水质 烷基汞的测定 气相色谱法

水质 烷基汞的测定 气相色谱法
水质 烷基汞的测定 气相色谱法

水质烷基汞的测定气相色谱法

GB/T 14204-93

Water quality—Determination of alkylmercury Gas chromatography

1 主题内容和适用范围

本标准规定了测定水中烷基汞(甲基汞,乙基汞)的气相色谱法。

本标准适用于地面水及污水中烷基汞的测定。

本方法用巯基棉富集水中的烷基汞,用盐酸氯化钠溶液解析,然后用甲苯萃取,用带电子捕获检测器的气相色谱仪测定,实际达到的最低检出浓度随仪器灵敏度和水样基体效应而变化,当水样取1L时,甲基汞通常检测到10ng/L,乙基汞检测到20ng/L。

样品中含硫有机物(硫醇,硫醚,噻酚等)均可被富集萃取,在分析过程中积存在色谱柱内,使色谱柱分离效率下降,干扰烷基汞的测定。定期往色谱柱内注入二氯化汞苯饱和溶液,可以去除这些干扰,恢复色谱柱分离效率。

2 试剂和材料

2.1 载气

氯气:99.999%。经脱氧过滤器,氧含量<1mg/m3。

2.2 配制标准样品和试样预处理时使用的试剂和材料

2.2.1 氯化甲基汞CH3HgCl(简称MMC)。

2.2.2 氯化乙基汞C2H5HgCl(简称EMC)。

2.2.3 甲苯(或苯):经色谱测定(按照本方法色谱条件)无干扰峰。

2.2.4 盐酸溶液:c(HCl)=2mol/L。用甲苯(苯)萃取处理以排除干扰物。

2.2.5 硫酸(H2SO4):优级纯,P=1.84g/mL。

2.2.6 乙酸酐:分析纯。

2.2.7 乙酸:分析纯。

2.2.8 硫代乙醇酸:化学纯。

2.2.9 脱脂棉。

2.2.10 氯化钠(NaCl):分析纯。

2.2.11 硫酸铜:分析纯。

2.2.12 硫酸铜溶液:w(CuSO4)=25g/100mL。CuSO4·5H2O50g溶于200mL无汞蒸馏水(2.2.14)。

2.2.13 无水硫酸钠(Na2SO4):分析纯,使用前在300℃马福炉中处理4h。

2.2.14 无汞蒸馏水:二次蒸馏水或电渗析去离子水,也可将蒸馏水加盐酸(2.2.4)酸化至pH=3,然后过巯基棉纤维管(

3.3.8.2)去除汞。

2、2.15 二氯化汞校处理液:称量0.1g二氯化汞,在100mL容量瓶中用苯溶解,稀释至标线,此溶液为二氯化汞饱和苯溶液。

2.2.16 解析液(2mol/L NaCl+1mol/LHCl):称量11.69gNaCl,用100mL 1mol /LHCl溶解。

2.2.17 烷基汞标准溶液:见5.2.2的有关内容。

2.2.18 甲醇:分析纯。

2.2.19 无水乙醇:分析纯。

2,2.20 盐酸溶液:w=5%。

2.2.21 盐酸溶液:c(HCl)=0.1mol/L。

2.2.22 氢氧化钠溶液:c(NaOH)=5mol/L。

2.3 制备色谱柱时使用的试剂和材料

2.3.1 色谱柱和填充物参考3.3条的有关内容。

2.3.2 涂渍固定液用溶剂:二氯甲烷(CH2C1z)分析纯;或丙酮(C3H6O)分析纯。

3 仪器

3.1 色谱仪

带有电子捕获检测器的气相色谱仪。

3.2 色谱仪汽化室

全玻璃系统汽化室。

3.3 色谱柱

3.3.1 色谱柱类型

硬质玻璃填充柱:长度1.0~1.8m,内径:2~4mm。

3.3.2 填充物

3.3.2.1 载体

Chromosorb W AW DMCS,80~100目,或其他等效载体。涂渍固定液之前,在90℃烘1.5h。

3.3.2.2 固定液

a.DEGS(丁二酸二乙二醇酯):员高使用温度200℃;或OV-17(苯基50%甲基硅酮):最高使用

温度350℃。

b.液相载荷量:5%DEGS;2%OV-17。

c.涂渍固定液的方法:静态法。

称取一定量的固定液,例如:称0.5g的DEGS(3.3.2.2)‘溶解在二氯甲烷(2.3.2)中.待完全溶解后,倒入刚烘过的载体(3.3.2.1)9.5g,使镕有DSGS的二氯甲烷刚好浸没裁体,待溶剂完全挥发后,烘干(100℃),即涂渍完毕。

3.3.3 色谱柱的填充方法

用硅烷化玻璃毛塞住色谱柱的一端,接缓冲瓶和减压系统,住的另一端接软管连漏斗,将填充物缓缓倒入漏斗,同时开启减压系统,轻轻震动柱体(建议使用超声波水浴)以确保填充紧密,填充完成后。用硅烷化玻璃毛塞住色谱柱另一端,注意:在柱的两端都要空出2cm,填充玻璃毛,以防固定液在进样器和检测器的高温下分解。填充好的色谱拄接检测器一端应与填充时减压吸气一端一致。

3.3.4 色谱柱的老化

将填好的色谱柱一端接在仪器进样口上,另一端不接入检测器。通载气30mL/min,柱温维持200℃,老化24h,柱温降至160℃,注入柱处理液每次20?L,共五次,间隔5min。继续老化24h。接检测器,柱温设在使用温度,使用前检查,以基线走直为准。(约10~20min)。

3.3.

4.1 色谱柱处理液的使用见附录B。

3.3.5 检测器

电子捕获检测器,带镍-63放射源(ECD-63Ni)或高温氚源(3-H源)。3.3.6 记录仪满标量程1mV。

3.3.7 数据处理系统

积分仪。

3.3.8 巯基棉管的制备

3.3.8.1 巯基棉纤维(sulfhydryl cotton fiber 缩写S.C.F)制备:Nishi法,见附录A。

3.3.8.2 巯基棉回收率的测定见附录A。

3.3.8.3 巯基棉管:在内径5~8mm,长100mm,一端拉细的玻璃管中填充0.1~0.2g(S.C.F)

(3.3.8.1),见图1。使用前用20mL无汞蒸馏水(2.2.14)润湿膨涨。然后接在分液漏斗的放液管上。

图1 S.C.F吸附管

3.3.9 使用的所有玻璃仪器(分液漏斗,试管),要求用5%盐酸(2.2.20)浸泡24h 以上。

3.3.10 样品瓶:2.5L塑料瓶。

3.3.11 分液漏斗:500mL,1000mL,2000mL。

3.3.12 具塞磨口离心管:10mL。

4 样品

4.1 样品采集和保存

样品采集在塑料瓶(3.3.10)中,如在数小时内样品不能进行分析,应在样品瓶中预先加入硫酸铜(2.2.11),加入量为每升1g(水样处理时不再加硫酸铜溶液),水样在2~5℃条件下贮存。

4.2 试样的预处理

4.2.1 取均匀水样1L,置于2L分液漏斗(3.3.11)中,加入1mL硫酸铜溶液(2.2.12),使用2mol/L盐酸溶液(2.2.4),或6mol/L氢氧化钠(2.2.22),调pH为3~4,接巯基棉管,让水样流速保持在20~25mL/min,待吸附完毕,用洗耳球压出吸附管内残存的水滴,然后加入3.0mL解析液(2.2.16),将巯基棉上吸附的烷基汞解析到10mL具塞离心管(3.3.12)中(用吸耳球压出最后一滴解析液),向试管中加入1.0mL甲苯(苯)(2.2.3),加塞,振荡提取1min,静置分层,用离心机2500r/min离心3~5min,离心分离有机相与盐酸解析液,取有机相进行色谱测定;或者分层后吸出有机相,加入少量无水硫酸钠(2.2.13)脱水,进行色谱测定。

4.2.2 污水试样的处理

取污水水样>100mL置于锥形瓶中,用2mol/L盐酸溶液(2.2.4)酸化至PH<1,加入1g硫酸酮(2.2.11)充分搅拌后,调pH=3,静置,用快速滤纸过滤,收集滤液100mL转移到分液漏斗中,在漏斗下口塞一些玻璃毛过滤,接巯基棉管富集,解析步骤同上。

5 操作步骤

5.1 仪器调整

5.1.1 温度

5.1.1.1 汽化室温度:180℃,恒温。对于汽化室与检测器加温一致的仪器,设定220℃。

5.1.1.2 检测器温度:280℃,恒温。(H-源220℃)。5.1.1.3 柱箱温度:140℃,恒温。

5.1.2 载气流速:60mL/min,根据色谱柱的阻力调节控前压。

5.1.3 检测器灵敏度:10挡。5.1.4 记录仪

纸速:5mm/min。

5.2 校准

5.2.1 外标法

5.2.2 标准溶液的制备

5.2.2.1 氯化甲基汞甲苯标准溶液

a.标准储备液:1000μg/mL。称取0.1164gMMC(2.2.1)(相当于0.1000g甲基汞),用3~5mL甲醇(2.2.18)溶解,然后用甲苯(苯)稀释、转移到100mL容量瓶中,用甲苯稀释至标线摇匀。

b.标准溶液:40μg/mL。

c.标准溶液:2μg/mL。

5.2.2.2 氯化乙基汞甲苯标准溶液

a.标准储备液:1000μg/mL.称取0.1154gEMC(2.2.2)(相当于0.1000g乙基汞),用3~5mL无水乙醇(2.2.19)溶解,然后用甲苯稀释,转移至100mL容量瓶中,再用甲苯稀释至标线摇匀。

b.标准溶液:40μg/mL。

c.标准溶液:2μg/mL。

5.2.2.3 甲基汞乙基汞基体加标标准溶液(0.002~0.2?/mL)

按照5.2.2.1和5.2.2.2的步骤,用少量甲醇(3~5mL),少量无水乙醇(3~5mL)分别溶解甲基汞,乙基汞,用0.1mol/L盐酸(2.2.21)稀释,配制基体加标标准液(加标测回收率,色谱标准工作液),浓度低于1mg/L的烷基汞溶液不稳定。1mg/L以下的基体加标标准溶液需要一周重新配制一次。所有烷基汞标准溶液必须避光,低温保存(冰箱内保存)。

5.2.2.4标准溶液的使用

a.色谱测定使用的标准样品,进样后出单一峰,没有其他物质干扰。标准溶液(溶剂甲苯或苯配制)用于确定烷基汞的保留时间(RT),并考察仪器的线性范围。

b.每次分析样品时,都要用标准进行校准,一般每测定十个样品校准一次,当使用0.02mgL标准溶液,连续进样两次,两峰峰高(或峰面积)相对倡差≤4%,可认为仪器稳定。

c.在周一次分析中,标准样品进样体积要与被测样品进样体积相同,使用外标法定量时,标准样品的响应值应与被测样品的响应值接近。

d.实际分析工作中使用的标准样品的制备:取基体加标标准溶液

(5.2.2.3)1.0mL,加解析液(2.2.16)3mL,加1.0mL甲苯(苯),振荡萃取1min,离心分离。制备过程与试祥预处理(4.2.1)步骤中,用甲苯(苯)萃取解析液一致,以减小系统误差。

5.3 校准数据的表示

试样中组分按式(1)校准:

式中.:X i——试样中组分i的含量;

E i——标准试样中组分i的含量;

A i——试样中组分i的峰面积,cm2;

A E——标准试样中组分i的峰面积,cm2。

5.4 试验

5.4.1 进样方式:使用10?L微量进样器进样。

5.4.2 进样量:2~5μL。5.4.3 进样操作:溶剂冲洗进样技术(见附录C)。

5.5 色谱图的考察

5.5.1 标准色谱图

填充剂:5%DEGS 填充剂:2%OV-17

柱长内径:1.8m×2mm 柱长内径:1m×3mm

柱温:140℃ 柱温:180℃

检测器温:280℃(220℃) 检测器温:220℃

载气流速:60mL/min 载气流速:60mL/min

图2 标准色谱图

1.甲基汞;

2.乙基汞

5.5.2 定性分析

5.5.2.1 烷基汞的出峰顺序:1.甲基汞;2.乙基汞。

5.5.2.2 烷基汞保留时间窗:在72h内进三次标准样品,三次保留时间的平均值;及三倍的标准偏差,t±3s。

5.5.2.3 检验可能存在的干扰:采用双柱定性法.即用两支不同极性的色谱枝分析,可确定色谱峰中有无干扰(OV-17作为证实柱)。

5.5.3 定量分析

5.5.3.1 色谱峰的测量

a.以峰的起点和拐点的联线做为峰底,从螃高最大值对时间轴作垂线,对应的时间即为保留时间(RT)。从螃顶到峰底间的线段为峰高。

b.积分仪自动求出RT,给出峰面积。

5.5.3.2 计算

a.使用记录仪:

式中:C——样品中甲(乙)基汞浓度,μg/L;

m——标准物重量,ng;

h1——样品峰高,mm;

V1——提取液体积,μL;

K——稀释因子;

h2——标准物峰高,mm;

V2——提取液进样体积,μL;

V3——水样体积,mL。

b.积分仪数据处理(建议使用)。见附录D。

6 结果的表示

6.1 定性结果

6.1.1 根据标准色谱图给出的保留时间确定甲基汞,乙基汞。

6.2 定量结果

6.2.1 含量的表示方法:按计算公式计算出组分的含量,结果以二位有效数字表示。

6.2.2 精密度和准确度见下表。

五家实验室分析测定统一样品,分析六次的统计结果。

表1 精密度和准确度

三种污水水样(城市污水,化工污水,电光源行业污水)的加标回收率加标范围:0.05~0.4mg/L。

回收率:甲基汞为67.5%~104%;乙基汞为69.6%~123.7%。

6.2.3 检测限

当气相色谱仪设在仪器的最大灵敏度时,以噪声的3倍作为仪器的检测限。

甲基汞:1.0×10-12g;乙基汞:1.5×10-12g。

本方法要求仪器的录敏度不低于10-12g。按照载气(2.1)的标准,可达到本方法对仪器灵敏度的要求。

7 质量控制

建议采用,见附录E。

附录A 巯基棉(S.C.F)的制备

(补充件)

A1 Nishi法在一个玻璃烧杯中,依次加入100mL硫代乙醇酸(2.2.8),60mL乙酸酐(2.2.6),40mL乙酸(2.2.7),0.3mL硫酸(2.2.5),充分混匀,冷却至室温后,加入30g脱酯棉(2.2.9),浸泡完全,压紧,冷至室温,降温后加盖,放在37~40℃烘箱中48~96h。取出后放在耐酸漏斗上过滤,用无汞蒸馏水(2.2.14)洗至中性,置于35~37℃烘箱中烘干。取出置于棕色干燥器中,避光保存。每批巯基棉的性能必须做回收率测定。回收率>85%,才可使用。

A2 3.C.F回收率测定

取基体加标标准液(0.2μg/mL)1.0mL,加入1L试剂水中,按4.2.1步骤处理,与基体加标标准液(0.2μg/mL)1.0mL的甲苯(苯)萃取液比较,计算回收率。

附录B 二氯化汞柱处理液的使用

(补充件)

B1 色谱往处理液的使用

当色谱峰出现拖尾,烷基汞的保留时间值(RT)出现较大变化时,注入10?L柱处理液(2.2.15),2h后可继续测定。或者完成一天测定后,注入50~100?L柱处理液,保持柱温过夜。第二天柱效恢复正。

附录C 溶剂冲洗进样技术

(补充件)

用清洁的样品溶剂冲洗进样器几次,把少量样品溶剂(1?L)抽入进样器,再抽入0.5?L空气,然后将进样器针头插入样品容器内,慢慢地抽入2~4μL样品,使针头离开样品,将进样器柱塞慢慢提起,样品完全抽入针筒内,并抽入0.5μL

空气,此时可见两个液体柱两个空气柱:溶剂和样品。中间由空气柱隔开。样品量可由针筒刻度准确计量,针头内不含样品。快速进样。这种进样方式重复性好,可保证同一样品连续进样两针,响应值相对偏差≤4%。

附录D 积分仪的使用

(参考件)

D1 积分仪的调正按使用说明书的要求,设定适当的衰减和纸速。D2 色谱峰的测量完成进样后,启动积分仪,积分仪自动求出色谱峰的RT值和相应的峰面积。D3 计算(外标法) 计算RT因子:每个浓度水平的化合物的响应值与注入质量的比值为RF值。当采用五个浓度水平的标准溶液测定的RF因子,其相对标准偏差<20%时,用RF因子的平均值可以代替标准曲线。

RF=X/A ………………………………………………(D1)

式中:X——已知浓度的标准样品,ng/μL;

A——峰面积积分值。

定量计算公式:

式中:Xi,A i——同式(1);

k——样品浓缩或稀释倍数;

m——样品的重量。

附录E 质量控制

(参考件)

E1 应用本方法的实验室都要执行质量控制计划。质量控制的目的是考察实验室的能力,然后通过加标样品分析考查实验室水平。要求实验室建立实验数据档案,保留反映分析工作水平的一切数据,定期检查现有工作水平是否在方法的准确度和精密度范围之内。

E1.1 进行样品分析之前,分析人员必须证明有能力用本方法取得可接受的准确度和精密度。这种能力的评定见E2。

E1.2 实验室至少要对全部样品的10%作加标分析,加标浓度应当超过样品背景浓度值的2倍,实验方为有效。使用本方法的基体加标溶液,配制所需要的加标浓度,以监测实验室的持续水平。操作步骤见E4。

E2 用下述操作来检验分析人员是否具有能力,以达到方法要求的准确度和精密度。

E2.1 测定统一的质量控制样品(QC),QC样品的浓度应比选定的浓度大1000倍。QC样品是以0.1mol/L盐酸为溶剂,含有一定量烷基汞的溶液,封装在棕色安额瓶中。

注:QC样品可以从北京市环境监测中心得到。

E2.2 踞开QC样品安瓿瓶,用移液管向至少四个1000mL的试剂水中各加入

1.0mLQC样品,按4.2条的内容分析各份样品。

E2.3 对分析结果计算平均回收率(R)和回收率的标准偏差(S)。

E2.4 将E2.3的计算结果与本方法的平均回收率(X)和标准偏差(P)相比较。如果S>2P或│X-R│>2P,应查找可能存在的问题并重新实验,直到达到方法要求。

E2.5 根据实验室问验证的结果,确定了方法的(X)和(P)的指标,分析人员在熟悉了方法要求后,必

须先满足这些指标,然后才能分析样品。

E3 分析人员必须计算分析方法的性能指标,确定实验室对各加标浓度(高浓度、低浓度)和待测化合物的分析水平。

E3.1 计算分析方法回收率的控制上限和控制下限:

控制上限(UCL)=R+3S

控制下限(LCL)=R-3S

式中及和S按辽2.3计算。UCL和LCL用来绘制观察分析水平变化趋势图。

E3.2 实验室必须建立该方法分析样品数据的档案,保留表示实验室在分析烷基汞方面准确度的记录。

E4 要求实验室将部分样品重复分析以测定加标回收率,至少应对全部样品的10%进行加标回收测定。至少每月作一次加标分析。加标样品要E1.2的要求进行加标。在加标实验中,如果某一种烷基汞的回收率未落在方法控制限内,同一批处理的样品中烷基汞的数据就是可疑的。实验室应监测这种可疑数据的出现频率,以保证这一频率维持在5%以下。

E5 做实验方法全程序空白,以证明所有玻璃器皿和试剂的干扰都在控制之下,当更换实验全程序中使用的任何一种物品(试剂、筑基棉和玻璃器皿),必须做一次全程序空白实验。

E6 建议实验室采取进一步的质量保证措施,对出现可疑数据的样品要反复做,并重新取样,来监测采样技术的精密度。当对一种烷基汞的定性有疑问时,可采用不同极性的色谱柱确证,或采用其他确证方法,比如GC/MS。

分析人员测定质量控制样品(QC)可接受的范围:

表E1

附加说明:

本标准由国家环境保护局科技标准司提出。本标准委托中国环境监测总站负责解释。本标准由北京环境保护监测中心负责起草。本标准主要起草人李新纪。

气相色谱法附答案

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要 5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标

物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐 15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体

水质——总有机碳(TOC)的测定

本标准参照采用国际标准ISO 8245—1987《水质——总有机碳(TOC)的测定——导则》。 1 主题内容和适用范围 1.1 本标准规定了测定地面水中总有机碳的非色散红外线吸收法。 1.2 测定范围 本标准适用于地面水中总有机碳的测定,测定浓度范围为0.5~60mg/L,检测下限为0.5mg/L。 1.3 干扰 地面水中常见共存离子超过下列含量(mg/L)时,对测定有干扰,应作适当的前 处理,以消除对测定的干扰影响:SO 42-400;Cl-400:NO 3 -100;PO 4 3-100;S2-100。 水样含大颗粒悬浮物时,由于受水样注射器针孔的限制,测定结果往往不包括全部颗粒态有机碳。 2 原理 2.1 差减法测定总有机碳 将试样连同净化空气(干燥并除去二氧化碳)分别导入高温燃烧管(900℃)和低温反应管(160℃)中,经高温燃烧管的水样受高温催化氧比,使有机化合物和无机碳酸盐均转化成为二氧化碳,经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳。其所生成的二氧化碳依次引入非色散红外线检测器。由于一定波长的红外线被二氧化碳选择吸收,在一定浓度范围内二氧化碳对红外线吸收的强度与二氧化碳的浓度成正比,故可对水样总碳(TC)无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 2.2 直接法测定总有机碳 将水样酸比后曝气,将无机碳酸盐分解生成二氧化碳驱除、再注入高温燃烧管中,可直接测定总有机碳。 3 试剂 除另有说明外,均为分析纯试剂,所用水均为无二氧化碳蒸馏水。 3.1 无二氧化碳蒸馏水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%)稍冷,装入插有碱石灰管的下口瓶中备用。 3.2 邻苯二甲酸氢钾(KHC 8H 4 O 4 ):优质纯。

水质检测标准、检测方法

水环境监测方法标准 标准编号标准名称实施日期 HJ/T338-2007饮用水水源地保护区划分技术规范2007-2-1 HJ/T341-2007水质汞的测定冷原子荧光法(试行)2007-5-1 HJ/T342-2007水质硫酸盐的测定铬酸钡分光光度法(试行)2007-5-1 HJ/T343-2007水质氯化物的测定硝酸汞滴定法(试行)2007-5-1 HJ/T344-2007水质锰的测定甲醛肟分光光度法(试行)2007-5-1 HJ/T345-2007水质铁的测定邻菲啰啉分光光度法(试行)2007-5-1 HJ/T346-2007水质硝酸盐氮的测定紫外分光光度法(试行)2007-5-1 HJ/T347-2007水质粪大肠菌群的测定多管发酵法和滤膜法(试行)2007-5-1 HJ/T191-2005紫外(UV)吸收水质自动在线监测仪技术要求2005-11-1 HJ/T195-2005水质氨氮的测定气相分子吸收光谱法2006-1-1 HJ/T196-2005水质凯氏氮的测定气相分子吸收光谱法2006-1-1 HJ/T197-2005水质亚硝酸盐氮的测定气相分子吸收光谱法2006-1-1 HJ/T198-2005水质硝酸盐氮的测定气相分子吸收光谱法2006-1-1 HJ/T199-2005水质总氮的测定气相分子吸收光谱法2006-1-1 HJ/T200-2005水质硫化物的测定气相分子吸收光谱法2006-1-1 HJ/T164-2004地下水环境监测技术规范2004-12-9 HJ/T132-2003高氯废水化学需氧量的测定碘化钾碱性高锰酸钾法2004-1-1 HJ/T96-2003pH水质自动分析仪技术要求2003-7-1 HJ/T97-2003电导率水质自动分析仪技术要求2003-7-1 HJ/T98-2003浊度水质自动分析仪技术要求2003-7-1 HJ/T99-2003溶解氧(DO)水质自动分析仪技术要求2003-7-1 HJ/T100-2003高锰酸盐指数水质自动分析仪技术要求2003-7-1 HJ/T101-2003氨氮水质自动分析仪技术要求2003-7-1 HJ/T102-2003总氮水质自动分析仪技术要求2003-7-1 HJ/T103-2003总磷水质自动分析仪技术要求2003-7-1 HJ/T104-2003总有机碳(TOC)水质自动分析仪技术要求2003-7-1 HJ/T86-2002水质生化需氧量(BOD)的测定微生物传感器快速测定法2002-7-1 HJ/T91-2002地表水和污水监测技术规范2003-1-1 HJ/T92-2002水污染物排放总量监测技术规范2003-1-1 HJ/T70-2001高氯废水化学需氧量的测定氯气校正法2001-12-1 HJ/T71-2001水质总有机碳的测定燃烧氧化-非分散红外吸收法2002-1-1 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

实验3 气相色谱法测定残留溶剂

实验三气相色谱法测定残留溶剂 一、实验目的 1.通过本次实验,了解气相色谱法(GC)的原理及仪器构造; 2.掌握用气相色谱法(GC)测定3种残留溶剂(丙酮、正己烷、乙酸乙酯)的方法; 3.掌握外标一点法计算有机溶剂残留量的方法; 二、实验原理 1.气相色谱原理:利用物质的沸点、极性及吸附物质的差异来实现混合物的分离。 2. 《中国药典》法定的测定有机溶剂残留的原理与方法:不同性质的有机溶剂残留,在气相色谱中的 保留行为不同,在气相色谱柱(填充柱或毛细管柱)中获得分离后,被检测器检测产生相应信号。通过与标准对照信号的比较,即可确定残留量。 三、仪器结构 1.气路系统及其部件 气路—载气、燃气及助燃气 氮气、氢气和氦气,常用氮气。 氢气为燃气,空气助燃。 减压阀—使高压气体降低到使用压力。 净化器—除去气体中可能存在的有害物质。 稳压阀和稳流阀—保证气体流量稳定,使色谱峰特性不因气源变化而变化 2.进样系统(sample injection)与分离系统-色谱柱(capillary column) 微量注射器 使用前注意注射器针尖的光滑性,使用后及时清洗干净。 进样器 气化室经加热使样品气化,由载气带入色谱柱。为了避免气化的样品与金属接触产生分解,一般气化室均装有去活(硅烷化)的玻璃(玻璃衬管)或石英插管,并在插管内塞有少许硅烷化玻璃棉。 这样可使未气化物残留在插管内,在完成分析时取出插管更换或清洗。 色谱柱 如HP-5(5%-苯基-95%二甲基聚硅氧烷)(30m*0.25mm*0.25μm)30m是柱长,0.25mm应指内径,内径决定了色谱柱的柱容量,0.25μm不是壁厚,是液膜厚度。分析样品温度不一样,对膜厚有不同要求,温度高液膜要厚,温度低液膜要薄。

实验一气相色谱法测定混合醇

实验一 气相色谱法测定混合醇 一、实验目的 1.掌握气相色谱法的基本原理和定性、定量方法。 2.学习归一化法定量方法。 3.了解气相色谱仪的基本结构、性能和操作方法。 二、实验原理 色谱法具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 常用的定量方法有好多种,本实验采用归一法。 归一法就是分别求出样品中所有组分的峰面积和校正因子,然后依次求各组分的百分含量。10000?'?=∑ f A f Ai Wi i 归一法优点:简洁;进样量无需准确;条件变化时对结果影响不大。 缺点:混合物中所有组分必须全出峰;必须测出所有峰面积。 [仪器试剂] 三、实验仪器与试剂 气相色谱仪;微量注射器1μL 乙醇、正丙醇、正丁醇,均为色谱纯 四、实验步骤 1. 色谱条件 色谱柱 OV-101弹性石英毛细管柱 25m×0.32mm

柱温150℃;检测器200℃;汽化室200℃ 载气氮气,流速1.0cm/s。 2. 实验内容 开启气源(高压钢瓶或气体发生器),接通载气、燃气、助燃气。打开气相色谱仪主机电源,打开色谱工作站、计算机电源开关,联机。按上述色谱条件进行条件设置。温度升至一定数值后,进行自动或手动点火。待基线稳定后,用1μL 微量注射器取0.5μL含有混合醇的水样注入色谱仪,同时按下数据采集键。 五、数据处理 1. 面积归一化法定量 组分乙醇正丙醇正丁醇 峰高(mm) 半峰宽 (mm) 峰面积 (mm2) 含量(%) 将计算结果与计算机打印结果比较。 【思考题】 1. 本实验中是否需要准确进样?为什么? 2. FID检测器是否对任何物质都有响应?

水中总有机碳TOC的测定

水中总有机碳(TOC)的测定 一、实验目的: 通过本实验,了解本仪器的工作原理,熟悉各操作步骤。 二、方法原理: 总有机碳TOC(Total Organic Carbon),是以构成有机物成分之一的碳的数量表示有机污染物质的量。它是把水中所含有机物质里面的碳转化成二氧化碳后加以测定而求得的。 TOC-10B自动测定仪采用分别测出总碳量和无机碳量,并从两者的差值求得TOC的方法。测定原理如下: 用空气泵将空气引入吸气管,吸气管置于TC电炉内。900℃的高温足以把空气中含碳的物质变成CO2,由吸气管而来的空气经由空气过滤器除尘,由CO2吸收器除CO2制成载气。 载气被通入TC和IC两个通道,它们由各自的流量控制阀控制在给定的流速下,空气按给定的流速进入燃烧管(不是T C燃烧管就是IC反应管,这要根据所需要的途径来选择)。一定量的样品由微量注射器通过注射口注入,使其燃烧或分解。分解或燃烧后的气体直接通过T C一IC选择部分到除水器以除去剩余水气。经这样处理的气体引入红外分析部分去测量CO2浓度。 (1)总碳量(TC )的测定: 用微量注射器将样品注入燃烧管中,在900℃的高温及C O304催化剂的作用下样品中所有含碳物质(T C)燃烧和氧化成CO2,被载气带到红外线分析部分检测,样品所含C的浓度正比于记录议出出现的峰高。 (2) 无机碳(IC)的测量: 用微量注射器将样品注入IC反应管中,在160℃的温度及磷酸催 化剂的作用下样品中所含无机碳(IC)分解产生CO2,被载气带到红外分析部分检测,样品所含C的浓度正比于记录议出出现的峰高。 (3)TOC (总有机碳)的测量: 从T C(总碳)减去IC(无机碳)得到TOC (总有机碳),或者将样 品预处理除去IC,然后在TC通道中进行测量,这样就能直接测量TOC。 (4)红外线分析原理: 由一种原子组成的那些分子如N2、O2、和H2不吸收红外线,由两种原子组成的分子,如CO2和CH3吸收红外线,所吸收的红外线的波长与组成分子的原子种类、结合状态有关。在TOC-10B中,载气中的N2和O2不吸收红外线。但是CO2吸收4.3μm的红外线。所吸收的光量正比于气体的浓度。根据朗勃-比尔定律,气体的浓度可由吸收的光量来测定。红外线分析部分原理如下: 为了测量起见,采用非色散系统代替色散光谱,两股间断平行光由检测器测量,并 对之进行选择,被测气体引入测定池光路中的样品池,在另一光路上的参比池封有不吸

气相色谱法测定环氧乙烷.doc

气相色谱法测定 明胶空心胶囊中环氧乙烷 摘要: 目的:对生产的明胶空心胶囊中环氧乙烷测定气相色谱法进行方法验证;方法:定性除了采用传统的对照品保留时间定性又采用了供试品加标定性和双柱定性,定量采用加标回收率验证方法准确性,方法精密度采用RSD%验证;结论:定性采用保留时间定性、DB-624色谱柱和PLOT/Q色谱柱双柱定性和加标定性,方法定性互相验证正确。定量加标回收率为98.44~99.98%,方法准确。方法精密度RSD%为3.6~4.1,方精密度好可靠。 引言: 依据《中国药典》(2010版)正文第二部分1204页明胶空心胶囊中环氧乙烷的测定气相色谱法,实验人员照残留溶剂测定法(附录ⅧP第二法附录61页)实验。采用了HP-5、DB-W AX、DB-624和PLOT/Q色谱柱实验(都是方法规定的色谱柱)。其中HP-5和DB-W AX均难以有效分离广生生产的供试品中的干扰峰,改用固定液为(6%)氰丙基苯基(94%)二甲基聚硅氧烷DB-624毛细管柱实现了基线分离,试验了供试品加标定性,加标回收率,加标RSD%。之后,依照残留溶剂测定法“附注(3)干扰峰的排除”又在另一根截然不同的气-固色谱柱做了实验。PLOT/Q色谱柱固定相为聚苯乙烯—二乙烯基苯型的高分子多孔小球。两者检验结果一致,排除了测定中有共出峰的干扰。 1 实验部分 1.1仪器与试剂 Agilent 7890A GC/FID ; GC Chemstation (B.04.01) 工作站;Agilent 7694E顶空进样 器。对照品:环氧乙烷(浓度5mg/ml,美国Accustandard);溶剂:水(实验室超纯水);供试品:明胶空心胶囊(广生胶囊提供)。 1.2色谱条件 ①色谱条件 色谱柱:DB-624毛细管柱(30m*0.53mm*3.0um),固定相:(6%)氰丙基苯基(94%)二甲基聚硅氧烷;柱温:40℃保持5min,升温速率25℃/min,上升到150℃终止程序升温,后运行温度230℃,后运行时间3 min;载气流速:5mL/min。 汽化室:汽化室110℃,分流比1:1。 检测器:260℃,氢气40mL/min,空气400mL/min,尾吹33 mL/min。

气相色谱法测定萘含量知识点解说.

煤气中萘含量的测定 二、气相色谱法 1.方法原理、适用范围和引用标准 (1)方法原理用二甲苯或甲苯吸收煤气中的萘及其它杂质(茚、硫茚、甲基萘等),吸入液加入一定量内标液正十六烷,用气相色谱法分离,测定萘的含量。 (2)适用范围本标准规定了城市燃气中萘含量的气相色谱分析测定方法,适用于萘含量在5mg/m3以上的城市燃气。 (3)引用标准GB/T682《化学试剂三氯甲烷》;GB/T684《化学试剂甲苯》。 2.操作步骤 (1)调整仪器按下列条件调整仪器,允许根据实际情况作适当变动。各组分的相对保留值见下表。 各组分的相对保留值 气相色谱条件如下:汽化温度,250℃;柱箱和色谱柱温度,恒温130℃;载气,氮气;柱前压,约73.5kPa(0.75kgf/cm2);流速,35mL/min(柱后测量);检测器,

火焰离子化检测器;检测器温度,140℃;辅助气流速度,氢气,40mL/min ,空气,400mL/min ;灵敏度和衰减的调节,在萘的绝对进样量为2.5×10-8g 时,产生的峰高不低于10mm ;记录仪纸速,1㎝/min 。 (2)校准 ①标准样品的制备 正十六烷标准溶液:称取7.5g 正十六烷(称准至0.0002g ),置于50mL 容量瓶中,用二甲苯稀释至刻度,混匀,密封贮存备用,溶液浓度应定期检查。 萘标准溶液:称取7.5g 萘(称准至0.0002g ),置于50mL 容量瓶中,用二甲苯稀释至刻度,混匀,密封贮存备用。 校准用标准样品系列的制备:在6个50mL 的小口试剂瓶中,用50mL 量筒各加30mL 二甲苯。用100μL 微量注射器各加100μL 正十六烷标准溶液,再分别加入20μL 、60μL 、100μL 、150μL 、200μL 、300μL 萘标准溶液,混匀,加盖保存备用。 ②标准曲线的确定 调整好色谱仪,用10μL 微量注射器分别抽取标样0.4μL ,注入色谱仪。测量正十六烷和萘的保留时间(s )和峰高(㎜),以保留时间与峰高的乘积作峰面积,或用积分仪直接测量正十六烷和萘的峰面积。按下式分别计算各标准样品中萘和正十六烷的质量比Y i 和峰面积比X i 。 i i i V V m m Y 2121?= i i i A A X 21= 式中 Y i —第i 个标准试样中萘与正十六烷的质量比;

水质 总有机碳

水质总有机碳(TOC)的测定非色散红外线吸收法 water quality—Determination of TOC by nondispersive infrared absorption method GB 13193-91 本标准参照采用国际标准ISO 8245—1987《水质——总有机碳(TOC)的测定——导则》。 1 主题内容和适用范围 1.1 本标准规定了测定地面水中总有机碳的非色散红外线吸收法。 1.2 测定范围 本标准适用于地面水中总有机碳的测定,测定浓度范围为0.5~60mg/L,检测下限为0.5mg/L。 1.3 干扰 地面水中常见共存离子超过下列含量(mg/L)时,对测定有干扰,应作适当的前处理,以消除对测定的干扰影响:SO42-400;Cl-400:NO3-100;PO43-100;S2-100。水样含大颗粒悬浮物时,由于受水样注射器针孔的限制,测定结果往往不包括全部颗粒态有机碳。 2 原理 2.1 差减法测定总有机碳 将试样连同净化空气(干燥并除去二氧化碳)分别导入高温燃烧管(900℃)和低温反应管(160℃)中,经高温燃烧管的水样受高温催化氧比,使有机化合物和无机

碳酸盐均转化成为二氧化碳,经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳。其所生成的二氧化碳依次引入非色散红外线检测器。由于一定波长的红外线被二氧化碳选择吸收,在一定浓度范围内二氧化碳对红外线吸收的强度与二氧化碳的浓度成正比,故可对水样总碳(TC)无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 2.2 直接法测定总有机碳 将水样酸比后曝气,将无机碳酸盐分解生成二氧化碳驱除、再注入高温燃烧管中,可直接测定总有机碳。 3 试剂 除另有说明外,均为分析纯试剂,所用水均为无二氧化碳蒸馏水。 3.1 无二氧化碳蒸馏水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%)稍冷,装入插有碱石灰管的下口瓶中备用。 3.2 邻苯二甲酸氢钾(KHC8H4O4):优质纯。 3.3 无水碳酸钠(Na2CO3):优质纯。 3.4 碳酸氢钠(NaHCO3)优质纯,存放于干燥器中。 3.5 有机碳标准贮备溶液:C=400mg/L。 称取邻苯二甲酸氢钾(3.2)(预先在110~120℃干燥2h,置于干燥器中冷却至室温)0.8500g,溶解于水(3.1)中,移入1000mL容量瓶内,用水(3.1)稀释至标线,混匀,在低温(4℃)冷藏条件下可保存48d。 3.6有机碳标准溶液:c=80mg/L。准确吸取10.00mL有机碳标准溶液(3.5),置于50mL容量瓶内,用水(3.1)稀释至标线混匀。此溶液用时现配。

提高测定水中总汞含量准确度的方法

提高测定水中总汞含量准确度的方法 摘要:作者就影响水质总汞测定的诸多因素进行了详细的研究分析,并对国产测汞仪进行了改装,提高了其检测限及灵敏度。 关键词:水质总汞;监测;硫酸;重铬酸钾水质总汞是进行环境监测和无公害农产品产地认定时的一个必测项目,汞污染对人类有着极大的危害,属于严格监测项目。水质总汞的测定一般采用HJ597-2011《水质总汞的测定冷原子吸收分光光度法》(替代GB7468-87)。在按照新标准的实际操作中,笔者发现存在测汞仪灵敏度低、稳定性差、空白值高及线性较差等诸多问题。本文对能影响实验的因素,如仪器灵敏度、化学试剂含汞量、玻璃器皿等进行了详细分析研究,并仅对国产测汞仪配置了一个烧瓶,使其检测限、灵敏度便都符合了新标准的要求。 1 材料与方法 1.1 仪器 F732-V智能型测汞仪,DZKW-S-4电热恒温水浴锅。 1.2 主要试剂 无汞水,硫酸(GR),硝酸(GR),盐酸(GR),高锰酸钾溶液(50 g/L),重铬酸钾溶液(0.5 g/L),氯化亚锡溶液(200 g/L),汞标准使用液(10.0 ug/L)。 1.3 水样的处理 量取200.0 mL样品移入500 mL锥形瓶中,依次加入5.00 mL浓硫磷、5.00 mL硝酸溶液和4.00 mL高锰酸钾溶液,摇匀,然后加入4.00 mL过硫酸钾溶液,置于沸水浴中在近沸状态保温1 h,取下冷却。测定前,边摇边滴加盐酸羟胺溶液,直至刚好使过剩的高锰酸钾及器壁上的二氧化锰全部褪色为止,待测。 1.4 校准曲线的绘制 分别量取0.00、0.50、1.00、2.00、3.00、4.00和5.00 mL汞标准使用液(浓度为10 ug/L)于200 mL容量瓶中,用稀释液定容至标线,总汞质量浓度分别为0.000、0.025、0.050、0.100、0.150、0.200和0.250 ug/L。将上述标准系列依次移至250 mL反应装置中,加入5.00 mL氯化亚锡溶液,迅速插入吹气头,由低浓度至高浓度测定响应值。以零浓度校正后的响应值为纵坐标,对应的总汞质量浓度(ug/L)为横坐标,绘制校准曲线。 2 结果与论讨 2.1 对国产测汞仪进行优化配置 笔者使用的F732-V型测汞仪所配备的还原瓶最大容量为80 mL,而新标准中测定水样和制作校准曲线,都需要250 mL以上的还原瓶。为满足标准要求,同时使还原瓶又要与测汞仪匹配,经反复试验,用250 mL的平底烧瓶,代替测汞仪上的80 mL还原瓶(如果烧瓶口太大,可加一个橡皮环),用它绘制的校准曲线符合新标准的要求。使用该装置连续20次测定空白溶液,计算出标准偏差SD,按DL=3×SD/k(DL为最低检出限,k为校正曲线斜率),得出汞的最低检出限为DL=0.005 ug/L。而标准里的检出限为0.01 ug/L。 2.1.1 线性方程与相关系数使用该装置在最佳仪器条件下测定汞校准曲线,得到如下结果(见表1)。 2.1.2 精密度用该装置对总汞质量浓度为0.40 ug/L的样品测定20次,相对标准偏差为 3.0 %,符合要求。

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

水质 总有机碳的测定

水质总有机碳的测定 燃烧氧化-非分散红外吸收法 1 适用范围 本标准规定了测定地表水、地下水、生活污水和工业废水中总有机碳(TOC)的燃烧氧化-非分散红外吸收方法。 本标准适用于地表水、地下水、生活污水和工业废水中总有机碳(TOC)的测定,检出限为0.1 mg/L,测定下限为0.5 mg/L。 注1:本标准测定TOC分为差减法(3.1)和直接法(3.2)。当水中苯、甲苯、环己烷和三氯甲烷等挥发性有机物含量较高时,宜用差减法测定;当水中挥发性有机物含量较少而无机碳含量相对较 高时,宜用直接法测定。 注2:当元素碳微粒(煤烟)、碳化物、氰化物、氰酸盐和硫氰酸盐存在时,可与有机碳同时测出。 注3:水中含大颗粒悬浮物时,由于受自动进样器孔径的限制,测定结果不包括全部颗粒态有机碳。 2 术语和定义 下列术语和定义适用于本标准。 2.1 总有机碳total organic carbon,TOC 指溶解或悬浮在水中有机物的含碳量(以质量浓度表示),是以含碳量表示水体中有机物总量的综合指标。 2.2 总碳total carbon,TC 指水中存在的有机碳、无机碳和元素碳的总含量。 2.3 无机碳inorganic carbon,IC 指水中存在的元素碳、二氧化碳、一氧化碳、碳化物、氰酸盐、氰化物和硫氰酸盐的含碳量。 2.4 可吹扫有机碳purgeable organic carbon,POC 指在本标准规定条件下水中可被吹扫出的有机碳。 2.5 不可吹扫有机碳non-purgeable organic carbon,NPOC 指在本标准规定条件下水中不可被吹扫出的有机碳。

3 方法原理 3.1 差减法测定总有机碳 将试样连同净化气体分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生成的二氧化碳分别被导入非分散红外检测器。在特定波长下,一定质量浓度范围内二氧化碳的红外线吸收强度与其质量浓度成正比,由此可对试样总碳(TC)和无机碳(IC)进行定量测定。 总碳与无机碳的差值,即为总有机碳。 3.2 直接法测定总有机碳 试样经酸化曝气,其中的无机碳转化为二氧化碳被去除,再将试样注入高温燃烧管中,可直接测定总有机碳。由于酸化曝气会损失可吹扫有机碳(POC),故测得总有机碳值为不可吹扫有机碳(NPOC)。 4 干扰及消除 水中常见共存离子超过下列质量浓度时:SO42?400 mg/L、Cl? 400 mg/L、NO3?100 mg/L、PO43? 100 mg/L、S2? 100 mg/L,可用无二氧化碳水(5.1)稀释水样,至上述共存离子质量浓度低于其干扰允许质量浓度后,再进行分析。 5 试剂和材料 本标准所用试剂除另有说明外,均应为符合国家标准的分析纯试剂。所用水均为无二氧化碳水(5.1)。 5.1 无二氧化碳水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%),冷却后备用。也可使用纯水机制备的纯水或超纯水。无二氧化碳水应临用现制,并经检验TOC质量浓度不超过0.5 mg/L。 5.2 硫酸(H2SO4):ρ(H2SO4)=1.84 g/ml。 5.3 邻苯二甲酸氢钾(KHC8H4O4):优级纯。 5.4 无水碳酸钠(Na2CO3):优级纯。 5.5 碳酸氢钠(NaHCO3):优级纯。 5.6 氢氧化钠溶液:ρ(NaOH)=10 g/L。 5.7 有机碳标准贮备液:ρ(有机碳,C)= 400 mg/L。准确称取邻苯二甲酸氢钾(预先在110~120℃下干燥至恒重)0.850 2 g,置于烧杯中,加水(5.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(5.1)稀释至标线,混匀。在4℃条件下可保存两个月。 5.8 无机碳标准贮备液:ρ(无机碳,C)=400 mg/L。准确称取无水碳酸钠(预先在105℃下干燥至恒重)1.763 4 g和碳酸氢钠(预先在干燥器内干燥)1.400 0 g,置于烧杯中,加水(5.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(5.1)稀释至标线,混匀。在4℃条件下可保存两周。 5.9 差减法标准使用液:ρ(总碳,C)= 200 mg/L,ρ(无机碳,C)= 100 mg/L。用单

气相色谱法测定聚乳酸中的单体残留

气相色谱法测定聚乳酸中的单体残留(作者:__________ 单位: __________ 邮编:____________ ) 作者:李红梅王传栋,李俊起,刘阳 【摘要】测定聚乳酸中丙交酯的含量。采用毛细管气相色谱法,色谱系统为:AC20色谱柱;柱温150C ;载气为氮气;检测器为FID。在色谱条件下,测得丙交酯线性良好(丫0.99);平均回收率为 99.8%;RSD0.18%最低检测限为3.413卩g/mL,样品中丙交酯残留量符合要求。该方法灵敏、准确、可靠。 【关键词】毛细管气相色谱法;聚乳酸;丙交酯;单体残留;测定Abstract : To determine the contents of residual lactide in PLA.A Simple capillary gas chromatography method was established with FID detector. The capillary colu mn was AC20 with 150C ;the residual monomecontents were calculated by the exter nal sta ndard method.The lin earities were fairly good(丫0.99). The average recoveries were 99.8 % with RSD of 0.18%. The limit of detection was 3.413 卩g/mL. The contents of residual monomer in samples were complied with the specificati on

原子荧光法测定水中的汞方法证实

原子荧光法测定水中的汞方法证实 发表时间:2019-07-12T14:39:33.580Z 来源:《建筑学研究前沿》2019年6期作者:莫杰君[导读] 为了保证能够顺利应用原子荧光测定水中的汞分析的有效性和应用性,在方法投入使用之前,需要对方法进行相关的证实实验。 佛山市南海区环境保护监测站广东省佛山市 528200 摘要:应用原子荧光法测定水中的汞的浓度,方法依据是《水质汞、砷、硒、铋和锑的测定原子荧光法》(HJ 694-2014)。现通过标准曲线、最低检出限、精密度、准确度(盲样测试和加标回收试验)等指标对应用以上方法测定水中汞进行相关证实实验。关键词:原子荧光;汞;方法证实汞污染,是指由汞或含汞化合物所引起的环境污染。现在人类活动越来越频繁,活动中会造成水体汞污染,这些污染主要来自氯碱、塑料、电池、电子等工业排放的废水以及废旧医疗器械[1]。我国作为全球汞使用量和排放量最大的国家,而且汞的毒性强,产生中毒的剂 量小,因此对水中汞的含量分析和评价是水污染环境分析管控的重要指标[2]。本方法中应用《水质汞、砷、硒、铋和锑的测定原子荧光法》(HJ 694-2014)测定水中汞的浓度,为了保证能够顺利应用原子荧光测定水中的汞分析的有效性和应用性,在方法投入使用之前,需要对方法进行相关的证实实验。 1 实验部分 1.1 方法原理 吸取经消解后的试液进入原子荧光仪,在酸性的硼氢化钾还原作用下,生成汞原子,氢化物在氩氢火焰中形成基态原子,其基态原子和汞原子受元素灯发射光的激发产生原子荧光,原子荧光值与试液中待测元素的含量在一定范围内呈正比关系[3]。 1.2 试样的制备 1.2.2 准确量取5.0mL混匀后的样品于10mL比色管中,加入1mL盐酸-硝酸溶液(VHCl:VHNO3=3:1),加塞混匀,置于沸水浴中恒温加热消解1h,期间摇动1~2次并开盖放气。1h后取出冷却,用纯水定容至标线并且混匀后待测。 1.2.3 空白试验 以纯水代替样品,按照1.2.2的步骤制备空白试样。 2 结果与讨论 2.1标准曲线的配制与绘制2.1.1 汞标准系列的配制:准确吸取30.00mL汞标准使用液(ρ(Hg)=10.0 μg/L)于100mL容量瓶中,加入10.0mL盐酸-硝酸溶液(VHCl:VHNO3=3:1),用水稀释至标线,混匀;仪器自动稀释到浓度为0.00、0.50、1.00、1.50、2.00、2.50、 3.00μg/L的标准系列。 2.1.2 绘制:换上汞金属的荧光灯,开机,开氩气,设置仪器测量条件至最佳测量条件,点火预热,预热完成后,以盐酸溶液(5%HCl)为载流,硼氢化钾溶液为还原剂,浓度由低到高依次测定汞标准系列的原子荧光值,以原子荧光值为纵坐标,汞质量浓度为横坐标,绘制标准曲线,计算回归方程,结果见表1。标准曲线满足相关系数r≥0.995的要求,线性良好。表1 汞标准曲线测试

气相色谱法测定水体中的有机物

GC测定水体中的有机污染物 李磊030212007028,李先江030212007033 (中国海洋大学化学化工学院,山东青岛266100) 摘要:根据水体现状,我们怀疑是农药厂排放的有毒废水导致鱼类大量死亡。针对可能存在的剧毒有机污染物,我们对重铬酸钾氧化法、恒电流库仑滴定法、微分脉冲阳极溶出伏安法以及气相色谱法的优缺点进行了详细的分析和比较,选择气相色谱法对水体中存在的有机污染物进行定性和定量分析。 关键词:GC;有机污染物;色谱柱;化学需氧量 中图分类号:X131.2 1.前言: 通过文献介绍水体中的鱼大量死亡,由此我们猜测可能是由于水体中存在大量的有害物质所致。通过分析我们发现,池塘所傍河流的上游有三个工厂,水污染很大程度上是因为上游工厂排放的废水不达标造成的。大部分工厂排放的废水中都含有有机物,而有机污染物含量超标将严重影响水体中生物的生命活动,而且有些难以降解的物质的存在也会通过生物链最终在人体内积累,危害人类的身体健康和生命安全。 通常情况下,工厂排放的废水中均含有有机物,下表则罗列了不同类型的污水中BOD5和COD的含量以及不同类型的工厂所排放的污染物的种类: 图一污水类型及BOD和COD含量

农药行业是化学工业中的污染大户,也是治理污染难度最大的行业。农药生产废水历来以毒性大、浓度高、治理难成为社会关注的重点。 由于农药种类多,生产历程长、反应步骤多,因此产生的有毒污染物很多,极有可能是罪魁祸首,我们以农药中合成最多,应用最广泛,最具代表性的乐果、甲基对硫磷、马拉硫磷、对硫磷四种有机磷农药为分析对象。同时,它们也是国家环保重点监测对象。 我们将就假设对水样进行定性和定量的分析,从而找出最终的结果。在测定过程中我们将分别对重铬酸钾氧化法、恒电流库仑滴定法、微分脉冲阳极溶出伏安法以及气相色谱法的优缺点进行比较,选择合适的方法进行测定。 2.水体有机污染物的种类和相关简介: 水体中的有机污染物有许多,包括以下这些种类: 酚类化合物、苯胺类化合物、硝基苯类、总有机卤化物、石油类、挥发性和半挥发性有机污染物、苯系物、挥发性卤代烃、氯苯类化合物、邻苯二甲酸酯类、甲醛、有机氯农药、有机磷农药、三氯乙醛、多环芳烃、二恶英类、多氯联苯。

水质烷基汞实验作业指导书

烷基汞的测定 1、方法依据 水质烷基汞的测定气相色谱法(GB/T 14204-93) 2、适用范围 本方法适用于地表水及污水中烷基汞的测定。 最低检出浓度随仪器灵敏度和水样基体效应而变化,当水样取1L时,甲基汞通常检测到10ng/L,乙基汞检测到20ng/L。 3、测定原理 本方法用巯基棉富集水中的烷基汞,用盐酸氯化钠溶液解析,然后用甲苯萃取,用具电子捕获检测器的气相色谱仪测定。 4、干扰和消除 样品中含硫有机物(硫醇,硫醚,噻酚等)均可被富集萃取,分析过程中积存在色谱柱内,干扰烷基汞的测定。定期往色谱柱内注入二氯化汞饱和溶液,可以去除这些干扰,恢复色谱柱分离效率。 5、试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂。 5.1 氯化甲基汞CH3HgCl(简称MMC)。 5.2 氯化乙基汞C2H5HgCl(简称EMC)。

5.3 甲苯(或苯):经色谱测定无干扰峰。 5.4 盐酸溶液:c(HCl)=2mol/L。用甲苯(苯)萃取处理以排除干扰物。 5.5 盐酸溶液:c(HCl)=0.1mol/L。 5.6 硫酸(H2SO4):优级纯,ρ=1.84g/ml。 5.7 乙酸酐:分析纯。 5.8 乙酸:分析纯。 5.9 硫代乙醇酸:化学纯。 5.10 脱脂棉 5.11 氯化钠(NaCl):分析纯。 5.12 硫酸铜:分析纯。 5.13 硫酸铜溶液: (CuSO4)=25g/100ml;CuSO4·5H2O 50g溶于200ml 无汞蒸馏水。 5.14 无汞蒸馏水:二次蒸馏水或去离子水,也可将蒸馏水加盐酸酸化至pH=3,然后过巯基棉纤维管去除汞。 5.15 无水硫酸钠(Na2SO4):分析纯,使用前在300℃马弗炉中处理4h。 5.16 二氯化汞校处理液:称量0.1g二氯化汞,在100ml容量瓶中用苯溶解,稀释至标线,此溶液为二氯化汞饱和苯溶液。 5.17 解析液(2mol/L NaCl+1mol/L HCl):称量11.69gNaCl,用100ml 1mol/L HCl溶解。 5.18 甲醇:分析纯。

HJ 597-2011 水质 总汞的测定 冷原子吸收分光光度法

中华人民共和国国家环境保护标准 HJ 597—2011 代替GB 7468—87 水质 总汞的测定 冷原子吸收分光光度法 Water quality—Determination of Total mercury —Cold atomic absorption spectrophotometry 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 2011-02-10发布 2011-06-01实施 环 境 保 护 部 发布

目 次 前言..............................................................................................................................................II 1 适用范围 (1) 2 术语和定义 (1) 3 方法原理 (1) 4 干扰和消除 (1) 5 试剂和材料 (1) 6 仪器和设备 (3) 7 样品 (3) 8 分析步骤 (5) 9 结果计算与表示 (6) 10 精密度和准确度 (6) 11 质量保证和质量控制 (7) 12 废物处理 (7) 13 注意事项 (7) 附录A(资料性附录)密闭式反应装置 (9)

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中总汞的测定方法,制定本标准。 本标准规定了测定地表水、地下水、工业废水和生活污水中总汞的冷原子吸收分光光度法。 本标准是对《水质总汞的测定冷原子吸收分光光度法》(GB7468—87)的修订。 本标准首次发布于1987年,原标准起草单位为湖南省环境保护监测站。本次为第一次修订。修订的主要内容如下: ——增加了方法检出限; ——增加了干扰和消除条款; ——增加了微波消解的前处理方法; ——增加了质量保证和质量控制条款; ——增加了废物处理和注意事项条款。 自本标准实施之日起,原国家环境保护局1987年3月14日批准、发布的国家环境保护标准《水质总汞的测定冷原子吸收分光光度法》(GB7468—87)废止。 本标准的附录A为资料性附录。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:大连市环境监测中心。 本标准验证单位:沈阳市环境监测中心站、鞍山市环境监测中心站、抚顺市环境监测中心站、丹东市环境监测中心站、长春市环境监测中心站和哈尔滨市环境监测中心站。 本标准环境保护部2011年2月10日批准。 本标准自2011年6月1日起实施。 本标准由环境保护部解释。

水质 总汞的测定 高锰酸钾过硫酸钾消解法 双硫腙分光光度法

FHZHJSZ0007 水质 总汞的测定 高锰酸钾过硫酸钾消解法 双硫腙分光光度法  F-HZ-HJ-SZ-0007 水质高锰酸钾 工业废水和受汞污染的地面水 在酸性条件下在双硫腙(二苯硫代偕肼腙)洗脱液中加入1至少可掩蔽300ìg铜离子的干扰 104 L cm-1 1ˉμ?×?μí?ì3??¨?è?a2ìg/L 1 定义  总汞经剧烈消解后测得的汞浓度有机结合的 2 原理 在95°??ùo?1ˉè?2?×a?ˉ?a?t??1ˉ ?ú?áD?ì??t??ó?óD?úèü?áYíè? 3 试剂和材料  除另有说明外其中含汞量要尽可能少如采用的试剂导致空白试验值偏高 3.1 去离子水cm(25 3.2 无水乙醇(C2H5OH) 3.3 氯仿(CHCl3) 3.4 硫酸(H2SO4) 1.84g/mL 3.5 硝酸(HNO3) 1.4g/mL 3.6 硝酸 将50mL硝酸(3.5)用水稀释至1000mL 50g/L溶液 优级纯 注避免未溶解颗粒沉淀或悬浮于溶液中(必要时可加热助溶) 3.8 过硫酸钾 将5g过硫酸钾(K2S2O8)溶于水并稀释至100mL 3.9 盐酸羟胺 将10g盐酸羟胺(NH2OH 每次用5mL双硫腙溶液(3.12)萃取再用少量氯仿(3.3)洗两次200g/L溶液 7H2O)溶于水并稀释至100mL 1g/L氯仿溶液 C6H5N溶于20mL氯仿中置分液漏斗中合并水层再用100mL氯仿(3.3)分三次提取置冰箱内保存 透光率约为7010mm比色皿)的氯仿溶液

3.13 双硫腙洗脱液 将8g氢氧化钠(NaOH?óè?10g EDTA二钠(C10H14N2O8Na2稀释至1000mL?üè? 4g/L酸溶液 优级纯)溶于500mL水中   3.15 汞 称取1.354g氯化汞(HgCl2)通过漏斗转移至1000mL容量瓶 溶解后用水稀释至标线并混匀 1.00mL此标准溶液含1.00mg汞 在稀释到标线先加入50mL酸性重铬酸钾溶液(3.14)可以稳定此溶液至少三个月 相当于50mg/L汞的标准溶液 用硝酸溶液(3.6)稀释至标线并混匀 当天配制 相当于lmg/L汞的标准溶液 用硝酸溶液(3.6)稀释至标线并混匀 临用前配制 而应充满硝酸溶液(3.6) ?ùó???(3.1)冲洗干净 用1+l硝酸溶液浸泡过夜 4份体积硫酸(3.4)加1份体积高锰酸钾溶液(3.7)用盐酸羟胺溶液(3.9)清洗 最后用水(3.1)冲洗数次 4.1 500mL锥形瓶 4.2 500mL及60mL分液漏斗 4.3 水浴锅 5 试样制备  5.1 实验室样品 每采集1000mL水样后立即加入约7mL硝酸(3.5)ê1??μíóú?òμèóú1 ?ò??éy?ù?·?D?óè????ì?á??èüòo(3.7)4mL ê1??3ê??3???μ?μ-oìé? 注以便在空白试验中按同样量操作 注意在样品和空白试验中使用同样的试剂 使所有二氧化锰完全溶解 每份250mLê1μ?μ?èü?a2?·?oíDü??2?·??ù??óD′ú±íD?μ?ê??ù μú?t·Yê??ùó?óú??±?D£o?ê??é(6.4)中使用的试份(D) è??ù?·?Do?1ˉ?òóD?ú??μ??¨?è????

相关文档
最新文档