激光原理第四章习题解答

激光原理第四章习题解答
激光原理第四章习题解答

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少?

解答:

根据公式(激光原理P136)

c

c υ

υνν-

+

=110

υλν=

由以上两个式子联立可得:

0λυ

υ

λ?+-=

C C 代入不同速度,分别得到表观中心波长为:

nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ

解答完毕(验证过)

2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化λL

2次。

证明:

对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下:

无多普勒效应的光场:()t E E ?=πνν2cos 0 产生多普勒效应光场:(

)

t E E ?='

'02cos ''πνν

在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:??

?

?

?+

=c υνν1'

第二次多普勒效应:??

?

??+≈??? ??+=??? ??+=c c c υνυνυνν21112

'''

在观察者处:()?

?

?

??????? ???+?==???

??????? ?????? ??++?=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021

观察者感受到的光强:????

???????????? ???+=t c I

I υνπ22cos 12

显然,光强是以频率c

υ

ν?

2为频率周期变化的。

因此,在移动的范围内,光强变化的次数为:

λνυυνυνL c L L c t c 2222'=?=

???

? ???=???? ??

? 证明完毕。(验证过)

3 在激光出现以前,K r 86低气压放电灯是最好的单色光源。如果忽略自然加宽和碰撞加宽,试估计在77K 温度下它的605.7纳米谱线的相干长度是多少?并与一个单色性Δλ/λ=10-8

的H e -N e 激光器比较。

解:根据相干长度的定义可知,ν

?=

c

L c 。其中分母中的是谱线加宽项。从气体物质的加宽类型看,因为忽略自然和碰撞加宽,所以加宽因素只剩下多普勒加宽的影响。 根据P138页的公式4.3.26可知,多普勒加宽:

21

07

)(1016.7M

T

D

νν-?=?

因此,相干长度为:

cm M

T c

c L D

c 4.89)(

1016.72

107=?=

?=

-νν

根据题中给出的氦氖激光器单色性及氦氖激光器的波长632.8纳米,可根据下述公式得到氦氖激光器的相干长度:

cm c c L c 632810108.632892=??=?=?=?=

?=-λ

λ

λ

λλλ

λν

ν

可见,即使以前最好的单色光源,与现在的激光光源相比,相干长度相差2个数量级。说明激光的相干性很好。

(验证过)

4 估算CO 2气体在300K 下的多普勒线宽ΔνD ,若碰撞线宽系数α=49MH Z /Pa ,讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。 解:根据P138页的公式4.3.26可知,多普勒加宽:

Z D MH M

T

53)(1016.721

07

=?=?-νν

因为均匀加宽过渡到非均匀加宽,就是L D νν?≈?的过程,据此得到:

P L D ανν=?≈?,得出Pa P D

31008.1?=?=

α

ν

结论:气压P 为1.08×103Pa 时,是非均匀加宽与均匀加宽的过渡阈值,.当气压远远大于1.08×103Pa 的情况下,加宽主要表现为均匀加宽。 (验证过)

5 氦氖激光器有下列三种跃迁,即3S 2-2P 4的632.8纳米,2S 2-2P 4的1.1523微米和3S 2-3P 4的3.39微米的跃迁。求400K 时他们的多普勒线宽,并对结果进行分析。 解:根据P138页的公式4.3.26,可分别求出不同跃迁的谱线加宽情况。 3S 2-2P 4的632.8纳米的多普勒加宽:

GHz M

T c M T D 5.1)(1016.7)(1016.721

072107

=?=?=?--λνν

2S 2-2P 4的1.1523微米的多普勒加宽:

GHz M

T c M T D 83.0)(1016.7)(1016.72

1

072107

=?=?=?--λνν

3S 2-3P 4的3.39微米的多普勒加宽:

GHz M

T c M T D 28.0)(1016.7)(1016.72

1

072107

=?=?=?--λνν

由以上各个跃迁的多普勒线宽可见,按照结题结果顺序,线宽是顺次减少,由于题中线宽是用频率进行描述,因此频率线宽越大,则单色性越好。

(验证过)

6 考虑二能级工作系统,若E 2能级的自发辐射寿命为τS ,无辐射跃迁寿命为τnr 。假设t=0时激光上能级E 2的粒子数密度为n 2(0),工作物质的体积为V ,发射频率为ν,求: (1)自发辐射功率随时间的变化规律。(2)E 2能级的原子在其衰减过程中发出的自发辐射

光子数。(3)自发辐射光子数与初始时刻E 2能级上的粒子数之比η2。 解:

(1)根据P11相关内容,考虑到E 2的能级寿命不仅仅是自发辐射寿命,还包括无辐射跃迁寿命,因此,E 2能级的粒子数变化规律修正为:

τ

t

e n t n -

=)0()(22,其中的τ与τS 、τ

nr

的关系为

nr

S

τττ

1

1

1

+

=

,为E 2能级的寿命。

在时刻t ,E 2能级由于自发和无辐射跃迁而到达下能级的总粒子数为:

V t n )(2

由于自发辐射跃迁而跃迁到激光下能级的粒子数为212)(VA t n ,因此由于自发辐射而发射的功率随时间的变化规律可以写成如下形式:

τντνt

S

e h V

n h VA t n t P -

==1

)0()()(221221

(2)由上式可知,在t-t+dt 时间内,E 2能级自发辐射的光子数为:

dt e V n dt VA t n dt h t P dn t

S

ττν-

===1)0()()(22122121

则在0-∞的时间内,E 2能级自发辐射的光子总数为:

V n dt e V

n dt VA t n dt h t P dn n S

t

S

)0(1

)0()()(20

202120

212121ττ

τντ=

====?

??

?∞

-

∞∞

(3)自发辐射光子数与初始时刻能级上的粒子数之比为:

S

V n n ττ

η=

=

)0(2212

此题有待确认

7 根据激光原理4.4节所列红宝石的跃迁几率数据,估算抽运几率13W 等于多少时红宝石对波长694.3纳米的光透是明的(对红宝石,激光上、下能级的统计权重为421==f f ,且计算中可不考虑光的各种损耗)

解答:已知红宝石的1732105.0-?=S S ,1531103-?=S A ,1

3

21103.0-?=S

A ,021≈S ,

031≈S

分析如下:增益介质对某一频率的光透明,说明介质对外界光场的吸收和增益相等,或者吸收极其微弱,以至于对进入的光场强度不会产生损耗。对于本题中的红宝石激光器,透明的含义应该属于前者。

根据公式:

()()??

??

??

???

=?==++++--=+-=2112221112321323212122121212

323131313B B f B f B n n n n S n S A n W n W n dt dn S A n W n dt

dn (激光原理P146-4.4.22)

由上边的第二项和第四项,可以得到:

()()()32

3212122121323212122121212

S n S A n n n B S n S A n W n W n dt

dn ++--==

++--=ρ --------------------------------------1 又因为小信号下(粒子数翻转刚刚达到阈值)2132A S >>,因此03≈n ,且

03

≈dt

dn 由此,方程组的第一个式子可以转变为:32

3113

13S A W n n +=

,代入1式,得到:

()()()()32

31321312121221213232121221212

S A S W n S A n n n B S n S A n n n B dt dn +++--==++--=ρρ

既然对入射光场是透明的,所以上式中激光能级发射和吸收相抵,即激光上能级的粒子数密度变化应该与光场无关,并且小信号时激光上能级的粒子数密度变化率为零,得到

()()()()??

???

-?=-=+++-=+++--=21212132313213121212323132131212122121200n n n n B S A S W n S A n S A S W n S A n n n B dt dn ρρ

最后得到:

1

2323121131018.31-?=???? ?

?+≈S S A A W 解答完毕。(验证过)

8 略 9 略 10 略

11 短波长(真空紫外、软X 射线)谱线的主要加宽是自然加宽。试证明峰值吸收截面为

π

λσ22

0=。

证明:根据P144页吸收截面公式4.4.14可知,在两个能级的统计权重f 1=f 2的条件下,在自然加宽的情况下,中心频率ν0处吸收截面可表示为:

N

v A ννπσ?=1

42

0222112 - -------------------------------------------------1 上式s N πτν21=

?(P133页公式4.3.9)

又因为s

A τ1

21=

,把A 21和ΔνN 的表达式代入1式,得到:

π

λσ22

021=

证毕。(验证过)

12 已知红宝石的密度为3.98g/cm 3,其中Cr 2O 3所占比例为0.05%(质量比),在波长为694.3nm 附近的峰值吸收系数为0.4cm -1,试求其峰值吸收截面(T=300K )。 解:

分析:红宝石激光器的Cr 3+是工作物质,因此,所求峰值吸收截面就是求Cr 3+的吸收截面。 根据题中所给资料可知:

Cr 2O 3的质量密度为3.98g/cm 3×0.05%=1.99×10-3g/cm 3,摩尔质量为52×2+16×3=152g/mol 设Cr 3+的粒子数密度为n ,则n=2×(1.99×10-3 /152)×6.02×1023=1.576×1019/cm 3 根据n ?=12σα可知,n

?=

α

σ12

根据n ≈n 1+n 2,Δn=n 1-n 2,且KT h e n n ν-=1

2,其中693001038.1103.6941031062.62398

34

=??????=---KT h ν,可知E 2能级粒子数密度接近于零,可求出Δn=n 1=1.756×1019/cm 3 ,代入到n

?=α

σ12,可求

出:

2203

191

12

1055.2/10576.1/4.0cm cm

cm n --?=?=?=α

σ 解答完毕。 13 略

14 在均匀加宽工作物质中,频率为ν1、强度为I ν1的强光增益系数为g H (ν1,I ν1), g H (ν1,I ν

1)--- ν1关系曲线称为大信号增益曲线,试求大信号增益曲线的宽度Δ

ν

H 。

解:

大信号增益系数表达式为P153-4.5.17:

]

1[)2()()

2(

)(),(1122012

001S

H H H H I I g I g ν

ννννννν+?+-?=

根据谱线宽度的定义:增益下降到增益最大值的一半时,所对应的频率宽度,叫做大信号增益线宽。

根据大信号增益曲线表达式可知,其中心频率处具有最大增益,即ν1=ν0时。在此条件下,增益最大值为:

]

1[1

)

(),(1100

0max S

H H I I g I g νννν+= 根据),(2

1

),(110max 1ννννI g I g H H =,可求出当S H I I 11201νννν+?=-时满足增益线宽条件,因此,线宽位:

S

H I I 11201ννννν+

?=-=?

解答完毕。

15 有频率为ν1、ν2的两强光入射,试求在均匀加宽情况下: (1) 频率为ν的弱光的增益系数。 (2) 频率为ν1的强光增益系数表达式。 (设频率为ν1和ν

2的光在介质里的平均光强为

I ν1、I ν2)

解:在腔内多模振荡条件下,P151-4.5.7应修正为:

+?=

++

+

?=

?i

i S S S I I n I I I I n n i )

(1)

()

(10

210

21νννννν

根据P150-4.5.5可知,增益系数与反转粒子数成正比,即:

()021,ννσn g ?=

把修正后的反转粒子数表达式代入上式,得到:

()()∑

+?=

?=i

i S I I n n g i )

(1,,0

021021νννσννσν

因此,所求第一问“频率为ν的弱光的增益系数”为:

)

()

(1)

(),(),,(2100212121νννννσνννννS S H H I I I I g n I I g +

+

=

?=

第二问“频率为ν1的强光增益系数表达式”为:

)

()

(1)

(),(),,(2110012112121νννννσνννννS S H H I I I I g n I I g +

+

=

?=

解答完毕。

17 激光上下能级的粒子数密度速率方程表达式为P147-4.4.28所示。

(1) 试证明在稳态情况下,在具有洛伦兹线型的均匀加宽介质中,反转粒子数表达式具有如

下形式:

()l

N n n υννσφτ0121210

,1+?=

?,其中()??

????-+

=δττδφ1121

12f f ,212ττδ=,Δn 0是小信号反转粒子数密度。

(2) 写出中心频率处饱和光强I s 的表达式。 (3) 证明

12

1

<<ττ时,Δn 和I s 可由P152-4.5.13及P151-4.5.11表示。 解:1 稳态工作时,由激光上、下能级的粒子数密度速率方程 (4.4.28)可得:

l vN n f f

n n R dt dn ),()(0012111222222ννστ---==

---------------------------------------------- 1 l vN n f f

n n n R dt dn ),()(0012111

222121111ννσττ-++-==

---------------------------------------------2 11

2

2n f f n n -

=? ------------------------------------------------------------------3 其中01≈R ,20302τW n R = 由(3)式和(2)式可得:

221

112012111221

201211121122]),(1[)]),(([n f f vN f f n n

vN n f f n n f f n n l l ττννσττννστ++

?==+?+?=+?=

整理得:

n f f vN f f n l ?-

+=

21

112012111

2

21),(1ττννστ

将(4)代入(1)式:

l l vN n n f f vN f f R ),(1),(10121221

112012111

2

22ννστττννσττ?=?-

+-

整理得:

l

l l

l vN n vN f f

f f vN f f W n f f vN f f vN R n ),(1)1(),(1)1(1),(1),(0121210

2111

2211120121221

1

12203021

1

12012111

2

012122

2ννσφτστττννσττττττννστννσττ+?=

=+-+-

=

=

-++

=

?

其中()??

????-+

=δττδφ1121

12f f ,212ττδ=,Δn 0是小信号反转粒子数密度。 (2)

)

(1)1(),()1)(,(1)1()],()1)(,([1)1()],()1)(,([1)1(121

1

122030012111

221112012120

21

1

1220300

0121112211120121221

1

122030012111

2211120121221

1

122030111

ντττννστττννστντττνννστττννσττττννστττννσττττννν

S I I f f W n f f

f f h I f f W n h I f f f f f f W n vN

f f

f f f f W n n +

-=

=

+-

+

-

==

+-+-==

+-+-

=?

当ν1=ν0时,)

()1()(21

21121122120

21

11

2211122120

0ττ

ττσστνστττστνν-+=

+-=

f f h f f

f f h I S

(3) 高功率的激光系统中212

ττ

当121

<<ττ时,Δn 和I s 可由P152-4.5.13及P151-4.5.11表示

22 设有两束频率分别为δνν+0和δνν-0,光强为1I 和2I 的强光沿相同方向或者相反方向通过中心频率为0ν的非均匀加宽增益介质,21I I >。试分别划出两种情况下反转粒子数按速度分布曲线,并标出烧孔位置。

分析:

非均匀加宽的特点是增益曲线按频率分布,当有外界入射光以一定速度入射时,增益曲线对入射光频率敏感,且产生饱和效应的地方恰好是外界光场频率对应处,而其他地方则不会产生增益饱和现象。当然,产生增益饱和的频率两边一定频谱范围内也会产生饱和现象,但是与外界光场对应的频率出饱和现象最大最明显。

设外界光场以速度z υ入射,作为增益介质,感受到的表观频率为:

??

?

?

?+

=c z υνν10'0,当增益介质的固有频率'

0νν=时,产生激光(发生粒子数反转) 而发生粒子数翻转所对应的速度为: 正方向:()00νννυ-?

=c z

负方向:()0

0νννυ-?

=c z

一、当都是正方向入射时,两束光对应的速度分别为:

()

()

000

011νδν

ννδνννννυ?=

-+?=-?=c c c z

()

()

000

022νδν

ννδνννννυ?-

=--?

=-?

=c c c z

也就是说在反转粒子数按速度分布图上,在速度等于1z υ和1z υ处形成反转粒子数饱和效应。 根据公式(激光原理p156-4.6.7)

对于1z υ,孔的深度为:()()()1011011νννννn I I I n n S

?+=

?-? 对于2z υ,孔的深度为:()()()20220

22νννννn I I I n n

S

?+=

?-?

又因为线型函数以0ν为对称形式,且两个入射光产生烧孔的位置也以0ν为中心对称分布,因此,产生烧孔的两个对称位置处的小信号反转粒子数相等,即()()2010

ννn n

?=?,因此,

两个烧孔的深度相比,因为21ννI I >,所以两个孔的深度入射光强大的反转粒子数深度大。 即:

两孔深度比:()()()()()

()12211212010220

11022

11

>++=?+?+=?-??-?=S S S

S

I I I I I I I I n I I I n I I I n n n n ννννννανννν 二、两束光相对进入增益介质 类似上面的分析可得到:

21νδν

υυc z z =

=,可见烧孔位置重合,烧一个孔

因为两个光强不同的外场同时作用于某一品率处而产生增益饱和(反转粒子数饱和),因此,

次品率处的光强是两个光强的和,因此,烧孔深度为

() ()()20

2

1

2

ν

ν

ν

νn

I

I

I

I

I

S

?

+

+

+

解答完毕。

激光原理及技术习题答案

激光原理及技术部分习题解答(陈鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n -- = 其中1 2**E E c h E c h -= ?=λ ν λ h c h == ?*E (1)

(2) 10 * 425 .121 48 300 * 10 * 38 .1 10 10 *3 * 10 * 63 .6 1 223 6 8 34 ≈ = = = =- - - - - - - e e e n n T k c h b λ (3) K n n k c h b 3 6 23 8 34 1 2 10 * 26 .6 )1.0( ln * 10 * 10 * 8 .3 1 10 *3 * 10 * 63 .6 ln * T= - = - = - - - λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数1 01 .0- =mm α (2) 0 1 01 100 366 0I . e I e I e I I. z= = = =- ? - α 即经过厚度为0.1m时光能通过36.6% 10.解:

激光原理第二章答案解析

第二章开放式光腔与高斯光束 1.证明如图 2.1所示傍轴光线进入平面介质界面的光线变换矩阵为 1 2 1 0 η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,根据几何关系可知211122 ,sin sin r rηθηθ ==傍轴光线sinθθ B则 1122 ηθηθ =,写成矩阵形式 21 21 1 2 1 0 r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证 2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为 1 2 1 0 1 d η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。根据1题的结论和自由传播的光线变换矩阵可得 21 21 21 12 1 0 1 0 1 0 0 0 1 r r d θθ ηη ηη ???? ???? ?? ???? = ???? ?? ???? ?? ???? ???? ???? 化简后21 21 1 2 1 0 1 d r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证。 3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示:

其往返矩阵为: 由于是共焦腔,则有 12R R L == 将上式代入计算得往返矩阵 () ()()1 2 101 0110101n n n n n n r L r L ??????===-=-???????????? A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。 于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。 4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔稳定性条件1201g g <<其中1212 11,1L L g g R R =-- =- 对平凹共轴球面镜腔有12,0R R =∞>。则122 1,1L g g R ==- ,再根据稳定性条件 1201g g <<可得2 2011L R R L <- <>?。 对双凹共轴球面腔有,120,0R R >>则1212 1,1L L g g R R =- =-,根据稳定性条件1201g g << 可得11221 212010 01 1R L R L R L R L R R L L R R L <?? <????<-- ?????? 或。 对凹凸共轴球面镜腔有,120,0R R ><则1212 1,1,0L L g g R R =- =>-根据稳定性条件1201g g << 可得121120111R L R R R L L R L ???? <--

激光原理复习题答案

激光原理复习题 1. 麦克斯韦方程中 0000./.0t t μμερε????=-???????=+????=???=?B E E B J E B 麦克斯韦方程最重要的贡献之一是揭示了电磁场的在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。在方程组中是如何表示这一结果? 答:(1)麦克斯韦方程组中头两个分别表示电场和磁场的旋度,后两个分别表 示电场和磁场的散度; (2) 由方程组中的1式可知,这是由于具有旋度的随时间变化的电场(涡旋 电场),它不是由电荷激发的,而是由随时间变化的磁场激发的; (3)由方程组中的2式可知,在真空中,,J =0,则有 t E ??=? 00B *εμ ;这表明了随时间变化的电场会导致一个随时间变化的磁场;相反一个空间变化的磁场会导致一个随时间变化的电场。这 种交替的不断变换会导致电磁波的产生。 2, 产生电磁波的典型实验是哪个?基于的基本原理是什么? 答:产生电磁波的典型实验是赫兹实验。基于的基本原理:原子可视为一个偶 极子,它由一个正电荷和一个负电荷中心组成,偶极矩在平衡位置以高频做周期振荡就会向周围辐射电磁波。简单地说就是利用了振荡电偶极子产生电磁波。 3 光波是高频电磁波部分,高频电磁波的产生方法和机理与低频电磁波不同。对于可见光围的电磁波,它的产生是基于原子辐射方式。那么由此原理产生的光的特点是什么? 答:大量原子辐射产生的光具有方向不同,偏振方向不同,相位随机的光,它们是非相干光。 4激光的产生是基于爱因斯坦关于辐射的一般描述而提出的。请问爱因斯坦提出了几种辐射,其中那个辐射与激光的产生有关,为什么? 答:有三种:自发辐射,受激辐射,受激吸收。其中受激辐射与激光的产生有 关,因为受激辐射发出来的光子与外来光子具有相同的频率,相同的发射 方向,相同的偏振态和相同的相位,是相干光。

哈工大 激光原理 第三、四章作业答案

第三章 2.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν?=1.5?l09Hz 。今腔长L =lm ,问可能输出的纵模数为若干?为获得单纵模输出,腔长最长为多少? 答:Hz L c q 88 105.11121032?=???==?μν,10105.1105.189=??=??=q n νν 即可能输出的纵模数为10个,要想获得单纵模输出,则: m c L L c q 2.010 5.1103298=??=?<∴=?

激光原理MOOC答案详解

1.2 1 谁提出的理论奠定了激光的理论基础? ?A、汤斯 ?B、肖洛 ?C、爱因斯坦 ?D、梅曼 正确答案:C 我的答案:C得分: 10.0分 2 氢原子3p态的简并度为? ?A、2 ?B、10 ?C、6 正确答案:C 我的答案:C得分: 10.0分 3 热平衡状态下粒子数的正常分布为: ?A、处于低能级上的粒子数总是等于高能级上的粒子数?B、处于低能级上的粒子数总是少于高能级上的粒子数?C、处于低能级上的粒子数总是多于高能级上的粒子数正确答案:C 我的答案:C得分: 10.0分 4 原子最低的能量状态叫什么? ?A、激发态 ?B、基态 ?C、.亚稳态 正确答案:B 我的答案:B得分: 10.0分 5 对热辐射实验现象的研究导致了? ?A、德布罗意的物质波假说 ?B、爱因斯坦的光电效应

?C、普朗克的辐射的量子论 正确答案:C 我的答案:A得分: 0.0分 6 以下关于黑体辐射正确的说法是: ?A、辐射的能量是连续的 ?B、黑体一定是黑色的 ?C、 辐射能量以hν为单位 正确答案:C 我的答案:C得分: 10.0分 7 热平衡状态下各能级粒子数服从: ?A、A. 高斯分布 ?B、玻尔兹曼分布 ?C、正弦分布 ?D、余弦分布 正确答案:B 我的答案:B得分: 10.0分 8 以下说法正确的是: ?A、受激辐射光和自发辐射光都是相干的 ?B、受激辐射光和自发辐射光都是非相干的 ?C、受激辐射光是非相干的,自发辐射光是相干的 ?D、受激辐射光是相干的,自发辐射光是非相干的正确答案:D 我的答案:D得分: 10.0分 9 下列哪个物理量不仅与原子的性质有关,还与场的性质有关??A、自发跃迁几率 ?B、受激吸收跃迁几率 ?C、受激辐射跃迁爱因斯坦系数 正确答案:B 我的答案:B得分: 10.0分 10

激光原理与技术习题

1.3 如果微波激射器和激光器分别在λ=10μm ,=5×10- 1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数, 8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 1.4设一光子的波长=5×10- 1μm ,单色性λ λ ?=10- 7,试求光子位置的不确定量x ?。若光子的波长变为5×10- 4μm (x 射线)和5 ×10 -18 μm (γ射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S - 1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? c P nh nh νλ==P P n h hc λ ν= =

1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。又如果光强I=10W/mm2,试求受激跃迁几率W10。 2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。 习题

激光原理第四章习题解答..

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答: 根据公式(激光原理P136) c c υυ νν-+=110 υλν= 由以上两个式子联立可得: 0λυ υλ?+-=C C 代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ 解答完毕(验证过) 2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化λL 2次。 证明: 对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下: 无多普勒效应的光场:()t E E ?=πνν2cos 0 产生多普勒效应光场:()t E E ?=''02cos ''πνν 在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:?? ? ?? +=c υνν1' 第二次多普勒效应:?? ? ??+≈??? ??+=??? ??+=c c c υνυνυνν21112'''

激光原理与技术习题一样本

《激光原理与技术》习题一 班级序号姓名等级 一、选择题 1、波数也常见作能量的单位, 波数与能量之间的换算关系为1cm-1 = eV。 ( A) 1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er光纤激光器的中心波长为波长为1.530μm, 则产生该波长的两能级之间的能量 间隔约为 cm-1。 ( A) 6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm的He-Ne激光器, 谱线线宽为Δν=1.7×109Hz。谐振腔长度为50cm。 假设该腔被半径为2a=3mm的圆柱面所封闭。则激光线宽内的模式数为个。 ( A) 6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于、、光子的科学。 2、光子具有自旋, 而且其自旋量子数为整数, 大量光子的集合, 服从统计分布。 3、设掺Er磷酸盐玻璃中, Er离子在激光上能级上的寿命为10ms, 则其谱线宽度 为。 三、计算与证明题 1.中心频率为5×108MHz的某光源, 相干长度为1m, 求此光源的单色性参数及线宽。

2.某光源面积为10cm 2, 波长为500nm, 求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1-kT hv 。 《激光原理与技术》习题二 班级 姓名 等级 一、 选择题 1、 在某个实验中, 光功率计测得光信号的功率为-30dBm, 等于 W 。 ( A) 1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、 激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、 填空题 1、 如果激光器在=10μm λ输出1W 连续功率, 则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、 一束光经过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍, 则该物 质的增益系数为 。 三、 问答题 1、 以激光笔为例, 说明激光器的基本组成。 2、 简要说明激光的产生过程。 3、 简述谐振腔的物理思想。 4、 什么是”增益饱和现象”? 其产生机理是什么? 四、 计算与证明题 1、 设一对激光能级为2E 和1E (设g 1=g 2), 相应的频率为ν(波长为λ), 能级上的粒子数密度 分别为2n 和1n , 求 (a) 当ν=3000MHz , T=300K 时, 21/?n n =

激光原理(陈鹤鸣版)部分习题答案整理

第二章 5)激发态的原子从能级E2跃迁到E1时,释放出m μλ8.0=的光子,试求这两个能级间的能量差。若能级E1和E2上的原子数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。 【参考例2-1,例2-2】 解: (1)J hc E E E 206834121098.310 510310626.6---?=????==-=?λ (2)5 2320121075.63001038.11098.3exp ---?-?=??? ? ?????-==T k E b e N N 10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。试求该物质的小信号增益系数0G .假设激光在往复运动中没有损耗。 1 04.0*)(0 )(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I m e I I G z G Z z G Z ααα即且解:

第三章 2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、?νc (设n=1) 解: 衍射损耗: 1880107501106102 262.).(.a L =???=λ=δ-- s ..c L c 8 81075110 318801-?=??=δ= τ 输出损耗: 119080985050212 1.)..ln(.r r ln =??-=-=δ s ..c L c 8 81078210 311901-?=??=δ= τ

激光原理第七章答案

第七章 激光特性的控制与改善 习题 1.有一平凹氦氖激光器,腔长0.5m ,凹镜曲率半径为2m ,现欲用小孔光阑选出TEM 00模,试求光阑放于紧靠平面镜和紧靠凹面镜处的两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基模。) 解:腔长用L 表示,凹镜曲率半径用1R 表示,平面镜曲率半径用2R 表示,则 120.5m ,2m ,L R R ===∞ 由稳定腔求解的理论可以知道,腔内高斯光束光腰落在平面镜上,光腰半径为 0121 4 1 ()] 0.42m m w L R L = = -≈ 共焦参量为2 207 0.420.87m 632810 w f ππλ -?= = ≈? 凹面镜光斑半径为 10.484m m w w w ==≈ 所以平面镜端光阑直径为 03.3 1.386m m D w =?=平 凹面镜端光阑直径为 13.3 1.597m m D w =?=凹 2.图7.1所示激光器的M 1是平面输出镜,M 2是曲率半径为8cm 的凹面镜,透镜P 的焦距F =10cm ,用小孔光阑选TEM 00模。试标出P 、M 2和小孔光阑间的距离。若工作物质直径是5mm ,试问小孔光阑的直径应选多大? 图 7.1 1 2

解:如下图所示: 1 2 P 小孔光阑的直径为: 3 1.0610100 2 2mm 0.027mm 2.5 f d a λππ-??==? ≈? 其中的a 为工作物质的半径。 3.激光工作物质是钕玻璃,其荧光线宽F ν?=24.0nm ,折射率η=1.50,能用短腔选单纵模吗? 解:谐振腔纵模间隔 2 22q q c L L νηλ λη?=?= 所以若能用短腔选单纵模,则最大腔长应该为 2 15.6μm 2L λ ηλ = ≈? 所以说,这个时候用短腔选单纵模是不可能的。 6.若调Q 激光器的腔长L 大于工作物质长l ,η及' η分别为工作物质及腔中其余部分的折射率,试求峰值输出功率P m 表示式。 解:列出三能级系统速率方程如下: 2121 (1) 2 (2) R dN l N cN n dt L d n N n dt στσυ=?-'?=-? 式中,()L l L l ηη''=+-,η及' η分别为工作物质及腔中其余部分的折射率,N 为工作物质中的平均光子数密度,/,/R c L c υητδ'==。 由式(1)求得阈值反转粒子数密度为:

激光原理与技术习题一

《激光原理与技术》习题一 班级 序号 姓名 等级 一、选择题 1、波数也常用作能量的单位,波数与能量之间的换算关系为1cm -1 = eV 。 (A )1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er 光纤激光器的中心波长为波长为1.530μm ,则产生该波长的两能级之间的能量间 隔约为 cm -1。 (A )6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm 的He-Ne 激光器,谱线线宽为Δν=1.7×109Hz 。谐振腔长度为50cm 。假 设该腔被半径为2a=3mm 的圆柱面所封闭。则激光线宽内的模式数为 个。 (A )6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于 、 、 光子的科学。 2、光子具有自旋,并且其自旋量子数为整数,大量光子的集合,服从 统计分布。 3、设掺Er 磷酸盐玻璃中,Er 离子在激光上能级上的寿命为10ms ,则其谱线宽度为 。 三、计算与证明题 1.中心频率为5×108MHz 的某光源,相干长度为1m ,求此光源的单色性参数及线宽。 2.某光源面积为10cm 2,波长为500nm ,求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/exp(1 kT hv 。

《激光原理与技术》习题二 班级 姓名 等级 一、选择题 1、在某个实验中,光功率计测得光信号的功率为-30dBm ,等于 W 。 (A )1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、填空题 1、如果激光器在=10μm λ输出1W 连续功率,则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、一束光通过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍,则该物 质的增益系数为 。 三、问答题 1、以激光笔为例,说明激光器的基本组成。 2、简要说明激光的产生过程。 3、简述谐振腔的物理思想。 4、什么是“增益饱和现象”?其产生机理是什么? 四、计算与证明题 1、设一对激光能级为2E 和1E (设g 1=g 2),相应的频率为ν(波长为λ),能级上的粒子数密度分 别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 2、设光振动随时间变化的函数关系为 (v 0为光源中心频率), 试求光强随光频变化的函数关系,并绘出相应曲线。 ???<<=其它,00),2exp()(00c t t t v i E t E π

【激光原理】第四章作业答案

1 1.有一平凹氦氖激光器,腔长 0.5米 ,凹镜曲率半径为2米 ,现欲用小孔光阑选出基模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的 3.3倍时,可选出基横模。) 解: 已知条件R 1=∞, R 2=2 m, L =0.5 m ∵等价的对称共焦腔参数 L R R L R L Z L R R L R L Z 2221122121-+-=-+--=)(,)( L R R L R R L R L R L f 2212121-+-+--=))()(( ∴z 1=0 m, z 2=L =0.5 m, m .)(8702≈-=L R L f 对于基横模 ∵22001???? ??+=πωλωωz z )(, π λωf =0≈0.418×10-3 m ∴平面镜的光斑半径ωs1=ω0, 凹面镜的光斑半径L R R s -=220 2ωω≈0.481×10-3 m ∴光阑紧靠平面镜的小孔直径为d 1=3.3ωs1≈1.379×10-3 m ,而光阑紧靠凹面镜的小孔直径为d 2=3.3ωs2≈1.587×10-3 m 2. 激光工作物质是钕玻璃(发光波长为1.06 μm),其荧光线宽 ΔλF =24 nm ,折射率μ=1.5,能用短腔选单纵模吗? 解: 相邻两个纵模频率差 L c μν2=? 短腔法选单纵模的条件是

2 F v ?>?ν2 ∵F F c λλν?=?2≈6.4×1012 Hz F v c L ?<μ=0.31×10-4 m 腔长为几十微米的量级,很难实现高功率的激光输出。因此不能用短腔法选单纵模。 3.解: mm s f 01.02.060 300=?=='ωω 5.解: ∵L 1紧靠腔的输出镜面 ∴入射在L 1上的光斑半径ω满足: ∴31.1125.220012=?== 'ωωf f M 7.解: 当声频改变ν?时,衍射光偏转的角度为:νμυλφ?=?s ; 而高斯光束的远场发散角为:0 μπωλθ=; 可分辨光斑数为:15710310501030033 60 =?????=???=?=-.πυωπνθφs n 8. 请解释调Q 激光器的原理,以及脉冲形成分哪几个阶段。具体的调Q 技术有那些? 答:由于激光上能级最大粒子反转数受到激光器阈值的限制,那么,要使上能级积累大量的粒子,可以设法通过改变(增加)激光器的阈值来实现,就是当激光器开始泵浦初期,设法将激光器的振荡阈值调得很高,抑制激光振荡的产生,这样激光上能级的反转粒子数便可积

激光原理与技术试题答案

2006-2007学年 第1学期 《激光原理与技术》B 卷 试题答案 1.填空题(每题4分)[20] 激光的相干时间τc 和表征单色性的频谱宽度Δν之间的关系为___1c υτ?= 一台激光器的单色性 为5x10-10,其无源谐振腔的Q 值是_2x109 如果某工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105 S -1,该跃迁的受激辐射爱因斯坦系数B 10等于_____6x1010 m 3s -2J -1 设圆形镜共焦腔腔长L=1m ,若振荡阈值以上的增益线宽为80 MHz ,判断可能存在_两_个振荡频率。 对称共焦腔的 =+)(2 1 D A _-1_,就稳定性而言,对称共焦腔是___稳定_____腔。 2. 问答题(选做4小题,每小题5分)[20] 何谓有源腔和无源腔?如何理解激光线宽极限和频率牵引效应? 有源腔:腔内有激活工作物质的谐振腔。无源腔:腔内没有激活工作物质的谐振腔。 激光线宽极限:无源腔的线宽极限与腔内光子寿命和损耗有关:122' c R c L δ υπτπ?= = ;有源腔由于受到自发辐射影响,净损耗不等于零,自发辐射的随机相位造成输出激光的线宽极限 220 2()t c s t out n h n P πυυυ?= ?。 频率牵引效应:激光器工作物质的折射率随频率变化造成色散效应,使得振荡模的谐振频率总是偏离无源腔相应的模的频率,并且较后者更靠近激活介质原子跃迁的中心频率。这种现象称为频率牵引效应。 写出三能级和四能级系统的激光上能级阈值粒子数密度,假设总粒子数密度为n ,阈值反转粒子数密度为 n t. 三能级系统的上能级阈值粒子数密度22 t t n n n += ;四能级系统的上能级阈值粒子数密度2t t n n ≈。 产生多普勒加宽的物理机制是什么? 多普勒加宽的物理机制是热运动的原子(分子)对所发出(或吸收)的辐射的多普勒频移。 均匀加宽介质和非均匀加宽介质中的增益饱和有什么不同?分别对形成的激光振荡模式有何影响? 均匀加宽介质:随光强的增加增益曲线会展宽。每个粒子对不同频率处的增益都有贡献,入射的强光不仅使自身的增益系数下降,也使其他频率的弱光增益系数下降。满足阀值条件的纵模

激光原理与技术09级A卷含答案

题号一二三四总分阅卷人 得分 得分 2011 ─2012学年 第 2 学期 长江大学试卷 院(系、部) 专业 班级 姓名 学号 …………….……………………………. 密………………………………………封………………..…………………..线…………………………………….. 《 激光原理与技术 》课程考试试卷( A卷)专业:应物 年级2009级 考试方式:闭卷 学分4.5 考试时间:110 分钟相关常数:光速:c=3×108m/s, 普朗克常数h =6.63×10-34Js, 101/5=1.585 一、选择题 (每小题 3 分,共 30 分) 1. 掺铒光纤激光器中的发光粒子的激光上能级寿命为10ms ,则其自 发辐射几率为 。 (A )100s -1 (B) 10s -1 (C) 0.1s -1 (D) 10ms 2. 现有一平凹腔R 1→∞,R 2=5m ,L =1m 。它在稳区图中的位置是 。(A) (0, 0.8) (B) (1, 0.8) (C) (0.8, 0) (D) (0.8, 1) 3. 图1为某一激光器的输入/输出特性曲线,从图上可以看出,该激光器的斜效率约为 。

(A) 10% (B) 20% (C) 30% (D) 40% 图1 图2 4.图2为某一激光介质的吸收与辐射截面特征曲线,从图上可以看出,该激光介质可用来产生 的激光。

得 分 (A) 只有1532 nm (B)只能在1532 nm 附近 (C) 只能在1530 nm-1560nm 之间 (D) 1470 nm-1570nm 之间均可 A 卷第 1 页共 6 页 5. 电光晶体具有“波片”的功能,可作为光波偏振态的变换器,当晶体加上V λ/2电场时,晶体相当于 。 (A )全波片 (B) 1/4波片 (C) 3/4波片 (D) 1/2波片 6. 腔长3m 的调Q 激光器所能获得的最小脉宽为 。(设腔内介质折射率为1) (A )6.67ns (B) 10ns (C) 20ns (D) 30ns 7. 掺钕钇铝石榴石(Y 3Al 5O 12)激光器又称掺Nd 3+:YAG 激光器,属四能级系统。其发光波长为 。 (A ) 1.064μm (B )1.30μm (C ) 1.55μm (D )1.65μm 8. 在采用双包层泵浦方式的高功率光纤放大器中,信号光在 中传输。 (A ) 纤芯 (B )包层 (C )纤芯与包层 (D )包层中(以多模) 9. 脉冲透射式调Q 开关器件的特点是谐振腔储能调Q ,该方法俗称 。 (A )漂白 (B )腔倒空 (C )锁模 (D )锁相 10. 惰性气体原子激光器,也就是工作物质为惰性气体如氩、氪、氙、氖等。这些气体除氙以外增益都较低,通常都使用氦气作为辅助气体,借以 。 (A )降低输出功率 (B )提高输出功率 C )增加谱线宽度 (D )减小谱线宽度 二、填空题 (每小题 3 分,共 30 分) 1. 在2cm 3空腔内有一带宽为1×10-4μm ,波长为0.5μm 的跃迁,此跃迁的频率范围是 120 GHz 。 2. 稳定球面腔与共焦腔具有等价性,即任何一个共焦腔与无穷多个稳定

【精品】激光原理第四章答案1

第四章电磁场与物质的共振相互作用 1静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0。4c 、0。8c 的速度向着观察者运动,问其表观中心波长分别变为多少? 解:根据公式νν=c λν= 可得:λλ=,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ 2.设有一台迈克尔逊干涉仪,其光源波长为λ。试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。 证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为 I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν.将 2M 看作光接收器,由于它以速度v S 2 M (1) v c νν'=+

运动,故它感受到的光的频率为: 因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为 这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。在屏P 上面,I 光和II 光的广场可以分别表示为: 2(1)(1)(12) v v v c c c νννν'''=+=+≈+

因而光屏P 上的总光场为 光强正比于电场振幅的平方,所以P 上面的光强为 它是t 的周期函数,单位时间内的变化次数为 由上式可得在dt 时间内屏上光强亮暗变化的次数为 (2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。对上式两边积分,即可以得到镜2M 移 动L 距离时,屏上面光强周期性变化的次数S 式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2 t 相对应的2M 镜的空间坐标,并且有21L L L -=。 得证。 3。在激光出现以前,86Kr 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性 8/10λλ-?=的氦氖激光器比较。 02cos(22)cos(2) I II v v E E E E t t t c c πνπνπν=+=+021cos 22v I I t c πν?? ????=+?? ???????? ?22v dL m c c dt νν== 22 1 1 212222()t L t L L S mdt dL L L L c c c νννλ== =-==??

激光原理第二章习题解答

《激光原理》习题解答 第二章习题解答 1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合. 证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。共焦腔分为实共焦腔和虚共焦腔。公共焦点在腔的共焦腔是实共焦腔,反之是虚共焦腔。两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。) 根据以上一系列定义,我们取具对称共焦腔为例来证明。 设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知: L R R R ===21 因此,一次往返转换矩阵为 ?????? ?????????????????? ??-???? ??---?????????? ??-+-???? ??--=??????=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到: ? ? ? ???--=??????=1001D C B A T 共轴球面腔的稳定判别式子()12 1 1<+<-D A 如果 ()121 -=+D A 或者()12 1=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。 经过两个往返的转换矩阵式2 T ,?? ? ? ??=10012T 坐标转换公式为:?? ????=??????? ?????=??????=???? ??1111112221001θθθθr r r T r 其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过 两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。 2 试求平凹、双凹、凹凸共轴球面腔的稳定条件。 解答如下:共轴球面腔的()2 12 21222121R R L R L R L D A + --≡+,如果满足()1211<+<-D A ,

激光原理部分题答案

07级光信息《激光原理》复习提纲 简答题 1、 简述自发辐射、受激辐射和受激吸收之间的联系与区别。 (1)受激辐射过程是一种被迫的、受到外界光辐射控制的过程。 没有外来光子的照射,就不可能发生受激辐射。 (2) 受激辐射所产生的光子与外来激励光子属于同一光子状态, 具有相同的位相、传播方向和偏振状态。 (3) 激光来自受激辐射,普通光来自自发辐射。两种光在本质 上相同:既是电磁波,又是粒子流,具有波粒二象性;而 不同之处:自发辐射光没有固定的相位关系,为非相干光, 而激光有完全相同的位相关系,为相干光。 (4) 自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃 迁几率决定于受激辐射系数与外来光单色能量密度的乘积。 (5)受激吸收是与受激辐射相反的过程,它的几率与受激辐射几率一样取决于吸收系数和外来光单色辐射能量密度的乘积。 2、二能级系统有无可能通过光泵浦实现稳态粒子数反转?(不能,PPT 上有) 在光和原子相互作用达到稳定条件下 得到 不满足粒子数反转,所以不能实现。 3、简述均匀增宽和非均匀增宽的区别。(类型,贡献不同ppt 上有) 4、简述光谱线增宽类型,它们之间的联系与区别 均匀增宽的共同特点 引起加宽的物理因素对每个原子都是等同的 都是光辐射偏离简谐波引起的谱线加宽 非均匀增宽的共同特点 原子体系中每个原子只对谱线内与它的表观中心频率相应的部分有贡 献,因而可以区分谱线上某一频率范围是由哪一部分原子发射的。 E 1 E 2 B 12 B 21 A 21 W W W B B ===2112 2112 即当t n B t n B t n A ννd d d 1122212 21ρρ=+W A W n n +=2112

激光原理与技术

激光的特性:方向性好、单色好、相干性好、亮度高。由于谐振腔对 光振荡方向的限制,激光只有沿腔轴方向受激辐射才能振荡放大,所以激光具有很高的方向性。半导体激光器的方向性最差。衍射极限θm≈1.22λ D (λ为波长,D为光束直径);激光是由原子受激辐射而产生,因而谱线极窄,所以单色性极好。单模稳频气体激光器的单色性最好,半导体激光器的单色性最差;激光是通过受激辐射过程形成的,其中每个光子的运动状态(频率、相位、偏振态、传播方向)都相同,因而是最好的相干光源。激光是一种相干光这是激光与普通光源最重要的区别;激光的高方向性、单色性等特点,决定了它具有极高的单 色定向亮度。相干性包括时间相干和空间相干,有时用相干长度L C=C ?V 来表示相干时间。自发辐射:处于高能级E2的原子自发地向低能级跃迁,并发射出一个能量为hv=E2?E1的光子,这个过程称为自发跃迁。 自发辐射跃迁概率(自发跃迁爱因斯坦系数)A21=(dn21 dt ) sp 1 n2 = ?1 n2dn2 dt (n2为E2能级总粒子数密度;dn21为dt时间内自发辐射跃迁 粒子数密度);受激辐射:在频率为v=(E2?E1)/h的光照激励下,或在能量为hv=E2?E1的光子诱发下,处于高能级E2上的原子可能跃迁到低能级E1,同时辐射出一个与诱发光子的状态完全相同的光子,这 个过程称为受激辐射跃迁W21=(dn21 dt ) st 1 n2 =?1 n2 dn2 dt 。受激辐射跃 迁与自发辐射跃迁的区别在于,它是在辐射场(光场)的激励下产生的,因此,其月前概率不仅与原子本身的性质有关,还与外来光场的单色能量密度ρv成正比,W21=B21ρv,B21称为爱因斯坦系数;受激吸收:处于低能级E1的原子,在频率为v的光场作用(照射)下,吸收

激光原理习题

第一章:激光的基本原理 1.为使He-Ne激光器的相干长度达到1km,它的单色性?λ/λ0应是多少? 2.设一对激光能级为E2和E1(f1=f2),相应的频率为v(波长为λ),能级上的粒子 数密度分别为n2和n1,求: (a)当v=3000MHz,T=300K时,n2/n1=? (b)当λ=1μm,T=300K时,n2/n1=? (c)当λ=1μm,n2/n1=0.1时,温度T=? 3.设一对激光能级为E2和E1(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n1和n2,求 (a)当ν=3000Mhz,T=300K时,n2/n1=? (b)当λ=1um,T=300K时, ,n2/n1=? (c)当λ=1um, ,n2/n1=0.1时,温度T=? 4.在红宝石Q调制激光器中,有可能将几乎全部Cr+3离子激发到激光上能级并产生激光巨脉冲。设红宝石棒直径1cm,长度7.5cm,Cr+3离子浓度为2×1019cm-3,巨型脉冲宽度为10ns,求输出激光的最大能量和脉冲功率。 5.试证明,由于自发辐射,原子在E2能级的平均寿命t s=1/A21。 6.某一分子的能级E4到三个较低能级E1,E2和E3的自发跃迁几率分别是A43=5*107s-1,A42=1*107s-1和A41=3*107s-1,试求该分子能级的自发辐射寿命τ4。若τ1=5*107s-1,τ2=6*10-9s,τ3=1*10-8s在对E4连续激发并达到稳态时,试求相应能级上的粒子数比值n1/n4,n2/n4,n3/n4,并回答这时在哪两个能级间实现了集居数反转。 7.证明当每个膜内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。 8.(1)一质地均匀的材料对光的吸收系数为0.01mm-1,光通过10cm长的该材料后,出射光强为入射光强的百分之几?(2)一光束通过长度为1m的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。 第二章:开放式光腔与高斯光束 1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

相关文档
最新文档