电流大增。从而产生足以使 Q3导 通的正向偏压,使 Q3 导通,输出监控信号,经 Q7 放大后送到触发器,使触发器输出状态 卜 ■ ----------------- ■ ----------------- 一亠 y _ --------------- - ” ----- ----------- ■ ------------------------------------------------------ ... J" — iuin 厂 N 1 0 签£3弼 5M1 4001- HL 355J LFD 1N4I4A o oiOl- A IS+14U 17 IN4OQ2 H8 10k E 4003-

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

OCL功率放大器设计分析

设计题目:OCL功率放大器设计 姓名: 学号: 班级:14级 专业:电子信息工程 设计时间:2016 2016年 7 月 4 日

目录 概述 (3) 一、任务及要求: (4) 1.设计任务 (4) 2.设计要求 (4) 二.总体方案设计 (4) 1.设计思路 (4) 2. OCL功放各级的作用和电路结构特征 (4) 三.单元电路的选择及设计 (5) 1、设计方案 (5) 2、设计选择 (5) (1)设计一个放大器所需要的直流稳压电源 (5) (2)差分放大电路电路图 (6) (3)复合管放大电路电路图 (7) (4) U的倍增电路电路图 (7) BE 四.总体电路图 (9) 五.元器件参数的选择: (10) a.确定工作电压 V (10) CC b.功率输出级的设计: (11) c.推动级(V4)的设计 (12) d.输入级的设计 (13) 六、总结与体会 (15)

概述 (1)放大电路实质上都是能量转换电路。从能量控制的观点来看,功率放大电路和电压放大电路没有本质的区别。但是,功率放大电路和电压放大电路所要完成的任务是不同的。对电压放大电路的主要的要求是使其输出端得到不失真的电压信号,讨论的主要指标是电压增益,输入和输出阻抗等,输出的功率并不一定大。而功率放大电路则不同,它主要要求获得一定的不失真(或失真较小)的输出功率,因此功率放大电路包含这一系列在电压放大电路中没有出现过的特殊问题,这些问题是: 要求输出功率尽可能大 为了获得大的功率输出,要求功放管的电压和电流都有足够大的输出幅度,因此器件往往在接近极限运用状态下工作。 效率更高 (2)由于输出功率大,因此直流电源消耗的功率也大,这就存在一个效率问题。所谓效率就是负载得到的有用信号功率和电源供给的直流功率的比值。这个比值越大,意味着效率越高。 非线性失真小 (3)功率放大电路是在大信号下工作,所以不可避免地会产生非线性失真,而且同一功放管输出功率越大,非线性失真往往越严重,这就使输出功率和非线性失真成为一对主要矛盾。但是,在不同场合下,对非线性失真的要求不同。 (4)功率器件的散热问题:在功率放大电路中,为了输出较大的信号功率,器件承受的电压高。为了充分利用允许的管耗而使管子输出足够大的功率,放大器件的散热就成为一个重要问题了。 (5)此外,在功率放大电路中,为了输出较大的信号功率,器件承受的电压要高,通过的电流要大,功率管损坏的可能性也就比较大,所以功率管的损坏与保护问题也不容忽视。 (6)OCL功率放大器是一种一种直接耦合的功率放大器,它具有频响宽,保真度高,动态特性好及易于集成化等特点。OCL是英文Output Capacitor Less 的缩写,意为无输出电容。采用两组电源供电,使用了正负电源,在电压不太高的情况下,也能获得比较大的输出功率,省去了输出端的耦合电容。使放大器低频特性得到扩展。OCL功放电路也是定压式输出电路。

射频功率放大器的建模

射频功率放大器的建模 随着通信技术的发展,射频射频电路在通信系统中得到了广泛的应用。功率放大器的研究和设计一直是通信发展中的重要课题。近年来,基于模糊神经网络的射频器件和电路建模建模的研究取得了巨大的成果,对大规模集成电路和复杂电路的建模有着巨大的启发意义,成为当今研究的热点之一,本文将基于这个理论对射频放大器进行建模和研究。1 建模方法的介绍本文将采用模糊逻辑网络中的一阶Sugeno模型,为了实现Sugeno 模糊推理系统的学习过程,一般将其转化为一个自适应网络,即自适应模糊神经推理系统,。该自适应网络是一个多层前馈网络,它可以分为5层,其中的方形节点需要进行参数学习。下面分别介绍这五层。图1 自适应模糊神经推理系统结构第1层计算输入变量的匹配度,即模糊化过程。假设模糊集采用高斯函数,那么该层输出( Oi表示第j层的第i个输出)为:对y 的计算同理, ci, σ i 分别表示高斯函数的中心和宽度,是模糊规则前提条件中需要调节的参数。第2 层计算当前输入对各条规则的激励强度,采用对规则前件部分各模糊变量的隶属度作乘积运算,即:第3层对激励强度进行归一化:第4层计算每条规则的输出,一条规则的输出是给定输入对该条规则的激励强度与结论部分的乘积:第5层计算模糊系统的输出,总的输出是所有规则输出之和:由此可见这一模糊逻辑系统定义了从x、y 到z 之间的一个映射:通过对模糊规则中各参数的精心选择,可准确地刻画变量之间的关系。用模糊逻辑建模可以把整个建模过程分成两步: 初始模型的建立和模型的后续训练调整。初始模型的建立除了可根据该领域已有的一些经验、知识外,现在还可以根据一组训练样本数据,运用一定的算法确定输入变量与输出变量的模糊集个数与相应的隶属度函数的形状,及一组模糊规则。有了这样一个初始模型后,再用学习算法,如BP算法、DFP算法,来调整隶属度函数中的参数,逐步减小系统的模糊输出值跟实际输出值之间的误差,可取得较好的效果。 2 建模过程在下面的实例中应用ANFIS进行建模的步骤如下:( 1)在ADS中对设计好的功放电路进行仿真,这里分别对输入为单音信号、双音信号以及调制信号的功放电路进行仿真,最终目的是建立一个描述输入输出端口关系的行为模型,故选择输入和输出的电压数据用以训练之用。( 2)编写程序,预设ANFIS中的参数值,确定隶属度函数的类型、模糊规则的条数、迭代次数、模糊集的个数等,建立初始模型,并完成对训练数据的学习;( 3)利用检测样本数据检验所建立的模型; 采用最小二乘法和梯度下降法对模型的参数进行调整。( 4)观察检测结果,若检测误差满足精度要求,建模结束,若不满足,继续调整。本文采用一个三输入单输出的初始模型,输入变量选为Vin ( k ), Vin ( k- 1), Vout ( k- 1)三个输入变量,其中Vin ( k ) 为输入电压,变量Vin ( k - 1 ) 用Vin ( k- 1) = Vin ( k ) - Vin ( k - 1)的差分形式来替换。Vout ( k- 1)为考虑记忆效应而加入的项,即前一刻的输出量。输出变量为一单变量Vou t ( k )。这样可以将整个需建模的电路输入输出的动态关系用式( 7)予以表达:模型采用高斯隶属度函数,模糊规则条数为[ 2 12],共四条,采用平均分割法。 3 应用实例以下是一个基于SM IC 技术设计的射频功率放大器功率放大器,。它的设计指标如下:S11< - 15 dB, S21> 20 dB, P1 dB > 20 dBm,PAE 30% , Pgain > 20 dB。图2电路中选用SM IC 库中的NMOS管,其他元件参数如表1~ 3所示。表1 元件参数单位: pF表2 元件参数单位: nH表3 元件参数单位: kΩ电路工作在2. 45 GHz 下,输入功率为RF_input= - 20 dBm~ 10 dBm(间隔1 dBm)的信号,对电路进行HB仿真,并选取时域下两个周期的抽样输入输出电压抽样数据作为训练数据。检验数据的选取与上述类似,可以选择输入功率RF_input= - 19. 5 dBm~10. 5 dBm (间隔为1 dBm )内的一组或多组信号。建模结果,图3是输入功率为6. 5 dBm和- 6. 5 dBm 时,稳态输出电压的结果。图4是利用输入功率为7. 5 dBm 时模型得到的时域数据,选取一个周期的输出电压数据做FFT 变换,得到电压信号频谱,对基波及二到五次谐波电压分别计算功率谱,并与

OTL功率放大器设计解析

电子技术基础课程设计任务书 20xx-20xx学年第一学期第xx周-xx周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。

2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

目录 一、设计任务 (2) 二、总体方案的设计与选择 (2) 三、总体电路图及印刷板图 (6) 四、计算机仿真 (7) 五、安装调试 (8) 六、焊接实图 (10) 七、心得体会 (11) 参考书籍 (11)

设计题目:OTL功率放大器设计 一、设计任务 (一)设计任务:设计一个OTL功率放大器 (二)设计要求: 1、要求电路采用集成电路组成; 2、额定输出功率大于等于10W; 3、负载阻抗等于8Ω; 4、采用TDA2003集成芯片。 二、总体方案的设计与选择 (一)电路原理 1、OTL功放原理 (1)乙类输出无变压器(output transformerless 简记OTL)功率放大器 图2-5-14所示乙类OTL功放电路, V 1与V 2 为互补对称管,故这种电 路也是互补对称电路。 由于电路结构上的对称性,静态下A、B对地电压均为U G /2,C 1 、C 2 端 电压U C1=U C2 =UG/2。因此,输出耦合电容又相当于一个U G /2的直流电源。图 中的A点又称中点。 图2-5-14 乙类OTL功放 当电路输入正弦信号,且u i >0时,功放管V 1 导通、V 2 截止,电路为射 极输出器,u O≈u i ,u O 输出正半周,其振幅最多可达U G /2,;u i <0时,V 1 截 止,V 2导通,u O ≈u i ,u o 输入负半周,振幅最多可达U G /2。当U om =U G /2时,

功率放大电路分析

B类OTL功率放大电路原理 发布: | 作者:--| 来源: --| 查看:351次| 用户关注: 三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上, 三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上,主放大器推动PP电路中的A类驱动级就会产生二次高谐波,因此高谐波还是很多。不过,B类PP电路为减少交叉失真,须特别注意偏压的稳定。以下介绍几个代表性的B类SEPP.OTL电路 图a 半对称互补OTL放大电路 图b 全对称互补OTL放大电路

图一输入变压器式功放电路输入变压器式SEPP电路如图一,利用输入变压器进行相位反转作用。线路简单而中心电压又稳定,如果使用两电源方式,可简单剪掉输出电容器。又,输出短路时,不容易流出大电流,对过载引起的破坏,有很大的防止作用。不过因为输入变压器的影响,不能有较深的负反馈,所以不能获得较低的失真,在高频特性及失真会显著恶化是主要缺点。 CE分割方式

图二CE分割方式 如图二所示,利用三极管Q1 集电极与发射极之相位相反进行反向的方式,与真空管的PK分割相同。因为可以由NPN型三极管构成,所以很容易找到特性整齐的三极管。但是,因为有电路比较复杂,需用的交连电容多,低频特性不好,所以一直不能成为主流的电路。 互补方式

TDA2030集成电路功率放大器设计方案

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件字串5 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 字串3 输出功率:10 ~ 20W (额定功率); 字串9 频率响应:20Hz ~ 100kHz ( < 3dB 字串6 谐波失真:w 瑶(10W,30Hz~20kHz ); 字串9 输出阻抗:< 0.16 Q字串4 输入灵敏度:600mV (1000Hz,额定输出时) 三、设计内容 1 ?根据具体电路图计算电路参数字串8 2?选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。字串5 3 ?了解有关集成电路特点和性能资料情况 字串5 4?根据实际机壳大小设计1:1印刷板布线图字串3 5 ?制作印刷线路板

字串4 6 ?电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 字串2 导书》有关放大器测试过程字串5 7?实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 字串6 注意:将输入电位器调到最大输入的情况。 字串2 1测量输出电压放大倍数Au字串7 测试条件:直流电源电压14v,输入信号1KH z 70 mv (振幅值100mv),输出负载电阻分另为4Q 和8Q O 字串3 字串4 2.测量允许的最大输入信号(1KH z)和最大不失真输出功率 字串5 测试条件:①直流电源电压14v,负载电阻分别为4 Q和8 Q O 字串3 ②直流电源电压10v,负载电阻为8Q O

音频功放保护电路分析与维修

音频功放保护电路分析与维修 https://www.360docs.net/doc/d018149884.html,/ 2008-1-7 19:59:43 音频功放保护电路分析与维修 在音频放大器中一般都设有功能完善的保护电路,可以在功放输出管过载、输出端电位偏移时进行可靠的保护,还可以在开机时延迟接通扬声器,避免开机损坏扬声器和开机“嘭”声,关机时瞬时断开扬声器,可避免关机时的冲击。 一、分离元件保护电路 图1所示是湖山BK2X100JMKⅡ-95型纯后级功率放大器功放保护电路。放大器刚接通电源时,+56V电压通过R143对C116充电,约延迟4s,C116上电压充到9.5V左右时,稳压管V126导通而使V124、V125导通,继电器K101吸合,才能接通扬声器,避免开机时的电流冲击而保护扬声器。 v126、v129组成功放输出端的电位检测电路,当输出端的电位偏移时,通过一51k电阻R144,使V126或V129导通。当输出端的电位是正偏移时,V129导通。反之,当输出端的电位是负偏移时V126导通。无论v126或V129中哪一个导通,C116正端电位为0V,稳压管V126截止,V124、V125截止,使继电器释放,断开扬声器,这样就完成了输出端电位偏移保护。 当功放因输出短路或负载过重时,输出管V134、v135射极电流大增,在R132、R133上产生的压降增大经R134、R135分压加至V118基极,使V118导通,使V127基极电位降低,v127导通,稳压管V126截止,V124、V125截止,继电器释放,断开扬声器,这样就完成了输出管的过载保护。

图2所示是天逸AD-5100A型AV放大器功放保护电路。J1、J2为接在功放输出端的继电器。刚开机时,+56V电压经R57、R58对c29充电,几秒后,当C29充电到一定电压时,IC2(uPC1237)⑥脚内的开关电路接通,输出低电平,使J1、J2吸合,接通扬声器,实现开机延时保护功能。当功放输出端直流电压因某种原因发生偏移,使IC2 2脚电压超过+0.7V,或低于-0.23V时,⑥脚内开关电路截止,输出高电平,使J1、J2释放,断开扬声器,实现功放输出端的直流电压偏移保护。 当功放输出极短路或负载过重时,使功放输出级的电流过大(超过8A),R67或R70两端电压达到约2V时,可使Q29或Q30导通,Q31也随之导通,使IC2 1脚输入一电压值,使J1、J2释放,断开扬声器,实现功放末级电流过载保护。电源变压器交流40V绕组的一端,经D32、R59加至IC2 4脚,关机时,交流电压瞬时消失,而其他直流供电暂没消失,J1、J2瞬时释放,扬声器断开,以避免关机时的冲击。

相关文档
最新文档