英飞凌驱动培训及其使用中的问题

几种用于IGBT驱动的集成芯片

几种用于IGBT驱动的集成芯片 2. 1 TLP250(TOSHIBA公司生产) 在一般较低性能的三相电压源逆变器中,各种与电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。同时,这一检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。因此在这种逆变器中,对IGBT驱动电路的要求相对比较简单,成本也比较低。这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。这里主要针对TLP250做一介绍。 TLP250包含一个GaAlAs光发射二极管和一个集成光探测器,8脚双列封装结构。适合于IGBT或电力MOSFET栅极驱动电路。图2为TLP250的内部结构简图,表1给出了其工作时的真值表。 TLP250的典型特征如下: 1)输入阈值电流(IF):5 mA(最大); 2)电源电流(ICC):11 mA(最大); 3)电源电压(VCC):10~35 V; 4)输出电流(IO):± 0.5 A(最小); 5)开关时间(tPLH /tPHL):0.5 μ s(最大); 6)隔离电压:2500 Vpms(最小)。 表2给出了TLP250的开关特性,表3给出了TLP250的推荐工作条件。

注:使用TLP250时应在管脚8和5间连接一个0.1 μ F的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过 1 cm。 图3和图4给出了TLP250的两种典型的应用电路。 在图4中,TR1和TR2的选取与用于IGBT驱动的栅极电阻有直接的

关系,例如,电源电压为24V时,TR1和TR2的Icmax≥ 24/Rg。 图5给出了TLP250驱动IGBT时,1 200 V/200 A的IGBT上电流的实验波形(50 A/10 μ s)。可以看出,由于TLP250不具备过流保护功能,当IGBT过流时,通过控制信号关断IGBT,IGBT中电流的下降很陡,且有一个反向的冲击。这将会产生很大的di/dt和开关损耗,而且对控制电路的过流保护功能要求很高。 TLP250使用特点: 1)TLP250输出电流较小,对较大功率IGBT实施驱动时,需要外加功率放大电路。 2)由于流过IGBT的电流是通过其它电路检测来完成的,而且仅仅检测流过IGBT的电流,这就有可能对于IGBT的使用效率产生一定的影响,比如IGBT在安全工作区时,有时出现的提前保护等。 3)要求控制电路和检测电路对于电流信号的响应要快,一般由过电流发生到IGBT可靠关断应在10 μ s以内完成。 4)当过电流发生时,TLP250得到控制器发出的关断信号,对IGBT的栅极施加一负电压,使IGBT硬关断。这种主电路的dv/dt比正常开关状态下大了许多,造成了施加于IGBT两端的电压升高很多,有时就可能造成IGBT的击穿。 2.2 EXB8..Series(FUJI ELECTRIC公司生产) 随着有些电气设备对三相逆变器输出性能要求的提高及逆变器本身的原因,在现有的许多逆变器中,把逆变单元IGBT的驱动与保护和主电路电流的检测分别由不同的电路来完成。这种驱动方式既提高了逆变器的性能,又提高了IGBT的工作效率,使IGBT更好地在安全工作区工作。这类芯片有富士公司的EXB8..Series、夏普公司的PC929等。在这里,我们主要针对EXB8..Series 做一介绍。 EXB8..Series集成芯片是一种专用于IGBT的集驱动、保护等功能于一体的复合集成电路。广泛用于逆变器和电机驱动用变频器、伺服电机驱动、UPS、感应加热和电焊设备等工业领域。具有以

IGBT驱动电路

IGBT模块驱动及保护技术 1 引言 IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,故在较高频率的大、中功率应用中占据了主导地位。 IGBT是电压控制型器件,在它的栅极-发射极间施加十几V的直流电压,只有μA级的漏电流流过,基本上不消耗功率。但IGBT的栅极-发射极间存在着较大的寄生电容(几千至上万pF),在驱动脉冲电压的上升及下降沿需要提供数A的充放电电流,才能满足开通和关断的动态要求,这使得它的驱动电路也必须输出一定的峰值电流。 IGBT作为一种大功率的复合器件,存在着过流时可能发生锁定现象而造成损坏的问题。在过流时如采用一般的速度封锁栅极电压,过高的电流变化率会引起过电压,为此需要采用软关断技术,因而掌握好IGBT的驱动和保护特性是十分必要的。 2 栅极特性 IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般只能达到20~30V,因此栅极击穿是IGBT失效的常见原因之一。在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极-集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此。通常采用绞线来传送驱动信号,以减小寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。 由于IGBT的栅极-发射极和栅极-集电极间存在着分布电容Cge和Cgc,以及发射极驱动电路中存在有分布电感Le,这些分布参数的影响,使得IGBT的实际驱动波形与理想驱动波形不完全相同,并产生了不利于IGBT开通和关断的因素。这可以用带续流二极管的电感负载电路(见图1)得到验证。 (a)等效电路(b)开通波形 图1 IGBT开关等效电路和开通波形 在t0时刻,栅极驱动电压开始上升,此时影响栅极电压uge上升斜率的主要因素只有Rg和

低功耗的集成栅极驱动电路设计

低功耗的集成栅极驱动电路设计 廖聪维,陈韬,郑灿,张盛东 北京大学,深圳研究生院,深圳,518055 摘要:本文分析了传统集成栅极驱动电路的功耗与TFT尺寸、工作温度和存储电容的关系,发现集成栅极驱动电路的功耗与存储电容关系密切。在对传统集成栅极驱动电路低功耗分析的基础上,本文介绍了一种基于多相交叠时钟的集成栅极驱动电路。这种新电路具有低功耗的优点,且有效栅极驱动时间延长。尤其在存储电容小,高温场合,这种集成栅极驱动电路节约功耗超过60%。 关键词:非晶硅(a-Si:H),薄膜晶体管(TFT),栅极驱动器 1 引言 在TFT LCD产业界,集成栅极驱动电路(GIA, gate driver in array)引起了广泛的兴趣[1]。这是因为它具有减少外围IC数量及其连线、降低显示模组成本、提高显示面板分辨率和弯折度等优点[2]。然而,显示器的总体功耗会由于栅极驱动器的集成而增加。尤其是移动显示中,低功耗设计对于延长电池使用时间、增强移动设备的续航能力非常必要。因此,集成栅极驱动电路的低功耗设计显得非常重要。 已有研究采用多相时钟的设计,降低时钟跳变频率减少集成栅极驱动电路的功耗[3]。但是,很少有研究成果根据集成栅极驱动电路的特点做专门的低功耗优化设计。本文研究了传统集成栅极驱动电路的功耗与器件参数的关系,发现存储电容值与功耗密切相关。进而报道了一种新的低功耗集成栅极驱动电路。 2 电路分析 图1是一种针对WXGA(800*1280) TFT LCD应用的传统的栅极驱动单元电路。其由四部分构成:预充电部分、自 基金项目:深圳市重点实验室提升项目 (CXB201005260065A) Email: zhangsd@https://www.360docs.net/doc/d417027206.html, 举上拉部分、下拉部分和低电平维持部分[4]。其中,预充电部分包括T1; 自举上拉部分包括T2; 下拉部分为T3和T4;低电平维持部分包括C1,C2,T5~T8。低电平维持部分的作用是抑制时钟馈通效应、防止电路的内部节点和输出节点上噪声电荷积累。 集成栅极驱动电路功耗包括静态功耗和动态功耗,以动态功耗为主。集成栅极驱动电路的功耗表达式: ()2 C CK H L CK P V V f ≈-, C CK, V H/V L和f CK分别是时钟信号负载电容,时钟信号的高/低电平,时钟信号的频率。 从功耗表达式可以看出,减少功耗的措施包括:(1) 减少电压幅度;(2)降低时钟频率;(3)减少负载电容等。但是,减少电压幅度会导致TFT的驱动能力不足,输出信号的延迟时间增加。降低时钟频率则容易增加电路的复杂程度。同时,负载电容受限于工艺而不容易减少。 V I1 图1 传统栅极驱动单元电路 Fig. 1. a conventional a-Si:H TFT gate driver schematic

最新栅极驱动电路设计

单端变压器耦合MOS管驱动电路 隔直电容必须在源边电路,起到的作用是提供重启电压,如果没有该电容,变压器的磁化电压和占空比相关,变压器磁性可能饱和。 双端变压器耦合MOS管驱动电路 今天在研究全桥电路,资料和书上谈到的,大多数基于理想的驱动器(立即充电完成)。这里花一些篇幅把MOS管驱动的来龙去脉搞搞清楚。 预计要分几个篇幅: 1.MOS管驱动基础和时间功耗计算 2.MOS管驱动直连驱动电路分析和应用 3.MOS管驱动变压器隔离电路分析和应用 4.MOS管网上搜集到的电路学习和分析 今天主要分析MOS管驱动变压器隔离电路分析和应用和MOS管驱动基础和时间功耗计算。 参考材料: 《Design And Application Guide For High Speed MOSFET Gate Drive Circuits》是一份很好的材料 《MOSFET 驱动器与MOSFET 的匹配设计》也可以借鉴。 首先谈一下变压器隔离的MOS管驱动器: 如果驱动高压MOS管,我们需要采用变压器驱动的方式和集成的高边开关。 这两个解决方案都有自己的优点和缺点,适合不同的应用。 集成高边驱动器方案很方便,优点是电路板面积较小,缺点是有很大的导通和关断延迟。 变压器耦合解决方案的优点是延迟非常低,可以在很高的压差下工作。常它需要更多,缺点是需要很多的元件并且对变压器的运行有比较深入的认识。 变压器常见问题和与MOS管驱动相关的问题: 变压器有两个绕组,初级绕组和次级绕组实现了隔离,初级和次级的匝数比变化实现了电压缩放,对于我们的设计一般不太需要调整电压,隔离却是我们最注重的。 理想情况下,变压器是不储存能量的(反激“变压器”其实是耦合电感)。不过实际上变压器还是储存了少量能量在线圈和磁芯的气隙形成的磁场区域,这种能量表现为漏感和磁化电感。对于功率变压器来说,减少漏感可以减少能量损耗,以提高效率。MOS管驱动器变压器的平均功率很小,但是在开通和关闭的时候传递了很高的电流,为了减少延迟保持漏感较低仍然是必须的。 法拉第定律规定,变压器绕组的平均功率必须为零。即使是很小的直流分量可能会剩磁,最终导致磁芯饱和。这条规则对于单端信号控制的变压器耦合电路的设计有着重大影响。

MOS管驱动电阻怎么选择

MOS管驱动电阻怎么选择,给定频率,MOS管的Qg和上升沿怎么计算用多大电阻 首先得知道输入电容大小和驱动电压大小,等效为电阻和电容串联电路,求出电容充电电压表达式,得出电阻和电容电压关系图 MOS管的开关时间要考虑的是Qg的,而不是有Ciss,Coss决定,看下面的Data.一个MOS可能有很大的 输入电容,但是并不代表其导通需要的电荷量Qg就大, Ciss(输入电容)和Qg是有一定的关系,但是还要考虑MOS的跨导y. MOSFET栅极驱动的优化设计 1 概述 MOS管的驱动对其工作效果起着决定性的作用。设计师既要考虑减少开关损耗,又要求驱动波形较好即振荡小、过冲小、EMI小。这两方面往往是互相矛盾的,需要寻求一个平衡点,即驱动电路的优化设计。驱动电路的优化设计包含两部分内容:一是最优的驱动电流、电压的波形;二是最优的驱动电压、电流的大小。在进行驱动电路优化设计之前,必须先清楚MOS管的模型、MOS管的开关过程、MOS管的栅极电荷以及MOS管的输入输出电容、跨接电容、等效电容等参数 对驱动的影响。 2 MOS管的模型 MOS管的等效电路模型及寄生参数如图1所示。图1中各部分的物理意义为: (1)LG和LG代表封装端到实际的栅极线路的电感和电阻。 (2)C1代表从栅极到源端N+间的电容,它的值是由结构所固定的。(3)C2+C4代表从栅极到源极P区间的电容。C2是电介质电容,共值是固定的。而C4是由源极到漏极的耗尽区的大小决定,并随栅极电压的大小而改变。当栅极电压从0升到开启电压UGS(th)时,C4使整个栅源电容增加10%~15%。(4)C3+C5是由一个固定大小的电介质电容和一个可变电容构成,当漏极电 压改变极性时,其可变电容值变得相当大。(5)C6是随漏极电压变换的漏源电容。 MOS管输入电容(Ciss)、跨接电容(Crss)、输出电容(Coss)和栅源电容、 栅漏电容、漏源电容间的关系如下:

相关文档
最新文档