汽轮机转子存放管理办法

汽轮机转子存放管理办法
汽轮机转子存放管理办法

汽轮机转子现场存放保养管理规定

一、概况

受施工工期限制,汽轮机转子要在施工现场存放较长时间。汽轮机转子长期静置,若保管不善,在其自重的影响下,会发生塑性变形,导致转子弯曲事故。存放环境不当及防锈涂层损坏会导致转子部件生锈。为保证汽轮机转子存放安全,参照哈尔滨汽轮机厂有限责任公司指导性技术文件《汽轮机产品现场储存和保养规范》,制定了汽轮机转子现场存放保养管理规定。

二、汽轮机转子存放保养管理规定

1、转子应保护防止直接暴露在阳光下并储存在钢支撑或托架上以使空气自由流通。

2、现场储存地应是防火、抗裂、防风雨和良好通风的建筑物或库房、专用工棚。在公司汽轮机厂房暖封闭及12.6米平台施工结束前,汽轮机转子临时存放于室外代保管场地,应保持包装箱完好,能防风、防雨、防尘,每周检查一次防锈情况。

3、现场存放时每隔45天将转子翻身一次(沿圆周方向旋转180°)。翻身时使用吊车辅助,在转子支架上实施翻身。

4、在翻身过程中做好措施,防止把设备防锈层破坏,如果出现包装防锈层破坏,应补全防锈层。翻身后如发现有锈蚀现象立即除锈,待清理干净后,应重新进行涂油处理,同时对轴端的防锈进行监控。

5、转子轴颈为重点防锈、防损伤部位,存放前涂好黄油。每次

翻身盘车时重点检查并涂补黄油。

6、翻身及移动汽轮机转子时,注意保护汽轮机叶片,严禁敲击、磕碰叶片,防止叶片出现裂纹、损伤、变形、断裂。

7、每次翻身后填写检查记录表。检查记录表应包含下述信息:

1)设备名称;

2)翻身周期、翻身日期;

3)参加翻身工作负责人及工作人员签字;

4)机械保护的有效性如包装箱、支架情况;

5)防腐蚀保护情况;

6)要求的修补措施;

7)修补措施的完工日期。

8、转子吊运、装卸应遵守的规定

1)起吊转子时,吊索捆扎应按包装箱上指定的吊装部位进行吊装,吊索转折处应加衬垫物防止吊索和设备损伤。

2)注意设备或箱件的重心位置,检查捆扎情况及部件在包装箱内固定情况,应防止因设备窜动,重心偏移造成设备倾倒。

三、汽轮机转子存放场地及翻身方案

高中压转子可存放在代保管场地,翻身时打开包装箱,使用50吨履带吊辅助盘车翻身。汽轮机低压转子翻身时,需利用汽机房桥吊将转子吊出包装箱,放在专用转子支架上进行盘车翻身。因此要临时存放在汽机房内。

汽轮机低压转子包装箱长宽高尺寸为9200X4500X4500mm,汽机

厂房零米吊装通道可利用最大用空间为21000 x 9570mm,考虑到安装施工期间车辆运输问题,两台低压转子依次排放于靠近#2机侧。包装箱总宽度4500mm,通道最大宽度是9570mm,留出运输通道4000mm。

附件:转子检查翻身记录表

转子检查翻身记录表

汽轮机大轴偏心与晃度

晃动度的测量方法: 转子的晃动度的测量是在汽机轴承内进行。首先把测点打磨光滑,将千分表架固定在轴承或汽缸水平结合面上。为了测量最大晃动度的位置,需将圆周分为八等份,用笔按照逆时针方向编号。表的测量杆对准位置1并与表面垂直,适当压缩一部分使大针指“50”。按旋转方向盘动转子,顺次对准各点进行测量,并记录各测点的数值。最大晃动值是直径两端相对数值的最大差值,最大晃动度的1/2即为最大弯曲值。 晃动度与以下因素有关: 1、汽缸上下壁温差; 2、轴封供汽温度; 3、一侧轴封被严重磨损; 4、轴颈在运行中振动大及轴承钨金脱落; 5、轴端部件有摩擦和振动; 6、轴段或叶轮轮毂有单侧严重摩擦; 7、汽轮机振动大及大修过程中等。 汽轮机大轴偏心度的定义及影响因素: 汽轮机在启动或停机过程中,偏心测量已成为必不可少的测量项目。它能测量到由于受热或重力所引起的轴弯曲的幅度。偏心是在低转速的情况下,对轴弯曲的测量,这种弯曲可由下列情况引起:原有的机械弯曲,临时温升导致的弯曲,在静态下必然有些向下弯曲,有时也叫重力弯曲。转子的偏心位置,也叫做轴的径向位置,它经常用来指示轴承的磨损以及予加的负荷大小,例如由不对中导致的那种情况。它同时也用来决定轴的方位角,方位角可以说明转子是否稳定。 偏心检测系统DYW-P型偏心监控仪是精密测控仪表。具有报警与停机控制信号输出,设有电流输出通用接口,可与计算机等设备连接。该监控仪采用160×80(mm)通用机箱,LED数字显示,PVC彩色面膜和轻触摸键,外形美观,款式新颖,结构合理,安装简单,性能稳定,质量可靠,测量准确。 现场常发生的汽轮机偏心大有以下几种原因: 1、测量装置本身有问题,造成测量值摆动大,无法读取。建议汽机检修检查处理,将机械测量与热工测量进行校对; 2、汽轮对轮安装时原始张口不合格,超过80um,导致盘车时偏心大与原始值20um 以上。这种现象一般不易调校,要对对轮进行调整; 3、运行中偏心变大,可能存在动静碰磨、油膜振荡、汽温突降或水击、汽流激振、电磁干扰、轴承油膜刚度不足、汽轮机转子部件脱落或松动等因素。 4、汽轮机转子出现热弯曲或出现裂纹; 5、机组启动过程中汽缸温差,特别是上、下缸温差和法兰内、外壁温差超标会

汽轮机振动异常原因分析及解决方法

汽轮机振动异常原因分析及解决方法前言 汽轮机的振动大小,是评价汽轮机组运行可靠性的重要指标。对于高速转动的汽轮机来说,微小的振动是不可避免的,振动幅度不超过规定的标准属于正常振动。对汽轮机的运转没有影响,但是当振动超过规定限值时,对整个汽轮机组的运行是有害的,表明机组内部存在缺陷。本文所分析的就是这种振动过大的异常振动产生的原因和减小振动的方法。 一、汽轮机振动过大的危害 汽轮机组振动过大,会使机组内部部件的连接松动,基础台板和基础之间的刚性连接削弱,或使机组的动静部分发生摩擦,造成转子变形、弯曲、断裂,甚至是叶片损坏。当机头发生振动时,可能直接导致危机保安器动作,造成停机事故。当汽轮机动静叶片由于过大的振动而发生相对偏移时,会造成高低压端部轴封发生不正常磨损。低压缸端轴封的磨损破坏轴封的密封作用,使空气被吸入负压状态下的低压缸,破坏凝汽器的真空,直接影响汽轮机组的经济运行。高压缸端轴封的破坏会使高压缸的蒸汽大量向外泄露,降低高压缸做功能力,甚至会引起转子发生局部热弯曲。泄露的高压蒸汽如果进入轴封系统的油档中,使润滑油内混入水分,造成油膜失稳,也可能产生油膜振荡,造成轴瓦乌金熔化。当过大的振动造成轴弯曲时,可能使发电机滑环和电刷的磨损加剧、静子槽楔松动、绝缘被破坏,造成发电机或励磁机事故。当过大的振动造成某些紧固螺丝松脱、断裂时,甚至会造成整个汽轮机组的报废。所以,消除异常振动,是确保安全生产的重要环节。 二、汽轮机异常振动的原因分析与解决方法 汽轮机组负担着将热能转化为电能的任务,由于其长时间运行、关键部位长期磨损等特点,各种故障时常发生,其中,振动异常是汽轮机组常见故障中最频繁的一种,严重影响了电厂的正常发电。由于振动产生的原因非常复杂,汽轮机

汽轮机转子及构成

汽轮机转子及构成 1转子定义 汽轮机所有转动部件的组合体称为转子(图13)。它主要包括:主轴、叶轮(转鼓)、叶片、联轴器等部件。 图13 转子 转子的作用:汇集各级动叶栅所得到的机械能,并传给发电机。 转子受力分析:传递扭矩、离心力引起的应力、温度不均匀引起的热应力、轴系振动所产生的振动应力。 汽轮机转子在高温蒸汽中高速旋转,不仅要承受汽流的作用力和由叶片、叶轮本身离心力所引起的应力,而且还承受着由温度差所引起的热应力。 此外,当转子不平衡质量过大时,将引起汽轮机的振动,转子要承受轴系振动所产生的振动应力。因此,转子的工作状况对汽轮机的安全、经济运行有着很大的影响。 2转子的分类 根据汽轮机的分类,转子分为两种:轮式转子、鼓式转子。前者用于冲动式汽轮机,后者用于反动式汽轮机,鼓式转子上的动叶直接安装在转鼓上。 按临界转速是否在运行转速围,分为刚性转子和柔性转子。在启动过程中,刚性转子启动就很方便,不存在跨临界区域,而柔性转子因需要快速的跨临界,故要求用户在实际启动过程中,要充分暖机,为快速跨临界作好准备。 1、轮式转子 轮式转子根据转子结构和制造工艺的不同,可分为:套装转子、整段转子、焊接转子以及组合转子。

1-油封环2-轴封套3-轴4-动叶栅5-叶轮6-平衡槽 图14 套装转子示意图 (1)套装转子 套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套在主轴上,各部件与主轴之间采用过盈配合,并用键传递力矩。主轴加工成阶梯形,中间直径大。 适用性:只适用于中、低参数的汽轮机和高参数汽轮机的中、低压部分,其工作温度一般在400℃以下。不宜用于高温高压汽轮机的高、中压转子。 ①优点:加工方便,材料利用合理,质量容易得到保证。 ②缺点:轮孔处应力较大,转子刚性差,高温下套装处易松动。 (2)整锻转子 叶轮和主轴及其他主要零部件由整体毛坯加工制成,没有热套部件。主轴的中心通常钻有中心孔,其作用是: ①去掉锻件中残留的杂质及疏松部分; ②用来检查锻件的质量; ③减轻转子的重量。 其缺陷在于: ①使转子工作应力增大,制造成本增加; ②运行中易出现中心孔进油、进水、腐蚀,引起转子不明的振动; ③检修、动平衡复杂。 随着锻造、热处理及探伤技术水平的提高,无中心孔的转子结构应运而生。 ①优点:不会出现零件松动问题,结构紧凑,强度、刚度高,适合高温、高应力环境下工作; ②缺点:贵重材料消耗大,对加工工艺要求高。 适用性:中小型汽轮机的高压转子、大型汽轮机的任何转子(高参数或超高参数机组的高压转子)。

汽轮机转子运行故障分析及诊断

汽轮机转子运行故障分析及诊断 发表时间:2017-05-12T09:03:43.900Z 来源:《防护工程》2017年第1期作者:李钢 [导读] 在目前工业生产中,汽轮机作为重要的旋转设备,是工业生产中必不可少的机械设备。 辽宁大唐国际阜新煤制天然气有限责任公司辽宁阜新 123000 摘要:在目前工业生产中,汽轮机作为重要的旋转设备,是工业生产中必不可少的机械设备。其中汽轮机转子是汽轮机的主要零部件,使得汽轮机转子安全性、可靠性、适用性以及可维修性特点受到人们的关注,促使关于汽轮机转子运行故障机理与诊断技术也在飞速发展。在汽轮机转子运行过程中,发生的振动信号是判断汽轮机工作状态的重要指标,更是影响机械设备运行安全与操作人员人身安全的因素,因此对汽轮机转子运行故障分析及诊断的研究工作迫在眉睫。 关键词:汽轮机转子;运行故障;诊断 1概述 汽轮机组的振动是机组运行必须要监测的一个非常重要的参数,因为当机组振动超过规定的范围时,将会引起设备的损坏,甚至造成严重后果:(1)使转动部件损坏。当机组振动过大时,会使叶片、围带、叶轮等各部件的应力增加,从而产生很大的交变应力,导致疲劳而损坏;(2)使机组动、静部分发生磨损;(3)使各链接部件松动;(4)直接造成运行事故。当机组振动过大,同时又发生在高压缸端侧时,有可能危及保安器误动作而发生停机事故。因此,机组运行中要严格检测其振动值。 近几年来,大庆油田宏伟热机组频繁出现振动大引起的停机事件,这就使得我们不得不引起对汽轮机组振动故障的重视。 2汽轮机转子运行故障类型 在汽轮机转子运行过程中,振动信号发生是转子发生故障的前提表现,对此应在汽轮机转子运行过程中,对其振动信号进行准确测量,为了更好地判断汽轮机转子运行故障类型,对其进行分类阐述。振动频率:基频振动、倍频振动、整分数基频振动、比例基频振动、超低基频振动以及超高基频振动;振幅方位:横向振动(水平振动和垂直振动)、轴向振动与扭转振动;振动原因:转子平衡度较差、轴系不对称和零件松动、摩擦(密封件摩擦、转子和定子之间产生的摩擦)、轴承损坏、轴承内部油膜涡动与油膜振动、动力和水力的影响、轴承刚度较差、电气等;振动部位:转子和轴系振动(轴颈、轴纹叶片)、轴承(油膜滑动和波动)、壳体振动与轴承座振动、基础振动(基座、工作台、支架)、其他结构振动(阀门、阀杆、管道等)。 3结合实际案例对汽轮机转子运行故障及诊断进行分析 某市炼油厂,利用延迟焦化装置中采用汽轮机,其具体的汽轮机厂商为杭州汽轮机厂,类型为凝气反动式汽轮机,现采用ENTEK振动检测系统对汽轮机运行状态进行诊断与监测。其详细的汽轮机转子运行故障诊流程为:对汽轮机转子振动信号信息进行检测和采集、分析与处理、传输、推理以及控制等。因为振动信号检测是判断汽轮机转子运行故障的主要依据,振动信号分析与处理工作是判断汽轮机转子故障的关键环节,传输与推理是整体运行故障判断的核心,控制是汽轮机转子运行故障诊断的最终目标。同时在汽轮机转子内部安装电涡流传感器,将线缆与控制箱相连,控制箱自带的振动监测模块可完成高速度数字振动信号的传输与处理工作,再使用以太网将信号处理结果上传至上位机中,从而完成汽轮机转子运行故障的诊断工作。 3.1对ENTEK振动检测系统的利用 在该炼油厂使用的ENTEK振动检测系统性能参数如下所示:型号:NK25/NK28/NK12.5;额定功率:1178KW、常规功率:1071KW;额定转速:12176RPM、常规转速:9132RPM-12785RPM;最大进汽压力:1.2MPa(a)、常规进汽压力:1MPa(a);常规排汽压力:0.012MPa(a);最大进汽温度300摄氏度、常规进汽温度230摄氏度。 在ENTEK振动检测系统中,对于汽轮机转子运行故障的诊断,产生的信号数据直接送至XM模块中,经过以太网的传输,将信号传输至emonitor系统软件内部,在该软件界面中,实现传感器与信号数据的相接,使其成为振幅型数据,从而可知由emonitor系统软件连接的采集器、监测模块以及保护监测表共同组成具有共享能力的数据库,其共享数据库内自主携带故障诊断工作,能够依据实际需求,对汽轮机转子的运行故障类别进行准确定位,对此,操作人员以手动输送的方式,完成故障诊断报告的生成工作。 在此系统故障诊断环节中,由汽轮机转子振动值超出限定值而产生的故障,则需对汽轮机进行停机检修,同时加大对转子运行状态的监测工作,并对转子的转速进行妥善控制。汽轮机转子在初始运行期间,振动值均以达到限定值范围,但是由于难以在生产中对汽轮机进行检修。因此,采用转子减速与状态控制的方式,实现对汽轮机转子运行故障的诊断工作。 3.2报警和故障诊断 在对汽轮机转子振动信号数据分析过程中,应利用事先采集的信号设置与之相对应的报警界定,进而才能在振动值高出正常限定值时,及时对汽轮机转子的运行故障类型进行识别和分类,其详细的振动值高超报警流程为:输定报警值界限——输入采集数据限号——汽轮机转子运行——发生警报。首先,对转子平衡度较差故障诊断:水平与垂直倍频不平衡值均大于等于1、单倍频振动效果较为明显;其次,转子摩擦故障诊断:4倍频占据1倍频20%以上、5倍频与0.5倍频占据1倍频10%以上、2倍频占据1倍频50%以上、3倍频占据1倍频20%以上以及1倍频在界定值以上;最后,油膜涡动与油膜振动故障诊断:0.5倍频、1倍频其幅值均在2.0以上。 3.3摩擦振动故障排查措施分析 通常情况下,汽轮机转子运行的环境比较复杂,它在运行过程中不仅会受到高速旋转和气流冲击作用力,同时高温、潮湿以及高压的工作环境会对转子造成一定的破坏,影响机组转子的安全稳定运行。因此,应当对转子日常的保养和检查工作给予高度的重视,一旦检查过程中发现故障,维修技术人员应当立即采取解决措施,对产生摩擦振动的部件进行必要维修,而如果机组部件维修价值不高应当进行更换,以消除摩擦振动对汽轮机运行造成的不利影响。 3.4汽轮机积盐原因及处理措施 对于正常运行的汽轮机,其饱和蒸汽实际含盐量会与过热蒸汽含盐量相同或饱和蒸汽含盐量略高。若汽轮机的过热蒸汽含盐量比过饱和蒸汽含盐量高时,则说明汽轮机内部积盐现象已很严重,此时应及时停机,全面清洗汽轮机。在清洗时我们常用到两种处理方法手工除垢与喷砂除垢。如果用这两种除垢法不能完全去除汽轮机内部污垢,可用柠檬酸溶液配合软水来进一步清洗汽轮机。

汽轮机找中心经验

转子中心测量时已经是对汽轮机转子的扬度调整好后进行,通常以汽轮机转子为基准来找发电机转子的中心,这时主要考虑的是圆周值和端面值,圆周值当然是越小越好,我们做的时候一般控制在0.02mm以下,同时还要考虑汽轮机和发电机运行时各转子向上位移的膨胀量,来修正发电机转子是抬高还是要降低,端面值的要求也就可以决定是要求上开口还是要求下开口,我们做一般是保证左右开口为零,上下开口保证在2丝以内,这样在过临界时基本很少有振动增加。同时制造厂的相关资料也可以为我们的测量做出一些参考。 对轮中心做成上张口还是下张口要根据机组的具体形式而定。比如:三支点两转子找中心,一般都做成下张口,具体数值有厂家提供,这是从轴承负荷分配决定的。凝汽机组找中心一般做成上张口,是由于再找中心时凝汽器内有没有充水以及真空形成后后汽缸会下沉等因素决定的。总之,对轮找中心要根据具体情况具体分析,没有固定数值要求,要结合安装使用说明书和机组具体运行状态去做,才能打到满意效果。 在安装中找中心一般是在冷态下,与各机组的情况有关,不能一概而论,小机组转子是双支点轴承支撑,考虑运行中前轴承箱受热膨胀比后轴承箱多一般考虑上开口,此外,冷凝器的连接方式也有关系,有的是弹性连接没有太大的影响,有的是刚性连接,在找中时应灌水。而大机组采用双转子三轴承支撑,为了轴承负荷分配,一般制造厂家均有下开口的要求。关健在于热态运行中轴系要成为一条连续的光滑曲线,不能死搬教条,要根据不同情况进行调整。 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法: 1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬

振动案例第三篇:不对中振动

不对中三种类型 轴瓦中心标高偏差 联轴器不对中 转子与静子不同心

案例1:波型联轴器不对中振动 现象:XF电厂2号机组,300MW,东方生产。2001年10月大修启动,运行出现一系列振动瓦温问题。 分析:2002年1月5日,对机组临时检修后检测振动数据。获得#6、#7轴振动的升速过程、轴心轨迹和轴中心平均位置,发现振动特征及故障如下: (1)升速过程振动和3000r/min空载振动的2倍频分量十分显著。如图1、图2中,本次临检更换了上瓦碎裂的#7号轴承后,#6、#7轴振动性质相比机组大修后初次启动基本没改变。 (2)通频振动的轴心轨迹均为正向进动,但形状比较复杂。图3指出,轴颈上预载荷较为严重。 (3)轴中心平均位置随转速的变化均在间隙圆内,但#6轴中心位置有异常。如图4,转子顺时针旋转时,#6轴颈中心应从间隙圆低部向左上方浮起,而不是向右上方浮起。#6轴颈浮起量也偏小。故#6轴颈与轴承安装偏移及载荷偏大问题值得怀疑。由于发电机转子重量大大超过励磁机,此种偏移可能再度导致#7瓦损坏。 证实:后来检修检查发现,励发对轮严重不对中,一个螺栓剪断,引起#6、#7瓦振动及损坏。 案例2:齿型联轴器不对中振动 概述:某大型舰船内的主发电机组系耦合式高速旋转机械。该机组振动频谱中,包含三个振动幅值均较突出的故障频率,即主激励频率、主激励频率的精确2倍频及滞后性半频。最后诊断及检修证实,主激励频率的精确2倍频所代表的是活动式联轴器连接的汽轮机转子和高速齿轮轴的严重“不对中”故障,是机组振动随负荷急剧爬升、轴承油膜失稳及轴瓦损伤的根本原因。 分析:选取某时段机组从空负荷到带负荷50%N的振动数据。机组空负荷时振动良好,频谱成分也较单纯,而带负荷后主要频谱成分相对幅值变化异常,图1还给出机组中等负荷工况、部分最有代表性测点的振动频谱,能观察到1000Hz范围内各种频谱的分布。 f1=25.0 Hz 发电机转子主激振频率

某空压机组不对中故障案例分析

某空压机组不对中故障案例分析 转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。 联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。 不对中故障的特征如下: 1. 转子径向振动出现二倍频,以一倍频和二倍频分量为主,轴系不对中越严重,二倍频所占的比例就越大,多数情况甚至出现二倍频能量超过一倍频能量; 2. 振动信号的原始时域波形呈畸变的正弦波; 3.联轴器两侧相邻两个轴承的油膜压力呈反方向变化,一个油膜压力变大,另一个则变小; 4. 联轴器不对中时,轴向振动较大,振动频率为一倍频,振动幅值和相位稳定; 5.联轴器两侧的轴向振动基本上是呈现出180°反相的; 6. 典型的轴心轨迹为月牙形、香蕉形,严重对中不良时的轴心轨迹可能出现“8”字形;涡动方向为同步正进动; 7. 振动对负荷变化敏感。当负荷改变时,由联轴器传递的扭矩立即发生改变,如果联轴器不对中,则转子的振动状态也立即发生变化。一般振动幅值随着负荷的增加而升高; 8. 轴承不对中包括偏角不对中和标高变化两种情况,轴承不对中时径向振动较大,有可能出现高次谐波,振动不稳定。由于轴承座的热膨胀不均匀而引起轴承的不对中,使转子的振动也要发生变化。但由于热传导的惯性,振动的变化在时间上要比负荷的改变滞后一段时间。 第一部分设备概述 这台机组由汽轮机驱动压缩机,汽轮机额定功率5714KW,额定转速为5874r /min,一阶临界转速为3850r/min。 正常进汽入口压力为8.93MPa,进汽温度为535℃;排汽压力为 3.92MPa,排汽温度为230℃,振动报警值为45μm,联锁停机值为75μm。压缩机形式为3MCL906,水平剖分式,中间由膜片联轴器联接。

汽轮机找中心要点

浅谈联轴器找正之我见 摘要:旋转设备在安装或维修后始终存在轴对中的问题,是机组安装检修过程中一个极其重要的环节,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证旋转设备各转子的中心线连成一条连续光滑的曲线,各轴承负荷分配符合设计要求,使旋转设备的静止部件与转子部件基本保持同心,将轴系的扬度调整到设计要求,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。因此在每次检修中必须进行转动机械设备轴中心找正工作,使两轴的中心偏差不超过规定数值。在我厂化工设备(不包括厂家给出冷态与热态的中心数据),其中心标准基本上都在0.05mm(即5丝)以内。现就对联轴器找中心的原理、步骤并对联轴器找中心在实际工作作中常见的一些方法、注意事项以及找正在实践中的应用作简单的介绍。 一、找中心的原理:测量时在一个转子对轮上装上磁性表座,另一个对轮上装上百分表,径向、轴向各一付,(为防止转子窜轴,轴向则需装二个表,相差180度)。连接对轮(一般一到二枚螺丝,拧紧即可),然后一起慢慢地转动转子,每隔90度停下来测量一组数据记下,测出上、下、左、右四处的径向a、轴向s四组数据,将数据记录在下图所示的方格内。 a1 a4 s1 s4 s2 s3 a2 a3

一般圆里面的为轴向数据s,外面的为径向数据a,在测得的数值中,若a1=a2=a3=a4,则表明两对轮同心;若s1=s2=s3=s4,表明两对轮的端面平行。若同时满足上述两个条件,则说明两轴的中心线重合;若所测数据不等,根据计算结果是否在标准范围内,超出标准则需对两轴进行找中心。 二、找中心步骤 1、检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础。 2、连接对轮,保证两对轮距离在标准范围内。 3、用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实。 4、先用直尺初步找正。主要是左右径向,相差太大用百分表测量误差太大,并容易读错数据。 5、安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心; 6、测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原来位置,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位置,并最好调到整位数。大针对零。 7、把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向a、轴向s 四组数据,将数据记录在右图内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位置径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。

汽轮机转子不平衡诊断及治理

汽轮机转子不平衡诊断及治理 发表时间:2018-07-03T10:22:54.897Z 来源:《电力设备》2018年第7期作者:齐莹莹 [导读] 摘要:工业生产是经济的重要组成部分,在生产过程中,汽轮机的装机容量在需求下不断提升。 (哈尔滨汽轮机厂有限责任公司黑龙江省哈尔滨 150046) 摘要:工业生产是经济的重要组成部分,在生产过程中,汽轮机的装机容量在需求下不断提升。由此,也使得汽轮机的结构愈加的复杂,零件也更加精密,因此出现故障的几率和引发故障的原因也不断增加,故障的诊断变得越来越有难度。而汽轮机转子出现不平衡就会极大地影响发电效率,造成发电量不足,所以说对汽轮机转子不平衡的问题的研究以及如何治理显得尤为重要。本文将会简单介绍汽轮机转子不平衡的现象,讲解如何诊断汽轮机转子不平衡状况,对汽轮机转子不平衡治理加以深入地研究分析,希望利用这些分析使得汽轮机转子的工作运营能够稳定,更好地完成工作,促进工业生产的更好发展。 关键词:汽轮机;转子;不平衡;诊断;治理 0引言 汽轮机的重要组成部分之一就是汽轮机转子。在现实问题中,汽轮机转子使得汽轮机发生故障导致运行出状况的主要原因有两个方面:一方面是转子重量偏离重心,另一方面就是转子破损。有资料分析显示,在旋转机械中有超过一半的故障是由转子不平衡引起的,汽轮机也包括在其中。因此,加大对汽轮机转子不平衡的诊断以及原理研究具有十分重要的现实意义,合理的治理方法地提出也刻不容缓。 1 汽轮机转子不平衡的种类 1.1 可汽轮机转子不平衡的种类 1.1.1原始不平衡 指的是在制造过程中就已经发生差错,例如装备达不到标准,用于制造的材料不均匀等,这些都会使汽轮机转子在出厂时因振幅过大而致使平衡精度不符合标准。 1.1.2渐发性不平衡 由于时间较长,汽轮机转子会出现不均匀的污垢沉积现象,灰尘等物质磨损叶片或叶轮,磨蚀转子,都会造成不平衡的幅度越来越大。 1.1.3突发性不平衡 转子零部件由于某种缘故脱落或者叶轮出现卡塞,机组真值突变。 1.2 汽轮机转子不平衡原理 在旋转过程中,汽轮机转子将会产生离心力,离心力的大小可以根据公式F=mew2来进行确定,其中e指的是转子的偏心距。离心力属于交变力,它最终导致了转子产生不平衡的状况。 1.3 汽轮机转子不平衡特征 在不一样的方向方面,汽轮机转子的刚度也不尽相同,严格来说的话,实际转轴的轨迹并不是一个十分标准的圆,而是接近椭圆的形状。不平衡的特征表现主要有以下五个方面: 第一点,转子不平衡振动波形可类似看作是正弦波形。 第二点,如果转子的实际转速低于临近转速,振幅就会以正相关的形式展现,如果转子的转速比临界转速高,那么振幅就会变成一个固定的值,而如果转子转速与临近值十分接近,就会产生共振现象,振幅会在这个时候出现峰值。 第三点,对汽轮机转子的频谱图进行分析,可以发现谐波能量主要集中自基频方面,这就使得实际的频谱图的表现形状展现为“枞树形”。 第四点,转轴的运行轨迹不是一个圆形,准确来说是一个类似椭圆的形状。 第五点,实际上,转子的转速应归为确定值,所以在相位方面不会有较大的波动。 下图展示的汽轮机转子的三维图。 汽轮机转子的三维图 2 汽轮机转子不平衡诊断方法 上面提到,转子不平衡的形式主要有三种,包括原始不平衡、渐变不平衡和突发性不平衡。在这三种不平衡之间不仅存在着许多直接、确定的联系,而且也有着较大的不同。在进行故障诊断的时候,主要从以下两个方面来进行判断 2.1 汽轮机转子振幅变化趋势 在原始不平衡方面,汽轮机转子会显现出清晰的表现特征,而在转子的渐变不平衡方面,当汽轮机还在运行的最初阶段时,不平衡的现象并不会显著地表现出来,只有在伴随着运行时间的推移之后,这样的不平衡现象才会愈加地凸显展示出来。再说转子的突发性不平衡方面,汽轮机转子会出现振动值突变的表现,而在这以后就会展现出比较严重的不平衡的现象。

汽轮机振动故障的原因分析与处理 张大鹏

汽轮机振动故障的原因分析与处理张大鹏 发表时间:2019-09-21T23:40:03.593Z 来源:《基层建设》2019年第19期作者:张大鹏 [导读] 摘要:汽轮发电机组是电厂系统中重要的设备。 青海桥头发电有限责任公司青海西宁 810100 摘要:汽轮发电机组是电厂系统中重要的设备。汽轮机的稳定运行直接关系到电力负荷情况,电力系统的稳定运行,对整个城市的经济发展都会产生直接影响。因此,电力企业为了维持电力系统的稳定运行,提出对汽轮机的养护,在此过程中电力企业也会提升自己在本行业的竞争力度。本文就汽轮机振动故障的原因分析与处理展开探讨。 关键词:汽轮机;振动故障;原因分析;处理措施 引言 汽轮机在电力系统中所起到的作用毋庸置疑,对于居民用电也有着直接影响,工业生产中各项电力器械的运行更是离不开电力系统稳定运行的支持。为例确保电力系统的稳定运行,有必要对汽轮机进行定期的检修与保养。汽轮机振动故障是汽轮机故障中比较常见的故障,也会对汽轮机产生较大影响的故障。本文将针对该故障进行原因分析,并在此基础上提出相应的解决措施。 1、汽轮机振动故障原因 1.1转子质量不平衡 汽轮机振动故障存在多种原因,其中最为常见的为转子质量不平衡。转子质量不平衡在汽轮机振动故障中占得比例高达80%,剩下的20%也不能认为完全与转子质量不平衡没有关系。分析转子质量不平衡的原因可以总结为以下几个方面:①材料的不均匀;②制造、设计和安装过程出现偏差;③使用过程中没有对转子进行定期养护导致材料受损。转子质量不平衡会使转子的惯性主轴与旋转轴线出现一定程度偏离,在这种情况下转动转子,离心力显然难以维持平衡,必然会出产振动的现象,从而使汽轮机发生故障。 1.2转子热弯曲故障 当汽轮机运行时,转子将会因为受热而出现弯曲状态,进而影响转子的平衡。热弯曲是汽轮机机组较为常见的震动故障,而引起转子产生热弯曲的原因也有很多,在汽轮发电机之中,较为常见的热弯曲故障有以下两种:汽轮机转子热弯曲、发电机转子热弯曲。汽轮机转子热弯曲的原因多是因为转子材质的不均匀、冷却系统故障等因素引起的;而发电机转子热弯曲故障却多是由转轴内应力过大、各零件间连接的不均匀等引起。 1.3摩擦振动 在长时间运行状态下,汽轮机转动部分如叶栅、叶轮主轴等会在外力和高温条件等作用下产生一定的热弯曲故障,进而对转动部分原来的稳定状态造成一定的破坏,最终产生摩擦振动故障。在这种情况下,汽轮机振动信号仍保持在工频状态,但是在转子以及其他因素的作用下会经常发生分频、倍频以及高频分量的现象,甚至有时还会有波形削顶这一异常现象的发生。另外,汽轮机转子产生摩擦振动故障情况下,其振动频率和幅值存在波动的基本特征,一旦这种故障存在时间过长,那么将会导致涡动现象的发生。 1.4油膜震荡 油膜震荡是汽轮机转子在高速旋转条件下产生的故障问题,也会影响转子的稳定性。转轴在旋转时是围绕轴线进行的,当转子出现失稳现象后,轴线会围绕平衡点进行涡动,涡动的频率一般为转子转速的1/2。如果涡动的速度达到临界转速时,共振会增大,严重时还会出现比较激烈的振动。油膜震荡还会引起机组振动,当振动的转速增加后,振幅也会大大增强。 1.5气流激振 火力发电厂中的大型汽轮机如果在长时间的超负荷运行之下,将会在短时间内迅速增加轴振动,如果其降负荷低于负荷点,则振动将会在短时间内快速下降。在不平衡的气流冲击影响之下,汽轮机组叶片将会出现气流激振的情况,而如果汽轮机组本身比较大且末级相对比较长,则气体在叶片的膨胀末端极有可能会出现流道混乱的情况,同样会使得汽轮机组产生振动异常的现象。 2、汽轮机振动故障的处理措施 2.1针对转子质量不平衡问题的解决措施 根据对转子质量不平衡的原因分析提出以下解决措施:首先,转子材料选择上应该选择符合相关标准和要求的材料,避免偷工减料等;其次,在转子的设计、制造和安装环节需要请专业的的人员和团队来进行,本单位执行人员必须具有该方面的专业素养;然后是在使用过程中要严格按照相关的操作流程、操作标准和操作要求来进行,并定期进行设备的养护,防止人为原因对设备质量平衡造成不良影响。通过全方位的努力来减少质量不平衡因素对汽轮机振动故障的影响。 2.2针对转子热变形的解决措施 转子热变形引起的振动与汽轮机振幅的增加有关,而引发转子热变形的主要原因是转子温度和蒸汽参数的变化。机组在冷态带负荷阶段,转子的温度升高,释放的材质内应力会引发转子热变形,倍频振动增大,相位也产生相应的变化。当转子接地的问题在火电厂中出现时,我们能够发现显著变形的情况发生在转子端部的线圈上,汽端的端部线圈的变形也较为严重,影响了汽轮机的正常工作。因而需要将护环下绝缘中的滑移层工艺加强,通常是将一层聚四氯乙烯的滑移材料覆盖在转子的表面,以便尽可能的将自由伸缩的阻力在线匝热膨胀的情况下减少。存在于护环下的工艺推拨角度也应当减少,所选择的线匝铜线必须有一定的银含量,其目的是为了将绕组线匝导线中的抗蠕变性能和屈服强度提高。在负荷的升降和机组的调峰工作中速度控制非常重要,不能太快。 2.3针对气流激振的解决措施 气流激振是在发电机运行过程中随时可能产生的现象,汽轮机组受其影响产生振动,要减少气流激振对汽轮机振动的影响,运行人员需要对发电机组的运行负荷情况进行充分了解,通过对高压调速气门的调整来消除气流激振的现象,从而防止汽轮机的异常振动,维持汽轮机的长时间稳定运行,最终提高发电机的工作效率。 2.4摩擦振动故障排查措施 摩擦振动的振动信号会因为转子热运动而产生新的平衡力,但却依然维持了工频为主频的振动信号频率,限制了倍频、高频和分频的产生,并伴随着严重的“削顶”现象,自然会严重的损害汽轮机机体;同时波动持续的时间会因为受到摩擦的影响而被延长,急剧的增大了相应的振幅,使得汽轮机受到了严重的损害;此外,振动摩擦会提升相应的临界速度,也会损害汽轮机机体。当产生严重摩擦的时候,振

汽轮机转子加工工艺分析

汽轮机转子加工工艺分析 摘要:转子是汽轮机的重要组成部件之一,结构相当微妙和复杂。由于转子在运行时需要承受着叶片、叶轮、主轴本身质量的离心力,承受着温度分布不均匀产生的热应力,还要承受着巨大的扭转力矩和轴系振动产生的动应力,所以转子的尺寸精度和跳动要求很高。所以汽轮机转子的装夹方法,叶根槽及轴颈和推力面对关键结构的加工工艺十分重要,为提高转子的加工精度和保障表面粗糙度的要求而探讨合理的加工工艺。 关键词:汽轮机转子;装夹;叶根槽;加工工艺 1汽轮机转子 1.1汽轮机转子概述 汽轮机中所有转动部件的组合体叫做转子。转子的作用就是把蒸汽的动能转变为汽轮机轴的回转机械能。还主要用于汇集各级动叶栅上所得到的机械能并传递给发电机转子。它主要有主轴、叶轮、动叶及联轴器、盘车装置等组成。按主轴上是否有叶轮,汽轮机转子可分为两种基本形式,即转轮型转子和转鼓型转子。轮式转子具有安装、固定动叶片的叶轮,常用于冲动式汽轮机;鼓动式转子无叶轮,动叶片直接安装在转鼓上,常用于反动式汽轮机。 1.2转子在运行时应注意的问题 汽轮机运行中,转子可能发生的问题主要是轴的弯曲和折断。发生弯曲和折断的原因可能是汽轮机第一次振动过大、可能是运行操作不当、汽轮机启动时的受热不均等原因造成轴的弯曲。还有可能是转子在运行中较大振动而造成的转子弯曲。 2汽轮机转子装夹工艺 选择正确的装夹方法是保证汽轮机转子加工质量的前提。根据汽轮机各部件的尺寸和规格,也就无形的确定了转子的尺寸和规格。因为部件和部件之间要完美的衔接,不能差之毫厘。在加工转子前、后轴颈外圆时,其表面粗糙度要求是Ra0.8,行位公差必须严格控制在0.01-0.02毫米范围内。所以为了保证转子各处的精确度,必须依照流程、按照顺序,选择合适的装夹方案。 在初始加工时,为防止转子变形,要利用一种东西固定住夹子。即采用一夹一顶的定位方式。具体步骤就是:先夹住转子的前端,顶住汽轮机排汽端,在花盘处车削一段基准外圆,拥有搭建中心架,然后调过来进行装夹,同时也在汽轮机排汽端车削一段基准外圆,用以搭建中心架。然后在转子的前端,割出转子的第一段轴长,需留出2毫米,用以打中心孔。在重复前面的步骤,调头装夹,把支承架放在排汽端,切割轴段长度,同样留2毫米,为方便进行重修中心孔。完

汽轮机找中心资料

关于对汽轮机检修工作中用表格计算模拟找中心的几个的问题 汽轮发电机组大修时,往往要对其轴系的各个对轮中心作检查和调整(俗称对轮找中心)。在此过程中,一般是先经过大量的手工计算,决定一个调整方案,然后一次次试调、测量,使调整结果逐渐达到对轮中心的偏差容许值,因而耗费大量的时间和人力。而且在找中心的时候需要考虑个个汽封洼窝中心和油封中心,但是在实际的工作,很少有人真正的去计算,只是看个大概的估算值.这样有的时候一次计算的失误可能导致大量工人的重复劳动,以至于延长工期.所以我有个设想就是用电子表格模拟整个找中心过程的数据计算,从而得出最终结果.可以提出几个方案,然后通过计算得出一个最合适和工作量最小的方案.在一般大修中主要用到计算的步骤有:汽轮机的对轮找中心、轴瓦的移动量、洼窝中心调整隔板. 一、表格模拟对轮找中心的表格 既然要用表格模拟计算找中心,那么应该首先把他的计算原理推导出来那么就 以我们厂200WM 的汽轮机轴系为例计算推导找中心的过程. 在对轴系找中心前要对轴系有个假设:轴系是一条直线,所有对轴系的移动都是线性 的.上张口为正,下张口为负.高于标准对轮(每对对轮左边对轮为标准对轮)为正,低于标准对轮为负.假如以高压转子为准依次向后找中心则: 1.首先要消除张口a 1: 若需要预留张口或圆周的那么使,张口的正负号不变,预留上张口为正,下张口为负 ,预留圆周也是高出标准对轮为正,低于标准对轮为负. 200MW轴系图 高压转子 中压转子 低压转子 发电机转子 1瓦假瓦 2瓦 3瓦 4瓦5瓦6瓦7瓦 D 1 D 2 D 3 张口 a 1圆周 b 1 张口 a 2 移动后a 2 '圆周 b 2 b 2' 张口 a 3 移动后a 3'圆周 b 3 b 3'

汽轮机转子

转子 一、转子的作用和型式 汽轮机中所有转动部件的组合体叫做转子。 转子的作用是把蒸汽的动能转变为汽轮机轴的回转机械能。 汽轮机转子可分为两种基本型式,即转轮型转子和转鼓型转子。 转轮型转子的叶片装在叶轮上,叶轮紧固在轴上,蒸汽对叶片的作用靠叶轮传给轴。这种转子的级数较少,每一级中蒸汽的热焓降较大,一般应用在冲动式汽轮机上。 转鼓型转子的叶片直接装在圆锥形的转鼓上,蒸汽对叶片的作用力靠转鼓传给轴。这种转子结构简单,弯曲度小,适用于级数多、每级热焓降不大于和要求积垢强度较大的反动式汽轮机上。这种转子,由于轴向推力较大,所以都有平衡活塞用来平衡轴向推力。 二、转子临界转速的基本概念 叶轮在工作时,所受的力很大而且也较复杂。这些力有:蒸汽作用在叶片上使之转动的转动力矩;叶轮前后的蒸汽压力差造成的轴向推力;转动各部件如叶片、包箍及叶轮本身在转动时的离心力;叶轮转动时也要产生振动,所以叶轮上还受着振动力,由于这些力的作用结果,使叶轮上产生径向与切向应力,其中切向应力都较径向压力为大。 3.叶轮在轴上的套装: 叶轮在轴上的套装方法很多,国产小型汽轮机的叶轮普遍采用热套法装在轴上。热套法就是把叶轮的中心孔的内径制成稍小于轴的外径,在套装前先把叶轮用火焰均匀加热或油中加热到一定温度后,在热状态下套装在轴上,待叶轮与轴达到同一温度后,产生足够的紧力,使其牢固的套装在一起。一般叶轮套装在紧力(轴的半径较叶轮轴孔半径所大的数值与轴半径的比值)为1/1000~1.3/1000。 为了防止在运行中出现叶轮与轴套装的紧力减小时,轴与叶轮之间产生相对滑动,在轴和叶轮的套装外,装有一对键,一般汽轮机的轴封套、推力盘等也都用热套法装在轴上。 三、转子临界转速 为了安全起见,汽轮机的工作转速应与临界转速(包括临界转速成倍数关系的转速)错开。运行实践证明,当工作转速与临界转速错开15~20%或再高一些时,汽轮机才能安全的工作。大多数制造厂都使汽轮机的工作转速大于或小于临界转速的30%左右。 四、转子在运行中应注意的问题 转子是汽轮机的重要组成部件之一,运行中对转子的监视和维护是汽轮机运行工作中很重要的工作。汽轮机运行中,转子可能发生的问题主要是轴的弯曲和折断,为此我们对这两种故障的起因、后果和运行中应采取的预防措施等具体分析如下: 1、主轴的弯曲: (1)汽轮机第一次启动时,发现振动不断加大,经过长时间暖机后还不能消除,且机组的其他方面没有发现任何异常,则这种振动大多是由于转子本身的缺陷所造成的。这种情况,多数是由于转子材料内部有缺陷或热处理不良造成转子弯曲后所引起的。遇到这种情况时,不应继续运行,要立即停机详细检查,分析原因,并加以消除。 (2)由于运行操作不当所造成的轴弯曲: a、汽轮机停机后,轴静止下来,在转子冷却过程中,汽缸上部冷却得较汽缸下部慢,形成了上下一定的温度差,这时由于转子上下两半所受的温度不同,将发生向上弯曲。随着转子的逐渐冷却,其弯曲数值在停机后某一段时间内将达到最大值(这时的上下汽缸温度差最大)。超过这段时间后,转子的弯曲又逐渐减小,最后一直冷却到上、下汽缸温度相同,转子伸直为止。

汽轮机运行中振动大的原因及危害

汽轮机运行中振动大的原因及危害 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。

汽轮发电机按转子找中心

汽轮发电机转子按联轴器找中心 基础的不均匀沉降直接影响汽轮发电机的轴系中心。 新装机轴瓦的跑合、机组运行过程中轴瓦钨金的少量磨损、检修中轴瓦钨金、垫铁的研刮使转子位置发生变化等原因,都会导致轴系中心的变化。 再者,在机组投入运行的初期,由于残存的制造内应力、运行中产生的热应力和工质压力的作用,各部件可能发生不同程度的变形;因各处基础未完全稳定也会发生少量的下沉,使轴承座汽缸位置发生少许的变化。但随着机组运行时间的延长,内应力逐渐消除,基础也相对的稳定,单纯热应力和工质压力造成部件变形对中心的影响就极其微小。 由于轴承座标高的变化、凝汽器真空度及循环水质量的影响因素,使热态中心与冷态中心会有一定的变化。因此在冷态找中心时要采取预留一定的偏差值。一般由生产厂家给出,但在经过长时间运行后,应对给定值进行调整。 例:有一200MW机组通流部分改造后,按给定值调整轴系中心后,运行中发现低压缸后轴承油温升高,解体检查该瓦有明显磨损迹象。处理:略中心不正的危害:略 一、汽轮机找中心的有关术语 汽轮机中心线:指各转子联成轴系时,轴系中心所形成的一条曲线; 转子中心线:指转子自由地放在轴承上,在自重作用下弯曲时,转子几何中心所形成的一条曲线; 汽缸中心线:指汽缸前后汽封凹窝中心的连线; 轴承中心线:指轴承座挡油圈及轴套孔凹窝的中心连线; 二、汽轮机找中心的目的 1、汽轮机找中心的目的 (1)汽轮机各转子的中心线成为一条连续平滑的曲线。从而在运行中对轴承不致产生周期性交变力,避免产生振动。 (2)使汽轮机转动与静止部分基本保持同心,其中心偏差在允许范围内。

(3)使轴承的负荷分配符合制造厂设计要求。 2、汽轮发电机转子按联轴器找中心的目的 (1)汽轮机发电机各转子的中心线成为一条连续平滑的曲线。从而在运行中对轴承不致产生周期性交变力,避免产生振动。 (2)使轴承的负荷分配符合制造厂设计要求。 三、汽轮机找中心的前提 1、对汽缸一定要找平、找正 汽缸横向水平偏差不大于0.02mm,其纵向水平应根据制造厂设计的转子扬度,调整各轴封凹窝中心的高度。 2、轴承座应找平、找正 轴承座横向水平偏差不大于0.02mm,其纵向水平应测量中分面扬度与轴心线扬度吻合。 3、台板负荷分配正确 汽缸和轴承座就位并找平、找正后,机组的质量应按照制造厂提供的数据分配到各块台板上。 4、对转子要求 四、找中心前的准备 1、检查并消除可能影响对轮找中心的各种因素。 2、准备桥规 3、盘车工具的准备: 4、塞尺测量准备 塞尺片不应超过三片,且应保证力量、位置、方向和深度四个一致。被测位应光滑平整。 5、百分表测量准备 五、中心数据测量 (一)中心数据的测量方法 (二)用百分表测量的方法

相关文档
最新文档