函数信号发生器设计(三角波、方波、正弦波发生器)

函数信号发生器设计(三角波、方波、正弦波发生器)
函数信号发生器设计(三角波、方波、正弦波发生器)

基于AT89C51的函数信号发生器设计

设计团队:郭栋、陈磊、集炜、査荣杰

指导老师:程立新

2011-11-13

目录

1、概述 (3)

2、技术性能指标 (3)

2.1、设计内容及技术要求 (3)

3、方案的选择 (3)

3.1、方案一 (4)

3.2、方案二 (6)

3.3、方案三 (6)

4、单元电路设计 (6)

4.1、正弦波产生电路 (6)

4.2、方波产生电路 (8)

4.3、矩形波产生锯齿波电路 (99)

5、总电路图 (10)

6、波形仿真结果 (1010)

6.1正弦波仿真结果 (10)

6.2矩形波仿真结果 (11)

6.3锯齿波仿真结果 (11)

7、PCB版制作与调试 (12)

8、元件清单 (134)

结论 (14)

总结与体会 (14)

参考文献 (15)

函数信号发生器

1、概述

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

2、技术性能指标

2.1、设计内容及技术要求:

设计并制作一个信号发生器,具体要求如下:

1、能够输出正弦波、方波、三角波;

2、输出信号频率范围为10Hz——10KHz;

3、输出信号幅值:正弦波3V,矩形波10V,锯齿波4V;

4、输出矩形波占空比50%-95%可调,矩形波斜率可调。

5、信号发生器用220V/50Hz的工频交流电供电;

6、电源:220V/50Hz的工频交流电供电。

按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PCB软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩

3、方案的选择

根据实验任务的要求,对信号产生部分可采用多种方案:如模拟电路实现方案,数字电路实现方案,模数结合实现方案等。鉴于波形信号的产生和模拟联系紧密,我们用模拟电路实现方案。模拟电路的实现方案就是指全部采用模拟电路的方式,以实现信号产生电路的所有功能。就此方案,

也有几种电路方式。 3.1、方案一

图1 方波和正弦波产生电路

用方波和三角波产生电路输出方波和三角波[1],再通过三角波—正

弦波转换器产生正弦波。方波和三角波发生器的工作原理: A1构成迟滞比较器

同相端电位Vp 由VO1和VO2决定。利用叠加定理可得:

⑴ 当 Vp >0时,A1输出为正,即VO1 = +Vz ;当 Vp <0时,A1输出为负即VO1 =-Vz 。 A2构成反相积分器

VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。假设电源接通时VO1=-Vz ,线性增加。

当: 时,可得:

⑵ 当VO2上升到使Vp 略高于0V 时,A1的输出翻转到VO1=+Vz 。

R 1

R 2

R 3

W R 10K Ω

20K Ω

1K Ω

0.022F

μC P

V 01

V 02

V Z

D Z

V ±50K Ω

A 1

A 2

N

V 021

22

01121V R R R V R R R V P +++=Z

V R R V 2

102

=0

)()(2

1

122121=++-+=Z Z P V R R R R R V R R R V Z V R R V 2

1

02-

=

同样: 时

当VO2下降到使Vp 略低于0时,VO1 =-Vz 。这样不断的重复,就可以得到方波VO1和三角波VO2。其输出波形如图2-6所示。输出方波的幅值由稳压管DZ 决定,被限制在稳压值±Vz 之间。

电路的振荡频率: ⑶ 方波幅值: =± ⑷

三角波幅值: = ⑸ 调节 可改变振荡频率,

但三角波的幅值也随之而变化。

图2 方波和正弦波波形图

3.2、方案二

2

014W R f R R C

=01V Z V 02V 2

1R R W

R

Z

V +Z

V -1

2

Z R V R +12

Z R V R -t

V Z

V

图3 信号发生器方框图

用正弦波发生器产生正弦波信号,然后用电压比较器产生方波,再经积分电路产生三角波,电路框图如图二。此电路结构简单,且有良好的正弦波和方波信号。但经过积分器电路产生同步的三角波信号,存在难度。原因是积分器电路的积分时间常数不变的,而随着方波信号频率的改变,积分电路输出的三角波幅度同时改变。若要保持三角波的输出幅度不变,需同时改变积分时间常数的大小。而且方波占空比[2]和锯齿波幅度改变会同时引起其它波形的变化。

3.3、方案三

在方案二的基础上,我们添加方波产生电路作为锯齿波产生的信号源,解决了课程设计中提出的对锯齿波和矩形波调节而互不影响的要求

4、单元电路设计

4.1、正弦波产生电路

采用RC选频网络构成的振荡电路称为RC振荡电路,它适用于低频振荡,一般用于产生1Hz~1MHz的低频信号。因为对于RC振荡电路来说,增大电阻R即可降低振荡频率,而增大电阻是无需增加成本的。

常用LC振荡电路[3]产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。因此,200kHz以下的正弦振荡电路,一般采用振荡频率较低的RC振荡电路。常用的RC振荡电路有相移式和桥式两种。

(1) RC移相式振荡器,具有电路简单,经济方便等优点,但选频作用较差,振幅不够稳定,频率调节不便,因此一般用于频率固定、稳定性要

求不高的场合。其振荡频率是

f0=1/(2πRC)⑹

(2)RC桥式振荡器将R C串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。

我们在方案选择中,正弦波电路是最重要的部分,正弦波不仅是所需输出信号,而且是方波电路的输入信号。此部分电路我们采用的是典型的RC桥氏正弦波振荡电路如下图,其中R1、R2、R5及二极管D1、D2构成负反馈网络和稳幅环节。调节Rw可改变负反馈的反馈系数,从而调整放大电路的电压增益,是满足振荡的复制条件。

二极管D1、D2为自动振幅元件,其作用是:当u0幅值很小时。二极管D1、D2相当于开路,此时有D1、D2和R组成的并联支路等效电阻较大,设R2、和R5、D1、D2并联支路的总等效电阻为Rf,则Rf也较大,所以Auf=(1+Rf/R1)>3,有利于起振;反之当u0幅值较大时,D1、D2导通,并联支路的等效电阻下降,Rf也下降,所以Auf随之下降,如果此时Auf≈3,则u0幅值趋于稳定。另外,采用两只二极管反向并联,目的是使输出电压在正负两个半周期内轮流工作,使正半周和负半周振幅相等,这两只管子特性应相同。而RC串并联电路构成选频网络,同时兼作反馈环节,连接于集成运放的输出端和同向输入端之间构成正反馈,以产生正弦自激振荡。

根据振荡器的频率,计算RC乘积的值,有

R C=1/(2*3.14*f0) ⑺已知给出f0=10Hz~10KHz,则RC=1.59*10∧-5~1.59*10∧-2,为了

使选频网络的特性不受运算放大器输入电阻和输出电阻的

影响,按Ri>>R>>R0的关系选择R的值,为了计算方便,初

选R=15.9kΩ,则C=1uF~0.001uF,我们采用双层波段开关两

组两支容值100倍的电容,则C1=1uF,C2=0.01uF。而R则

取为50kΩ的可调电阻。

因此,鉴于设计要求频率10Hz——10KHz跨度较大,

我们采用双层波段开关两组两支电容和两支同轴电位器来调节。选用不同的电容作为振荡频率f0的粗调,用同轴电位器实现f0的微调。每一值电

容和电位器组合都可以调节一段范围,交叉,故实现频率为连续可调。 为了实现仿真,根据运算放大器的技术参数,并且结合经济性,运算放大器为LM324N 。正弦波产生电路如图三。

C110nF C21uF

C3

10nF C41uF

R1

20k|?

Key=A

50%

J1Key = Space

2

3

J2

Key = Space 4

5

U1A

LM324D

3

2

11

41

1R2

20k|?Key=A

50%

6

VCC 12.6V VCC

VEE

-12.6V

VEE R31k|?R41.5k|?

8

R51k|?0D1

1N4001

D21N4001

97

图4 正弦波产生电路

4.2、方波产生电路

方波产生电路较简单,主要由比较器LM339N [4]的反相输入端接电压构成电压比较器。在实用电路中为了满足负载需要,常在集成运算的输出端加稳压管限幅电路。限幅电路的作用是把输出信号幅度限定在一定的范围内,亦即当输入电压超过或低于某一参考值后,输出电压将被限制在某一电平(称作限幅电平),且再不随输入电压变化。在此电路中,我们将限幅电路跨接在输出端和反相输入端之间。

VCC

12.6V VEE

-12.6V R82k|?Key=A 50%

R132k|?19R142k|?20VCC 12.6V VCC

VEE

-12.6V

VEE

VEE

-12.6V

U3C

LM339N

9

8

314

12

10

VEE

R1215k|?15

VCC

图5 矩形波产生电路

4.3、矩形波产生锯齿波电路

输出信号与输入信号的积分成正比的电路,称为积分电路。积分电路可将矩形脉冲波转换为三角波。电路原理很简单,都是基于电容的冲放电原理。

VCC

12.6V VEE -12.6V R82k|?Key=A 50%

R920k|?Key=A

50%U4B

LM324D

5

6

11

47

R1010k|?0

R1120k|?

C5100nF 17

16

14VEE -12.6V

VEE VCC 12.6V VCC

R132k|?19R142k|?20R162k|?VCC 12.6V VCC

VEE -12.6V

VEE VEE

-12.6V

VEE U3C

LM339N

9

8

314

12

10

VEE

R1215k|?15

VCC

图6 锯齿波产生电路

5、总电路图

C110nF C21uF

C3

10nF C4

1uF R1

20k|?

Key=A

50%

J1Key = Space

2

3

J2

Key = Space 4

5

U1A

LM324D

3

2

11

4

1

1R2

20k|?Key=A

50%

6

VCC

12.6V VCC

VEE

-12.6V

VEE R31k|?R41.5k|?

8

R51k|?0VCC

12.6V VEE -12.6V R72k|?

Key=A 50%

XSC1

Tektronix

1234

T

G

P

VCC

12.6V VEE -12.6V R82k|?Key=A 50%

R920k|?Key=A

50%U4B

LM324D

5

6

11

4

7

R1010k|?0

R11

20k|?

C5100nF

17

16

14VEE -12.6V

VEE VCC

12.6V VCC

D1

1N4001

D21N4001

9R132k|?19R142k|?20R152k|?21R162k|?22VCC 12.6V VCC VCC

12.6V VCC

VEE -12.6V

VEE VEE

-12.6V VEE

U2A

LM339N 5

4

32

12VEE 11

R615k|?VCC

12

U3C

LM339N

9

8

314

12

7

10

VEE

R12

15k|?15

VCC

图7 函数信号发生器总电路图

6、Multisim 10.1波形仿真结果

6.1正弦波仿真结果

图8 正弦波仿真图6.2矩形波仿真结果

图9 矩形波仿真图

6.3三角波仿真结果

图11三角波产生图

7、 PCB版制作与调试

1、PCB设计。PCB板的制作是运用Protel DXP软件来绘制,利用DXP制板的基本流程:准备原理图,设置PCB设计环境,载入网络表,并纠正网络表的宏错误,布线规则设置,布线,PCB的优化,DTC检查,保存文件与输出。

准备原理图:根椐所画的电路图,在元件库中查找到所要求的元件符号,在DXP 中绘制出原理图,在选择元件的时候特别要注意元件的封装是否符合所需的封装要求。布线设置主要设置线宽为40mil、孔大小为0.8mil,采用低层布线,其他为默认设置。

布线采用单面板布线。布线原则:逻辑清晰、接线牢固、测试方便、美观大方。

PCB的优化主要设置焊盘的大小与某些线的宽度及布线的路径。焊盘一般采用方框为78.74mil×39.37mil。

DTC检查的主要任务是对先前的设计规则进行检查,查看是否有违反规则的地方,如实际线宽是否比规则设置中的最大值还大或小,是否还存在没有彻底布通的网络等。

保存文件与输出是保存设计中的各种文件,并打印输出,包括PCB文档、元件清单等。设计工作结束。打印时可以把孔打印成实心,可以自己控制孔的大小方便打孔。

2、热转印,通过打印机PCB图打印到热转印上,然后选择大小合适的铜板,将铜板表面打磨干净之后,用带有PCB图的那一面同铜板贴紧,经过热转印机,温度约120度,转印三次,即把热转印纸上的PCB图转印到铜板上。

3、腐蚀,腐蚀这一过程是电路板成功的关键,将腐蚀液倒入腐蚀机加热至75

度后,将已经热转印的铜板放入腐蚀机进行腐蚀,腐蚀时间约一分钟即可。拿出洗净后如果没有发现断线、短路等情况即可。

4、焊接元件,根据原理图,在PCB板上焊接元件。焊接时要特别注意不要出现虚焊、短路等,元件的正负极反接、错接。

8、元件清单

表一元件清单

元器件型号数量

芯片Lm339n 1

芯片Lm324d 1

二极管In4001 2

瓷片电容1uf 2

电解电容220uf 2

电解电容 4.7mf 2

瓷片电容104 2

瓷片电容102 2

稳压管7812 1

稳压管7912

二极管IN4001 6

园桥1b4b42 1

电源变压器17.5v 1

电阻1k 2

电阻 1.5K 1

电阻2k 4

电阻10k 1

电阻15 2

电阻20K 1

电位器2k 2

电位器20k 3

双刀双掷开关 1

结论

此电路能够同时产生较好的正弦波和矩形波和锯齿波,而正弦波可调占空比,锯齿波可调斜率而不影响其它波形。在选择方案时,也有更简单的方案,但是考虑到仿真结果和实际器件时剔除了,最后器件的选择是根据最简原则和从经济性方面考虑的,并且此电路实现了这次设计的最终目的。但是如果用于实际,部分器件应该根据实际情况加以改变。

总结与体会

此次课程设计设需要有最终方案的选择,自己通过比较,仿真软件的仿真最终选择了最优的方案,经过小组成员的努力,不断地查阅资料,终于做出了满意的方案,这很好的锻炼了我们的自学能力。并且在PCB 制板和仿真过程中,也遇到了各种各样的问题,但是经过仔细的分析电路,同时与同学讨论,经过各种调试,得出了最终仿真结果。使自己的理论知识和动手能力都有了很大的提高。

参考文献

[1]康华光主编.电子技术基础(模拟部分)第五版[M].北京:高等教育出版社.2006.1.

[2]康华光主编.电子技术基础(数字部分)第五版[M].北京:高等教育出版社.2006.1.

[3]邱关源原著.电路第四版.北京:高等教育出版社[M].2006.

[4]吴运昌主编.模拟集成电路原理与应用[M].华南理工大学出版社.1995

[5]张庆双主编.实用电子电路200例 [M].北京:机械工业出版社,2003.4

[6]张大彪主编,电子测量技术与仪器.北京:电子工业出版社,2010.11

[7]余辉晴主编,模拟电子技术教程(第二版).北京:电子工业出版社,2010.11

方波发生器设计(课程设计报告)

课程设计(论文)说明书 题目:方波发生器的设计 院(系): 专业:电子信息工程 学生姓名: 学号: 指导教师: 职称: 20 年月日

摘要 本次课程设计以AT89S51单片机为核心器件,外围采用按键作为控制以及LCD1602作为显示器所设计的方波发生器。该方波发生器能实现0-1kHz频率范围、占空比可调的方波输出。其核心技术为单片机并行端口的应用、单片机定时器中断应用和数字分离的ASCII码液晶显示技术。采用8个独立的按键组成控制模块,操作方便,按键控制模式可以通过程序进行设定;显示模块则由液晶屏1602构成,能显示出实时输出方波的频率及占空比,直观明了。设计过程中遇到的问题是输出方波的频率、占空比与液晶显示数据存在误差,通过不断调试程序,合理编写中断服务程序来修正误差提高精确度,达到设计要求。该方波发生器具有线路简单、结构紧凑、价格低廉、性能优越等优点。 关键词:方波发生器;AT89S51单片机;键盘;LCD1602

Abstract The course design AT89S51 microcontroller as the core device, the external use of buttons as a control and LCD1602 displays are designed as a square wave generator. The square wave generator to achieve 0-1kHz frequency range, adjustable duty cycle square wave output. The core technology for the application of single chip parallel port, SCM applications and digital timer interrupt ASCII code separate liquid crystal display technology. 8-independent component control module buttons, easy to operate key control mode can be set through the program; display module constituted by the LCD1602, can show real-time output frequency and duty cycle square wave, intuitive and clear. Problems encountered in the design process is the output square wave frequency, duty cycle and LCD display data errors exist, through continuous commissioning process, a reasonable write interrupt service routine to correct the error to improve accuracy, to meet the design requirements. The square wave generator has a simple circuit, compact, low cost, superior performance advantages. Keywords: Square wave generator;AT89S51 microcontroller;keyboard;liquid crystal 1602

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师

二〇一二年七月 模拟电子技术课程设计指导书 一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1 课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。

2.2 课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3 技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调; (3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。

方波-三角波-正弦波函数信号发生器讲解

课程设计说明书 课程设计名称:电子课程设计 课程设计题目:设计制作一个产生方波-三角波-正弦波函数转换器学院名称:信息工程学院 专业:电子信息科学与技术班级:xxxxxxxx 学号:xxxxxxx 姓名:xxxxx 评分:教师:xxxxxx 20 13 年10 月15 日

电子课程设计 课程设计任务书 20 13 -20 14 学年 第 1 学期 第 1 周- 3 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

摘要 当今世界在以电子信息技术为前提下推动了社会跨越式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。由此可见科技已成为各国竞争的核心,尤其是电子通信方面更显得尤为重要,在国民生产各部门都得到了广泛的应用,而各种仪器在科技的作用性也非常重要,如信号发生器、单片机、集成电路等。 信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和 教学实验等领域。常用超低频信号发生器的输出只有几种固定的波形,有方波、 三角波、正弦波、锯齿波等,不能更改信号发生器作为一种常见的应用电子仪器 设备,传统的可以完全由硬件电路搭接而成,如采用LM324振荡电路发生正弦波、 三角波和方波的电路便是可取的路径之一,不用依靠单片机。 本系统本课题将介绍由LM324集成电路组成的方波——三角波——正弦波 函数信号发生器的设计方法,了解多功能函数信号发生器的功能及特点,进一步 掌握波形参数的测试方法,制作这种低频的函数信号发生器成本较低,适合学生 学习电子技术测量使用。制作时只需要个别的外部元件就能产生正弦波、三角波、 方波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。 关键字:信号发生器、波形转换、LM324

方波-三角波波形发生器设计

电子技术课程设计 题目方波、三角波信号发生器 学院名称电气工程学院 指导教师 职称 班级自动化071班 学号 学生姓名 2009年01 月14日

目录 摘要---------------------------------------------------------------------------2 关键词------------------------------------------------------------------------2 一、设计任务与要求------------------------------------------------------2 1.1 设计任务------------------------------------------------------------------------------2 1.2 设计要求-----------------------------------------------------------------------------2 二、方案设计与论证------------------------------------------------------3 2.1 方案一--------------------------------------------------------------------------------3 2.2 方案二--------------------------------------------------------------------------------3 2.3 两种方案比较------------------------------------------------------------------------4 三、单元电路设计与参数计算------------------------------------------4 3.1 方波产生电路-----------------------------------------------------------------------4 3.2 三角波发生电路--------------------------------------------------------------------5 3.3 参数计算------------------------------------------------------------------------------5 四、仿真过程仿真结果----------------------------------------------------5 4.1仿真调试输出波形-------------------------------------------------------------------5 4.2 调试输出波形------------------------------------------------------------------------6 4.3 数据记录------------------------------------------------------------------------------6 五、总原理图及元件清单------------------------------------------------7 5.1 电路设计原理------------------------------------------------------------------------7 5.2 总原理图------------------------------------------------------------------------------7 5.3 PCB图-------------------------------------------------------------------------------7 5.4 元件清单------------------------------------------------------------------------------8 六、电路调试与分析------------------------------------------------------8 6.1 电路的装调--------------------------------------------------8 6.2 调试结论------------------------------------------------------------------------------8 6.3 误差分析------------------------------------------------------------------------------9 七、设计心得---------------------------------------------------------------9 八、参考文献---------------------------------------------------------------9

模拟电子电路课程设计正弦波三角波方波函数发生器样本

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题目: 正弦波-三角波-方波函数发生器 初始条件: 具备模拟电子电路的理论知识; 具备模拟电路基本电路的设计能力; 具备模拟电路的基本调试手段; 自选相关电子器件; 能够使用实验室仪器调试。 要求完成的主要任务: ( 包括课程设计工作量及其技术要求, 以及说明书撰写等具体要求) 1、频率范围三段: 10~100Hz, 100 Hz~1KHz, 1 KHz~10 KHz; 2、正弦波Uopp≈3V, 三角波Uopp≈5V, 方波Uopp≈14V; 3、幅度连续可调, 线性失真小; 4、安装调试并完成符合学校要求的设计说明书 时间安排: 一周, 其中3天硬件设计, 2天硬件调试 指导教师签名: 年月日 系主任( 或责任教师) 签名: 年月日

目录 1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................2 1.3集成运放lm324简介...............................................3 2.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................4 2.3方案三..................................................5 3.单元电路设计..............................................6

三角波发生器实验

XXXX XXXX 一、设计方案与原理 图一三角波发生器电路图(Multisim) 图一为电路设计方案。电路结构分为两部分,左侧电路为迟滞比较器能在R3右端形成方波信号;右端电路为积分电路,即对方波信号进行积分得到三角波信号。 以下对照图一再次说明下书上写的三角波发生器原理。运放A1(左侧)输入端无信号,输出端Uo1随机输出高电位或低电位。设先输出高电位(在稳压器的作用下,高电位数值较恒定),则高电位接于电阻R4左侧,由于运放A2(右侧)反相输入端虚地(以理想运放为分析 模型)。因此流入电容C1的电流 f i表达式: 1 4 o f U i R = (1-1) R4右端接入的是反相输入端,所以电容的电流与电压关系: 1 141 11 O f O U i dt U dt C R C =-=- ? ?? (1-2)故当Uo1为高电位时,Uo由初始零电位呈斜率为负的直线下降。另用叠加法得如下关系: 12 11 1212 O O R R U U U R R R R + =+ ++ (1-3) 当U1+随Uo的减小恰好越过0V时,运放A1输出电位Uo1转为低电位,故Uo开始呈斜率为正的直线上升,直到U1+随Uo上升为0V,此时Uo由负转正。如此循环下去,就形成了输出端电位Uo变化呈三角波形式。 二、实验步骤及结果

实验步骤: 1. 用multisim 搭建电路,运行结果得到图像及数据 2. 理论计算出各数据并与实验值比较 3. 对实验室搭建的实际电路得出的数据进行分析。 仿真及理论结果: Multisim 得出的输出三角波Uo 及方波Uo1图像如下: 图二 Multisim 仿真得出的输出三角波图像 对于理论计算,有如下公式(同实验指导书): *1/2t z U U R R = (2-1) 4*1*4*C/R 2T R R = (2-2) 2/(4*R1*R 4*C)f R = (2-3) 三角波 周期(ms) 频率(Hz) 幅值(V) 理论计算结果 227 Multisim 仿真结果 215 表一 三角波数据理论值与Multisim 仿真值比较 可看出理论值与仿真值比较接近。 实验得出的实际电路结果分析: 周期 频率 幅值 对照(2-1)、(2-2)、(2-3)理论计算公式,由于电路电阻及电容的数值在仿真及实验室实际电路中是一样的,故周期和频率与仿真结果较接近。而三角波的幅值受到稳压器稳压值的影响,故实验室实际电路数据与理论值及仿真值有较大差别。 三、拓展分析

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

基于MCS-51单片机的可调频率方波发生器课程设计报告

摘要 本实验是基于PHILIPS AT89C51 单片机所设计的,可以实现键位和数字动态显示的一种频率可调方波发生器。通过键盘键入(10HZ-9999HZ)随机频率,使用七段数码管显示,每一个数码管对应一个键位。单片机对各个键位进行扫描,确定键位的输入,然后数码管显示输入的数值,方波发生器输出以数码管显示的数值为频率的方波。 关键词:单片机七段数码管键盘电路频率可调方波发生器

一、目的和功能 1.1 目的: 设计一种频率范围限定且可调的方波发生器,志在产生特定频率的方波。 1.2功能: 假设键盘是4*4的键盘,当键盘输入范围在10hz-9999hz的数字,单片机控制数码管显示该数值,并把该数值当做方波发生器的输入频率,单片机控制该方波发生器以该数值作为频率显示方波,从而得到我们想要频率的方波。 二、硬件设计 2.1 硬件设计思想 键盘的数字和键位关系固定,通过键盘输入产生频率,通过LED数码管显示出来,每一个数码管对应一个键位。基本设备是基于PHILIPS AT89C51单片机,外围设备采用的是4个七段数码管,PHILIPS A T89C51单片机,1个OSCILLOSCOPE 方波发生器,16个Button,若干电阻,电源电池。 2.2 部分硬件方案论述 2.2.1 七段数码管扫描显示方式的方案比较 方案一:静态显示方式:静态显示方式是指当显示器显示某一字符时,七段数码管的每段发光二极管的位选始终被选中。在这种显示方式下,每一个LED数码管显示器都需要一个8位的输出口进行控制。静态显示主要的优点是显示稳定,在发光二极管导通电流一定的情况下显示器的亮度大,系统运行过程中,在需要更新显示内容时,CPU才去执行显示更新子程序,这样既节约了CPU的时间,又提高了CPU的工作效率。其不足之处是占用硬件资源较多,每个LED数码管需要独占8条输出线。随着显示器位数的增加,需要的I/O口线也将增加。

方波-三角波产生电路的设计.

方波-三角波产生电路的设计 1 技术指标 设计一个方波-三角波产生电路,要求方波和三角波的重复频率为500Hz ,方波脉冲幅度为6-6.5V ,三角波为1.5-2V ,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL 与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC 电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC 积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。1U 构成迟滞比较器,用于输出方波;2U 构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位p V 由1O V 和2O V 决定。利用叠加定理可得: 21211211211) ()(O V V O V P V R R R R R V R R R R V ?++++?++= 当0>P V 时,U1输出为正,即Z O V V +=1 当0

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

集成运放构成的三角波方波发生器

集成运放构成的三角波方波发生器 一、实验目的 1.理解三角波方波发生器的设计思路,搭接出最简单的电路,获得固定频率、幅度的三角波、方波输出。 2.理解独立可调的设计思路,搭接出频率、占空比、三角波幅度、三角波直流偏移、方波幅度、方波直流偏移均独立可调的电路,调整范围不限。 3.理解分块调试的方法,进一步增强故障排查能力。 二、实验思路 利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。这个电路如图2.3.1所示,它的工作原理请参阅相关教科书。注意在这个电路中,给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。 我们可以立即联想到这样一个事实:当积分器的输入是固定电压,则其输出是线性上升或者下降的。因此,将图2.3.1中的RC充电电路去掉,用一个积分器替代,并考虑到极性,再增加一级反相电路,就可以实现三角波的产生,如图2.3.2所示。 图2.3.2电路使用了3个集成运放。电路设计者认为,A3并不是必须的,因为它仅仅完成了1倍的反相放大,这个功能完全可以利用A1的输入端极性进行巧妙设计来实现。为了节省1个运放,设计者给出了新的电路,如图2.3.3所示,它仅使用2个运放。

图2.3.3所示电路的工作原理,请参阅相关教科书。图中稳压管DZ和电阻R3组成稳压电路,目的是克服运放输出的不对称。 本实验在实现上述基本电路的基础上,还提出了新的要求。有下列6个量:三角波和方波共有的频率、共有的占空比、三角波的幅度、方波的幅度、三角波的直流偏移、方波的直流偏移,其中每个量都由一个独立的电位器控制,当调节某个量时,其它5个量不能发生变化。这就是独立可调的要求。 本实验将给出一个独立可调的三角波方波发生器电路,要求学生在认真分析的基础上,用运放、电阻、电容、稳压管等元器件,自己实现搭接。然后在搭接好的电路上,观察、调节、记录,体会其中的设计思想。 三、实验原理 图2.3.4是可以满足设计要求的最终电路。其中A1、A2、A3及其附属电路,完成三角波、方波的发生,并且实现频率和占空比的可调。A4、A5及其附属电路,实现三角波和方波的幅度、直流偏移可调。 图2.3.4电路与图2.3.3电路有3点主要的区别。第一、用R13、RW2、DZ1、DZ2组成一个双向电阻值不同的电路,取代图2.3.3中的积分器电阻R,使得积分器工作过程中,正向充电和反向放电的时间常数不一致,三角波上升斜率和下降斜率大小不同,造成方波的占空比不同。需要注意的是,由于用一个电位器调节,无论在什么位置,积分器的正向时间常数和反向时间常数的和,是一个常数,就造成单纯调节RW2,只改变占空比而不会改变频率。第二、在稳压管输出和积分器之间,加入A3构成的反相放大器,可以通过RW1调节积分器输入电压大小,进而改变积分器输出电压变化斜率,造成波形发生的频率变化。这样,uo1产生方波,uo2产生三角波。这两个波形的频

课程设计—基于单片机的方波信号发生器汇总

微型计算机技术专业方向课程设计 任务书 题目名称:基于单片机的方波信号发生器 专业自动化班级122 姓名学号 学校: 指导教师: 2014年12月9日

课程设计任务书 课程名称:微型计算机技术 设计题目:基于单片机的方波信号发生器系 统硬件要求: 从P1.0口输出方波,分四个档:按下S1时输出1HZ,按下S2时输出10HZ,按下S3时输出1KHZ,按下S4时输出10KHZ的方波,要求误差少于1%, 软件设计: 1)主程序设计 2)各功能子程序设计 其他要求: 1、每位同学独立完成本设计。 2、依据题目要求,提出系统设计方案。 3、设计系统电路原理图。 1、调试系统硬件电路、功能程序。 2、编制课程设计报告书并装订成册,报告书内容(按顺序) (1)报告书封面 (2)课程设计任务书 (3)系统设计方案的提出、分析 (4)系统中典型电路的分析 (5)系统软件结构框图 (6)系统电路原理图 (7)源程序 (8)课设字数不少于2000字 成绩 评语

摘要 本实验是基于AT89C51单片机单片机所设计的,可以实现四种频率不同的方波信号的发生。本实验方波输出在89C51的P1.0口,分为四档,按下S1时输出1HZ,按下S2时输出10HZ,按下S3时输出1KHZ,按下S4时输出10KHZ的方波。 关键词:51单片机;方波;四档

目录 第一章前言 (5) 第二章系统总体设计 2.1系统介绍 (5) 2.2 硬件简介 (5) 2.3 软件简介 (5) 2.4 系统结构框图 (5) 第三章硬件电路 3.1硬件设计思想 (6) 3.2开关信号采集 (6) 3.3复位电路及晶振电路 (8) 3.4方波输出 (8) 第四章软件系统 4.1软件系统概述 (8) 4.2各部分程序 (10) 第五章总结 (15) 附录 (16)

方波-三角波波形发生器的设计

模拟电子技术课程设计报告 题目名称:方波-三角波波形发生器 姓名: 学号: 班级:

目录 摘要---------------------------------------------------------------------2 关键词------------------------------------------------------------------2 一设计任务与要求--------------------------------------------------2 1.1设计任务-----------------------------------------------------------------------------------2 1.2 设计要求----------------------------------------------------------------------------------2 二电路设计----------------------------------------------------------2 2.1 方案设计与论证-------------------------------------------------------------------------2 2.2 电路设计原理----------------------------------------------------------------------------3 2.2.1 电路原理框图-------------------------------------------------------------------------3 2.2.2 单元电路设计与计算说明----------------------------------------------------------3 2.3 原理图--------------------------------------------------------------------------------------4 2.3.1 总体原理图----------------------------------------------------------------------------4 2.3.2 PCB图--------------------------------------------------------------------------------4 2.3.3 EWB仿真调试------------------------------------------------------------------------4 2.4 元器件选择与验证器材-----------------------------------------------------------------5 2.4.1元器件选择------------------------------------------------------------------------------5 2.4.2 LM741管脚排列-----------------------------------------------------------------------5 2.4.3 参数计算-------------------------------------------------------------------------------5 三制作与调试--------------------------------------------------------5 3.1 PCB板的制作-------------------------------------------------------------------------------6 3.2 电路的装调----------------------------------------------------------------------------------6 四调试结论与误差分析----------------------------------------------6 4.1调试结论-------------------------------------------------------------------------------------6 4.2 误差分析------------------------------------------------------------------------------------6 五设计心得-----------------------------------------------------------------7 六参考文献-----------------------------------------------------------7

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

方波和三角波发生器电路

方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当 Vp>0时 A1输出为正,即VO1 = +Vz;当 Vp<0时, A1输出为负即 VO1 = -Vz A2构成反相积分器 VO1为负时, VO2 向正向变化, VO1 为正时, VO2 向负向变化。假设电源接通时VO1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

图11-2 (2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02 (注意标注图形尺寸),并测量Rp及频率值。 表11-3 方波V01及三角波V02 波形 Rp= (中间) , f= (3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中 (记录不失真波形参数)。 表11-4 F ( KHz ) Rp ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。将 测量结果填入表11-4中。 表11-5 F (KHz ) R1 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (5)电位器Rp保持中间位置,R1接10K电阻,改变R2为100K可调电位计,观察对V01和V02 幅值和频率的影响。将测量结果填入表11-5中。(记录有波形的测试参数) 表11-6 F ( KHz ) R2 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高

课程设计——波形发生器要点

1.概述 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

2.设计方案 采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。文氏桥振荡器产生正弦波输出,其特点是采用RC串并联网络作为选频和反馈网络,其振荡频率f=1/2πRC.改变RC的值,可得到不同的频率正弦波信号输出。用集成运放构成电压比较器,将正弦波变换成方

3. 设计原理 3.1正弦波产生电路 正弦波由RC 桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。正弦波振荡电路由一个放大器和一个带有选频功能的正反馈网络组成。其振荡平衡的条件是AF =1以及ψa+ψf=2n π。其中A 为放大电路的放大倍数,F 为反馈系数。振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF 略大于1。 放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻以减少放大电路对选频特性的影响,使振荡频率几乎仅决定于选频网络,因此通常选用引入电压串联负反馈的放大电路。正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有 31 1≥+ =R Rf Av (Rf=R2+R1//D1//D2) 且振荡产生正弦波频率 Rc f π210= 图中D1、D2的作用是,当Vo1幅值很小时,二极管D1、D2接近开路,近似有Rf =9.1K +2.7K =11.8K ,,Av=1+Rf/R1=3.3>=3,有利于起振;反之当Vo 的幅值较大时,D1或D2导通,Rf 减小,Av 随之下降,Vo1幅值趋于稳定。

相关文档
最新文档