切线长定理弦切角定理切割线定理 相交弦定理

切线长定理弦切角定理切割线定理 相交弦定理
切线长定理弦切角定理切割线定理 相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理

以及与圆有关的比例线段

[学习目标]

1.切线长概念

切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA长)

2.切线长定理

对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)

4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段

定理图形已知结论证法

相交弦定理⊙O中,AB、CD为弦,交

于P.

PA·PB=PC·PD. 连结AC、BD,证:

△APC∽△DPB.

相交弦定理的推论⊙O中,AB为直径,CD⊥AB

于P.

PC2=PA·PB.

(特殊情况)

用相交弦定理.

切割线定理⊙O中,PT切⊙O于T,

割线PB交⊙O于A

PT2=PA·PB连结TA、TB,证:

△PTB∽△PAT

切割线定理推论PB、PD为⊙O的两条割线,

交⊙O于A、C

PA·PB=PC·PD过P作PT切⊙O于T,用

两次切割线定理

(记忆的方法方法)

圆幂定理⊙O中,割线PB交⊙O于

A,CD为弦P'C·P'D=r2-

OP'2

PA·PB=OP2-r2

r为⊙O的半径

延长P'O交⊙O于M,延

长OP'交⊙O于N,用相交

弦定理证;过P作切线用

切割线定理勾股定理证

8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

【典型例题】

例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。

图1

解:由切线长定理知:AF=AB=1,EF=CE

设CE为x,在Rt△ADE中,由勾股定理

∴,,

例2.⊙O中的两条弦AB与CD相交于E,若AE=6cm,BE=2cm,CD=7cm,那么CE=_________cm。

图2

解:由相交弦定理,得

AE·BE=CE·DE

∵AE=6cm,BE=2cm,CD=7cm,

∴,

∴CE=3cm或CE=4cm。

故应填3或4。

点拨:相交弦定理是较重要定理,结果要注意两种情况的取舍。

例3.已知PA是圆的切线,PCB是圆的割线,则________。

解:∵∠P=∠P

∠PAC=∠B,

∴△PAC∽△PBA,

∴,

∴。

又∵PA是圆的切线,PCB是圆的割线,由切割线定理,得

∴,

即,

故应填PC。

点拨:利用相似得出比例关系式后要注意变形,推出所需结论。

例4.如图3,P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则圆心O到AB的距离是___________cm。

图3

解:∵PC是⊙O的切线,PAB是⊙O的割线,且PA:PB=1:4

∴PB=4PA

又∵PC=12cm

由切割线定理,得

∴,

∴PB=4×6=24(cm)

∴AB=24-6=18(cm)

设圆心O到AB距离为d cm,

由勾股定理,得

故应填。

例5.如图4,AB为⊙O的直径,过B点作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点

D,(1)求证:;(2)若AB=BC=2厘米,求CE、CD的长。

图4

点悟:要证,即要证△CED∽△CBE。

证明:(1)连结BE

(2)

又∵,

∴厘米。

点拨:有切线,并需寻找角的关系时常添辅助线,为利用弦切角定理创造条件。

例6.如图5,AB为⊙O的直径,弦CD∥AB,AE切⊙O于A,交CD的延长线于E。

图5

求证:

证明:连结BD,

∵AE切⊙O于A,

∴∠EAD=∠ABD

∵AE⊥AB,又AB∥CD,

∴AE⊥CD

∵AB为⊙O的直径

∴∠ADB=90°

∴∠E=∠ADB=90°

∴△ADE∽△BAD

∵CD∥AB

∴AD=BC,∴

例7.如图6,PA、PC切⊙O于A、C,PDB为割线。求证:AD·BC=CD·AB

图6

点悟:由结论AD·BC=CD·AB得,显然要证△PAD∽△PBA和△PCD∽△PBC 证明:∵PA切⊙O于A,

∴∠PAD=∠PBA

又∠APD=∠BPA,

∴△PAD∽△PBA

同理可证△PCD∽△PBC

∵PA、PC分别切⊙O于A、C

∴PA=PC

∴AD·BC=DC·AB

例8.如图7,在直角三角形ABC中,∠A=90°,以AB边为直径作⊙O,交斜边BC于点D,过D点作⊙O的切线交AC于E。

图7

求证:BC=2OE。

点悟:由要证结论易想到应证OE是△ABC的中位线。而OA=OB,只须证AE=CE。

证明:连结OD。

∵AC⊥AB,AB为直径

∴AC为⊙O的切线,又DE切⊙O于D

∴EA=ED,OD⊥DE

∵OB=OD,∴∠B=∠ODB

在Rt△ABC中,∠C=90°-∠B

∵∠ODE=90°

∴∠C=∠EDC

∴ED=EC

∴AE=EC

∴OE是△ABC的中位线

∴BC=2OE

例9.如图8,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的一段弧。点E

是边AD上的任意一点(点E与点A、D不重合),过E作所在圆的切线,交边DC于点F,G 为切点。

当∠DEF=45°时,求证点G为线段EF的中点;

图8

解:由∠DEF=45°,得

∴∠DFE=∠DEF

∴DE=DF

又∵AD=DC

∴AE=FC

因为AB是圆B的半径,AD⊥AB,所以AD切圆B于点A;同理,CD切圆B于点C。

又因为EF切圆B于点G,所以AE=EG,FC=FG。

因此EG=FG,即点G为线段EF的中点。

【模拟试题】(答题时间:40分钟)

一、选择题

1.已知:PA、PB切⊙O于点A、B,连结AB,若AB=8,弦AB的弦心距3,则PA=()

A. B. C. 5 D. 8

2.下列图形一定有内切圆的是()

A.平行四边形

B.矩形

C.菱形

D.梯形

3.已知:如图1直线MN与⊙O相切于C,AB为直径,∠CAB=40°,则∠MCA的度数()

图1

A. 50°

B. 40°

C. 60°

D. 55°

4.圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为()

A. 8cm

B. 10cm

C. 12cm

D. 16cm

5.在△ABC中,D是BC边上的点,AD,BD=3cm,DC=4cm,如果E是AD的延长线与△ABC的外接圆的交点,那么DE长等于()

A. B.

C. D.

6. PT切⊙O于T,CT为直径,D为OC上一点,直线PD交⊙O于B和A,B在线段PD上,若CD =2,AD=3,BD=4,则PB等于()

A. 20

B. 10

C. 5

D.

二、填空题

7. AB、CD是⊙O切线,AB∥CD,EF是⊙O的切线,它和AB、CD分别交于E、F,则∠EOF=_____________度。

8.已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若PA·PB=24,OP=5,则⊙O的半径长为_____________。

9.若PA为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,,则PC的长为_____________。

10.正△ABC内接于⊙O,M、N分别为AB、AC中点,延长MN交⊙O于点D,连结BD交AC于P,

则_____________。

三、解答题

11.如图2,△ABC中,AC=2cm,周长为8cm,F、K、N是△ABC与内切圆的切点,DE切⊙O于点M,且DE∥AC,求DE的长。

图2

12.如图3,已知P为⊙O的直径AB延长线上一点,PC切⊙O于C,CD⊥AB于D,求证:CB平分∠DCP。

图3

13.如图4,已知AD为⊙O的直径,AB是⊙O的切线,过B的割线BMN交AD的延长线于C,且BM=MN=NC,若AB,求⊙O的半径。

图4

【试题答案】

一、选择题

1. A

2. C

3. A

4. B

5. B

6. A

二、填空题

7. 90 8. 1 9. 30 10.

三、解答题:

11.由切线长定理得△BDE周长为4,由△BDE∽△BAC,得DE=1cm

12.证明:连结AC,则AC⊥CB

∵CD⊥AB,∴△ACB∽△CDB,∴∠A=∠1

∵PC为⊙O的切线,∴∠A=∠2,又∠1=∠2,∴BC平分∠DCP

13.设BM=MN=NC=xcm

又∵

又∵OA是过切点A的半径,∴OA⊥AB即AC⊥AB 在Rt△ABC中,由勾股定理,得,

由割线定理:,又∵

∴半径为。

切线长定理弦切角定理切割线定理相交弦定理

切线长定理弦切角定理切割线定理相交弦定理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直 线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相 等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆 外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆 外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5) 圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定 理。 7.与圆有关的比例线段 定理图形已知结论证法 相交弦 定理 ⊙O中,AB、CD为 弦,交于P. PA·PB= PC·PD. 连结AC、BD,证: △APC∽△DPB.

相交弦定理的推论⊙O中,AB为直 径,CD⊥AB于P. PC2=PA·PB.用相交弦定理. 切割线定理⊙O中,PT切⊙O于 T,割线PB交⊙O于 A PT2=PA·PB连结TA、TB,证: △PTB∽△PAT 切割线定理推论PB、PD为⊙O的两 条割线,交⊙O于 A、C PA·PB= PC·PD 过P作PT切⊙O于 T,用两次切割线定 理 圆幂定理⊙O中,割线PB交 ⊙O于A,CD为弦 P'C·P'D=r2- OP'2 PA·PB=OP2- r2 r为⊙O的半径 延长P'O交⊙O于 M,延长OP'交⊙O 于N,用相交弦定理 证;过P作切线用 切割线定理勾股定 理证 8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 图1 解:由切线长定理知:AF=AB=1,EF=CE 设CE为x,在Rt△ADE中,由勾股定理

Simson定理

几何表示 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线, 则三垂足共线. □ 一阶描述 基本定义: 选定 A,B,C 三点 □ 取外接圆上任意一点 P □ 得到三个垂足 D,E,F □ 基本描述: : A,B,C 三点不共线 西姆松定理 它们的坐标分别为 这三点构成的三角形的外接圆心及半径分别为 P 点的坐标为 . 全部 (x 1,y 1),(x 2,y 2),(x 3,y 3).l 1=AB,l 2=BC,l 3=CA.(u,v),r.(a,b)D(a 1,b 1),E(a 2,b 2),F(a 3,b 3). 91

□ ● : P 在三角形 ABC 的外接圆上 □ ● : P 不同于 A,B,C □ ● : D 是 P 到 BC 的垂足 □ ● : E 是 P 到 CA 的垂足 □ l 1l 2l 3(l 21=(x 1-x 2)2+(y 1-y 2 )2 [l 22=(x 2-x 3)2+(y 2-y 3)2 [l 23=(x 3-x 1)2+(y 3-y 1 )2[l 1+l 2>l 3[l 2+l 3>l 1[l 3+l 1> l 2)92^uvr ((x 1-u)2 +(y 1-v)2=r 2 [ (x 2-u)2+(y 2-v)2=r 2[(x 3-u)2 +(y 3-v)2 =r 2 [(u-a)2+(v-b)2=r 2) 93\(a=x 1[b=y 1)[\(a=x 2[b=y 2)[\(a=x 3[b=y 3) 94(a 1-x 2)(b 1-y 3)-(a 1-x 3)(b 1-y 2)=0[(a 1-a)(x 2-x 3)+(b 2-b)(y 2-y 3)=0 95^

切割线定理割线定理相交弦定理等及几何题解

切割线定理割线定理相交弦定理等及几何题解 南江石 2018年4月7日星期六 圆的切线,与圆(圆弧)只有一个公共交点的直线叫做圆的切线。 圆的割线,与圆(圆弧)有两个公共点的直线叫做圆的割线。 圆的弦,圆(圆弧)上两点的连接线段叫做圆(圆弧)的弦。 弦是割线的部分线段。 公共弦线:两圆相交,两交点的连线为公共弦线——共弦线,共割线。 公共切线:两圆相切,过两圆切点的公切线为公共切线——共切线。 几何原理 几何原理 共弦线垂直于连心线共切线垂直于连心线共割线平分公切线 共切线平分公切线 4切线长度相等—— 4切点共圆,圆心在两线交点 3切线长度相等——3切点共圆,圆心在两线交点 共割线上任意一点到圆的 4个切线的长度相等,4切点共圆 共切线上任意一点到圆的3个切线的长度相等,3切点共圆 圆幂定理 是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一。 圆幂定理及相交弦定理、切割线定理和割线定理的实质是相似三角形。 点对圆的幂 P 点对圆O 的幂定义为 2 2 R OP F B 性质

点P 对圆O 的幂的值,和点P 与圆O 的位置关系有下述关系: 点P 在圆O 内→P 对圆O 的幂为负数; 点P 在圆O 外→P 对圆O 的幂为正数; 点P 在圆O 上→P 对圆O 的幂为0。 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 PB PT PT PA = PB PA PT ?=2 222Am Pm PT -= 割线定理(切割线定理的推论) 从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 PD PC PB PA ?=? 2222Cn Pn Am Pm -=- 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等,或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。 PD PC PB PA ?=? 2222A Pn Cn Pm m -=- 垂径定理(相交弦定理推论) 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。 垂直于弦的直径平分弦且平分这条弦所对的两条弧。 PB PC PC PA = PB PA PC ?=2 222OP R PC -= P 点在圆外,切割线定理、割线定理 2222222Cn Pn Am Pm R OP PD PC PB PA PT -=-=-=?=?= P 点在圆内,相交弦定理、垂径定理 222222Pn Cn Pm Am OP R PD PC PB PA -=-=-=?=? 222OP R PB PA PC -=?=

弦切角定理试题

C B O A D C E O A B D 弦切角定理测试卷 姓名 _____ 1.已知一个圆的弦切角等于50°,那么这个弦切角所夹的弧所对的圆心角的度数为 _______ . 2.如图,AB 是直径,点D 在AB 的延长线上,BD=OB ,若CD 切⊙O 于C 点,则∠CAB 的度数为 ,∠DCB 的度数为 ,∠ECA 的度数为 ___ . 3.如图,AB , AC 是⊙O 的两条切线,切点分别为 B 、 C 、 D 是优弧BC 上的点,已知 ∠BAC=800,那么∠BDC =______. 4.如图,AB 是⊙ O 的弦, AD 是⊙ O 的切线,C 为弧AB 上任一点,∠ACB=1080,那么∠BAD =______. 5.如图,PA , PB 切⊙ O 于 A , B 两点, AC ⊥PB ,且与⊙ O 相交于 D ,若∠DBC=220,则∠APB==________. 2题图 3题图 4题图 5 题图 6、如图,CD 是⊙O 的直径,AE 切⊙O 于点B ,连接DB ,若20D ? ,则DBE D的大小为( ) A. 20° B. 40° C. 60° D. 70° 7、如图,AB 是半圆O 的直径,C 、D 是半圆上的两点,半圆O 的切线PC 交AB 的延长线于点P ,∠PCB =25°,则∠ADC 为( ) A.105° B.115° C.120° D.125° 8、如图,AB 是⊙O 的直径,EF 切⊙O 于C ,AD ⊥EF 于D ,AD=2,AB=6,则AC 的长为( ) A.2 B.3 C.23 D.4 9、如图,AB 是⊙ O 的直径, AC , BC 是⊙ O 的弦, PC 是⊙ O 的切线,切点为 C ,∠BAC=350 ,那么∠ACP 等于( )A. 350 B. 550 C. 650 D. 125 6题图 7题图 8题图 9题图 10、如图,在⊙ O 中, AB 是弦, AC 是⊙ O 的切线, A 是切点,过 B 作BD ⊥AC 于D ,BD 交⊙ O 于 E 点,若 AE 平分∠BAD ,则∠BAD=( ) A. 300 B. 450 C. 500 D. 600 11、如图,E 是⊙O 内接四边形 ABCD 两条对角线的交点,CD 延长线与过 A 点的⊙ O 的切线交于F 点,若 ∠ABD=440,∠AED=1000 ,弧AD=弧AB , 则∠AFC 的度数为( ) A.780 B.920 C.560 D. 1450 C B A D C B A D P O C B D E O A F B P C O A C B D A P O A E B C O D

相交弦定理、切割线定理、割线定理综合训练

相交弦定理、切割线定理、割线定理 一、单选题 1.如图,与切于点,是的割线,如果, 那么的长为() A. B. C. D. 2.是外一点,切于,割线交于点、,若, 则的长是() A. B. C. D. 二、填空题 3.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则 DE=_____. 4.如图⊙的半径为,弦,的长度分别为,,则弦,相交所 夹的锐角__________. 5.已知弦和弦相交于内一点,,,,则________. 6.如图,的直径与弦相交于点,若,,,则________. 7.如图,切于,是的割线,如果,,则的长为________.

8.如图,、是的割线,,,,则 ________. 9.如图,是的切线,为切点,是的割线,,, 则________. 三、解答题 10.如图,在半径为的中,直径与弦相交于点,,.求的大小; 求弦的长. 11.如图,⊙O直径AB和弦CD相交于点E,AE=4,EB=8,∠DEB=30°,求弦CD长. 12.如图,弦AB和弦CD相交于⊙O内一点E,AD=CB,求证:AB=CD.

13.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长. 14.如图,中,弦与弦相交于点,且.求证:. 15.如图,⊙O与割线AC交于点B,C,割线AD过圆心O,且∠DAC=30°.若⊙O的半径OB=5,AD=13,求弦BC 的长.

参考答案 1.B 2.C 3.. 4.75°. 5. 6. 7. 8.9 3 9.5 10.(1);(2). CD 11.235 12.详见解析. 13.215 14.详见解析. 15.6.

(答案)奥赛经典-奥林匹克数学中的几何问题---第六章西姆松定理及应用答

第六章西姆松定理及应用 习题A 1.由西姆松定理,知L ,M ,N 三点共线,注意到P ,L ,N ,B 及P ,M ,C ,L 分别四点共圆,知LPN B ∠=∠,LPM C ∠=∠.又由张角定理,有() sin sin sin B C B C PL PM PN ∠+∠∠∠= + ,即 sin sin sin mn A ln B lm C ?∠=?∠+?∠再应用正弦定理,得mn a ln b lm c ?=?+?. 2.根据直径所对的圆周角是直角,知90BDP ADP ∠=∠=?,90BFP CFP ∠=∠=?,90CEP AEP ∠=∠=?,即知D ,A ,B ;B ,F ,C ;C ,E ,A 分别三点共线. 又PD AB ⊥于D ,PE AC ⊥于E ,PF BC ⊥于F ,P 是ABC △外接圆周上一点,由西姆松定理,知D ,E ,F 三点共线. 3.延长BE ,CD 相交于点K ,延长CG ,BF 相交于点L .设CG 与BE 相交于点I ,则I 为ABC △的 内心.由12CAI BAC ∠=∠,而()11 909022 CKI CIK B C BAC ∠=?-∠=?-∠+∠=∠,从而A ,I ,C , K 四点共圆. 又AD CK ⊥于D ,AE KB ⊥于E ,AG CI ⊥于G ,A 是ICK △外接圆上任一点,由西姆松定理,知D ,E ,G 三点共线.同理,B ,I ,A ,L 四点共圆,AE BI ⊥于E ,AG IL ⊥于G ,AF BL ⊥于F ,由西姆松定理,知E ,G ,F 三点共线.故F ,G ,E ,D 四点共线. 4.设正ABC △外接圆弧?AB 上任一点P 到边BC ,CA ,AB 的距离分别为a h ,b h ,c h ,其垂足分别为 D , E , F ,正三角形边长为a .由面积等式可得a b c h h h +-= .此式两边平方,得 ()2222324 a b c a b b c a c h h h h h h h h h a +++--=. 由 sin sin b a h h PAC PBD PA PB =∠=∠=,有a b h PA h PB ?=?. 同理,a c h PA h PC ?=?,故a b h PA h PB k PC ?=?=?. 又P ,F ,E ,A 及P ,D ,B ,F 分别四点共圆,有PFD PBD PAC ∠=∠=∠,PDF PBF PCA ∠=∠=∠, 得PFD PAC △△≌,故c h PA a DF = ?,同理,a h PB a DE =?,b h PC a EF =?,即 a c b a c b h h h h h h k EF DE EF ???===由西姆松定理,知D ,E ,F 共线,即DF FE DE +=.于是 £()0a b a c b c hb h h h h h h DE DF EF k ? ---=--=?, 故222234 a b c h h h a ++=. 5.设以ABC △的三个顶点为圆心的三圆,皆经过同一点M ,而M 在ABC △的外接圆上,A e 与B e 另交于D ,A e 与C e 另交于E ,B e 与C e 另交于F . 注意到A e 与B e 中,公共弦MD ⊥连心线AB ;A e 与C e 中,公共弦ME ⊥连心线AC ;B e 与C e 中,公共弦MF ⊥连心线BC .对ABC △及其外接圆周上一点M ,应用西姆松定理,知D ,E ,F 三点共线. 习题B 1.(Ⅰ)设从点P 向BC ,CA ,AB 作垂线,垂足分别为X ,Y ,Z .由对称性,知XY 为PUV △的中位线,故UV XY ∥同理,VW YZ ∥,WU XZ ∥.由西姆松定理,知X ,Y ,Z 三点共线,故U ,V ,W 三点共线.

弦切角定理及其推论

弦切角定理及其推论 定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 证明:设圆心为O,连接OC,OB,。 ∵∠TCB=90°-∠OCB ∵∠BOC=180°-2∠OCB ∴∠BOC=2∠TCB (定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍) ∴∠TCB=∠CAB (定理:弦切角的度数等于它所夹的弧的圆周角) 弦切角定理推论:两弦切角所夹的弧相等,则这两个弦切角也相等。 应用举例:

第一个算出地球周长的人 ──埃拉托色尼 2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼。 埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。 细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的学说和智慧。 埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。

初三数学相交弦定理和切割线定理人教版

初三数学相交弦定理和切割线定理 一. 本周教学内容:相交弦定理和切割线定理 二. 重点、难点: 1. [例 BP [例 证明: 作DN ∥EC ,交MF 于N ,则∠1=∠2,∠C=∠4 由弦切角定理得:∠3=∠1 ∴ ∠2=∠3 ∴ DN=DF 由切割线定理,CB CA CE ?=2 DA DB DF ?=2 ∵ AC=DB ∴ CB=DA ∴ 2 2 DF CE = CE=DF ∴ CE=DN 又 ∵ ∠5=∠6 ∴ DNM CEM ???(AAS ) ∴ CM=MD [例3] 已知PT 切⊙O 于T ,PBA 为割线,交OC 于D ,CT 为直径,若OC=BD=4cm ,AD=3cm ,求PB 长。 解:

设TD=x ,BP=y ,由相交弦定理得:TD CD DB AD ?=? 即x x )8(43-=? 61=x ,22=x (舍) 由切割线定理,BP AP PT ?=2 由勾股定理,222TD PT PD += ∴ 22TD BP AP PD +?= ∴ )7(6)4(2 2 ++=+y y y ∴ y =[例4] F ,若BC=9,解: 连AB ,∴ ∠1=∴ EF CE =由切割线定理得:1441692 =?=?=CF CB AC ∴ AC=12 [例5] P 为弦AB 上一点,C 在圆O 上,OP ⊥PC ,求证: (1)PB PA PC ?=2 (2)若证明: (1)延长CP

解: (2)易知32 1 == OC PM ,设x AP =,y MB = 由相交弦定理,MN CM MB AM ?=?,即27)63(3)3(=+?=+y x ① 由垂径定理,CP=PD ,故在CPO Rt ?中有20462 2 2 =-=PC ∴ 由(1)结论,20)3(=+y x ② 由①—②得:37+ =x y 代②得,0203 162=-+x x ∴ 0601632 =-+x x ,3 61 28±-= x (舍负) ∴ AP 长为 3 61 28+- [例6] 如图,AB 切⊙O 于B ,OB 交割线ACD 于E ,AC=CE=3,OE= 2 5 ,求AB 长。 解: 设⊙O 半径为r ,DE=a ,延长BO 交⊙O 于K 由相交弦定理,ED CE BE EK ?=?,故a r r 3)2 5)(25(=-+ ① 由AB 切⊙O 于B 知BE AB ⊥,故AD AC EB AE AB ?=-=2 2 2 ∴ )6(3)2 5(62 2 a r +=-- ② 由②—①得:018522 =--r r ,2 9 1= r ,22-=r (舍) ∴ 32)2 529(62 22=--=AB ,AB=24 [例7] 如图,⊙O 中直径AE ⊥BF ,M 为OE 中点,BM 延长交⊙O 于C ,连AC ,求ABC ?中三个内角的正切值。 解:易知?=∠= ∠452 1 BOA C ∴ 145tan tan =?=C 连CF 、CE ∵ BF 为直径 ∴ ?=∠90BCF 又 ∵ ?=∠90BOM ∴ BCF BOM ??~

数学奥赛-2(西姆松定理-欧拉线-九点圆)

西姆松(Simson)定理 西姆松定理说明 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线) 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明 证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC 于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠A CP ①,(∵都是∠ABP的补角)且∠PDE=∠PCE ②而∠ACP+∠PCE=180° ③∴∠FDP+∠PDE=180° ④即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆. 证明二:如图,若L、M、N三点共线,连结BP,CP, 则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、 L、N和M、P、L、C分别四点共圆,有 ∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL 垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N 和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。

平面几何-五大定理及其证明

平面几何定理及其证明 梅涅劳斯定理 1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均 证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1) AD FA 因为 CG // AB ,所以 EC ( 2) DB BE C F ,即得 A D C F EC FA DB EC FA 2.梅涅劳斯定理的逆定理及其证明 定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若 二、 塞瓦定理 3 .塞瓦定理及其证明 定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC 不是ABC 的顶点,则有 AD BE CF 1 DB EC 由(1)宁(2) DB 可得兀 AD BE CF DB EC FA 1 ,那么,D E 、F 三点共线. 证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有 AD / BE CF 丽 EC FA 因为AD Bl CF DB EC FA 1,所以有誥 段AB 上,所以点D 与D 重合.即得D 鴿.由于点D D 都在线 E 、F 三点共线. 证明: 运用面积比可得 AD DB S ADP S BDP S ADC S BDC 根据 等 比定理有 S ADP S ADC S ADC S ADP S APC S S BDP BDC S BDC S BDP S

第6章 西姆松定理及应用(含答案)

第六章西姆松定理及应用 【基础知识】 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足点共线(此线常称为西姆松线). 证明如图6-1,设P 为ABC △的外接圆上任一点,从P 向三边BC ,CA ,AB 所在直线作垂线,垂足分别为L ,M ,N .连PA ,PC ,由P ,N ,A ,M 四点共圆,有 β α γ βL M A P B N C 图6-1 PMN PAN PAB PCB PCL ∠=∠=∠=∠=∠. 又P ,M ,C ,L 四点共圆,有PML PCL ∠=∠. 故PMN PML ∠=∠,即L ,N ,M 三点共线. 注 此定理有许多证法.例如,如下证法: 如图6-1,连PB ,令PBC α∠=,PCB β∠=, PCM γ∠=,则 PAM α∠=,PAN β∠=,PBN γ∠=,且cos BL PB α=?,cos LC PC β=?,cos CM PC γ=?, cos MA PA α=?,cos AN PA β=?,cos NB PB γ=?.对ABC △,有 cos cos cos 1cos cos cos BL CM AN PB PC PA LC MA NB PC PA PB αγββαγ ?????=??=???.故由梅涅劳斯定理之逆定理,知L ,N ,M 三点共线. 西姆松定理还可运用托勒密定理、张角定理、斯特瓦尔特定理来证(略). 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上. 证明如图6-1,设点P 在ABC △的三边BC ,CA ,AB 所在直线上的射影分别为L ,M ,N ,且此三点共线.由PN AB ⊥于N ,PM AC ⊥于M ,PL BC ⊥于L ,知P ,B ,L ,N 及P ,N ,A ,M 分别四点共圆,而AB 与LM 相交于N ,则PBC PBL PNM PAM ∠=∠=∠=∠,从而P ,B ,C ,A 四点共圆,即点P 在ABC △的外接圆上. 【典型例题与基本方法】 1.找到或作出三角形外接圆上一点在三边上的射影,是应用西姆松定理的关键 例1如图6-2,过正ABC △外接圆的AC 上点P 作PD ⊥直线AB 于D ,作P E A C ⊥于E ,作P F B C ⊥于F .求证: 111 PF PD PE += .

弦切角定理练习-初三数学

一、填空 1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____. 2.已知:如图7-144,直线DC与⊙O相切于点C,AB为直径,AD⊥DC于D,∠DAC=28°,则∠CAB=____ . 3.已知:如图7-145,PA切⊙O于点A,∠P=15°,∠ABC=47°,则∠C= ____. 4.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____. 二、选择 5.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于() A.62.5°B.55° C.50°D.40° 6.已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径, 则图中与∠PAB相等的角的个数为() A.1 个B.2个C.4个D.5个 7.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径, MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是 A.38°B.52°C.68°D.42° 三、解答 8.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°, AD为⊙O一弦.求∠ADC与∠PCA的度数. 9.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于 P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求 ∠A的度数.

10.已知:如图7-160,AC是⊙O直径,PA⊥AC于A,PB切⊙O于B,BE⊥AC于E.若AE=6cm,EC=2cm,求BD的长. 2 11.已知:如图7-185,∠1=∠2,⊙O过A,D两点且交AB,AC于E,F,BC切⊙O于D.求证:EF∥BC. 12.已知:如图7-176,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF⊥AE于F.求证: (1)△ABE为等腰三角形; (2)若 BC=1cm,AB=3cm,求EF的长.

切线长定理、弦切角定理、切割线定理、相交弦定理37508

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上 一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条 切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可 得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹 角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理图形已知结论证法 相交弦定 理 ⊙O中,AB、CD为弦, 交于P. PA·PB=PC·PD. 连结AC、BD,证:△APC ∽△DPB.

相交弦定理的推论⊙O中,AB为直径,CD ⊥AB于P. PC2=PA·PB. (特殊情况) 用相交弦定理. 切割线定理⊙O中,PT切⊙O于T, 割线PB交⊙O于A PT2=PA·PB 连结TA、TB,证:△PTB ∽△PAT 切割线定理推论PB、PD为⊙O的两条割 线,交⊙O于A、C PA·PB=PC·PD 过P作PT切⊙O于T, 用两次切割线定理 (记忆的方法方法) 圆幂定理⊙O中,割线PB交⊙O 于A,CD为弦P'C·P'D=r2-OP'2 PA·PB=OP2-r2 r为⊙O的半径 延长P'O交⊙O于M, 延长OP'交⊙O于N,用 相交弦定理证;过P作切 线用切割线定理勾股定 理证 8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 图1 解:由切线长定理知:AF=AB=1,EF=CE

四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)

平面几何中的四个重要定理 梅涅劳斯(Menelaus ) 定理(梅氏线) △ ABC 的三边BC 、CA 、AB 或其延长线上有点 P 、Q 、R ,贝U P 、Q 、R 共线的充 塞瓦(Ceva )定理(塞瓦点) △ ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,贝U AP 、BQ 、CR 共点的充要条件 西姆松(Simson )定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 要条件是 BP CQ AR 1 PC QA RB 是BP 殂塑1。 PC QA RB P 圆 。

-可编辑- 圆上。 例题: 1、设AD 是厶ABC 的边BC 上的中线,直线CF 交AD 于F 。求 、 AE 2AF 证:—— ED FB AE DC BF 【分析】CEF 截厶ABD T -------------------------- 1 (梅氏定理) ED CB FA 【评注】也可以添加辅助线证明:过 A 、B 、D 之一作CF 的平 行线。 【分析】连结并延长 AG 交BC 于M ,贝U M 为BC 的中点。 BE CF GM (DB DC) = GM 2MD EA FA = AG MD 2GM MD AB 、AC 于 E 、F ,交 CB 于 D 。 求证: BE CF 1。 EA FA DEG 截厶 ABM T DGF 截厶 ACM T BE AG MD EA GM DB CF AG MD FA GM DC 1 (梅氏定理) 1 (梅氏定理) A 2、过△ ABC 的重心G 的直线分别交

5、已知△ ABC 中,/ B=2 / C 。求证: 【评注】梅氏定理 【评注】梅氏定理 CG 相交于一点。 【分析】 【评注】塞瓦定理 3、D 、E 、F 分别在△ ABC 的 BC 、 匹圧些,AD 、BE 、 DC FB EA 【分析】 4、以△ ABC 各边为底边向外作相似的等腰厶 BCE 、△ CAF 、△ ABG 。求证: AE 、BF 、

平面几何4--张角定理及西姆松定理

平面几何(4)----张角定理及西姆松定理 张角定理:设A ,C ,B 顺次分别是平面内一点P 所 引三条射线PA ,PC ,PB 上的点,线段AC ,CB 对 点P 的张角分别为,,αβ且180o αβ+<,则A ,C ,B 三点共线的充要条件是: sin()sin sin PC PB PA αβαβ+=+. 例1. 如图,已知ABCD 为四边形,两组对边延长后得到交点E ,F ,对角线BD//EF ,AC 的延长线交EF 于G ,求证:EG=GF. 例2. 已知ABC 的顶点A ,B ,C 对应的三边长分别为a ,b ,c ,E 为其内切 圆圆心,AE 交BC 于D ,求证:AE b c ED a +=

例3. 如图,在四边形ABCD 中,对角线AC 平分,BAD ∠在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G ,求证:GAC EAC ∠=∠ 例4. 如图,已知AM 是ABC 的边BC 上的中点,任作一直线顺次交AB ,AC ,AM 于P ,Q ,N ,求证: ,,AB AM AC AP AN AQ 成等差数列.

西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线(此线常称为西姆松线). 西姆松定理的逆定理: 若一点在三角形三边所在直线上的射影共线,则改点在此三角形的外接圆上. 例1. 如图,过正ABC 外接圆的 AC 上点P 作PD ⊥直线AB 于D ,作PE ⊥AC 于E ,作PF BC ⊥于F ,求证: 111PF PD PE +=

例2. 如图,设AD ,BE ,CF 为ABC 的三条高线,自D 点作DP AB ⊥于P ,DQ BE ⊥于Q ,DR CF ⊥于R ,DS AC ⊥于S ,连PS. 求证:Q ,R 在直线PS 上. 例3. 如图,设P 为ABC 外接圆上一点,作'PA BC ⊥交圆周于'A ,作'PB ⊥直线AC 交圆周于'B ,作'PC AB ⊥交圆周于'C ,求证:'''////AA BB CC

中考专题――切线长定理及弦切角定理

中考复习专题——切线长定理与弦切角定理 【知识要点】 切线长定理:过圆外一点P做该圆的两条切线,切点为A、B。AB交PO于点C,则有如下结论: PA=PB PO⊥AB,且PO平分AB APO BPO OAC OBC ∠=∠=∠=∠;AOP BOP CAP CBP ∠=∠=∠=∠ 弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等 【典型例题】 【例1】如图1,AB,AC是⊙O的两条切线,切点分别为B、C、D是优弧BC上的点,已知∠BAC=800,那么∠BDC =______. 图1 图2 图3 举一反三: 1.如图2,AB是⊙ O的弦,AD是⊙ O的切线,C为AB上任一点,∠ACB=1080,那么∠BAD =______. 2.如图3,PA,PB切⊙ O于A,B两点,AC⊥PB,且与⊙ O相交于D,若∠DBC=220,则∠APB=________.【例2】如图,已知圆上的弧AC BD =,过C点的圆的切线与BA的延长线交于E点,证明: (1)∠ACE=∠BCD; (2)BC2=BE×CD. 举一反三: 1.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交 AB的延长线于点C,若DA=DC,求证:AB=2BC. C B O A D C B A D P O

P B A O 【例3】已知:如图 7-149,PA ,PB 切⊙O 于A ,B 两点,AC 为直径,则图中与∠PAB 相等的角的个数为 A . 1 个; B .2个; C .4个; D .5个. 【例4】如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长. 举一反三: 1. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数; (2)当OA =3时,求AP 的长. 2.已知:如图,⊙O 内切于△ABC ,∠BOC=105°,∠ACB=90°,AB=20cm .求BC 、AC 的长. 3.已知:如图,△ABC 三边BC=a ,CA=b ,AB=c ,它的内切圆O 的半径长为r .求△ABC 的面积S .

定理2

古尔亭定理 以平面图形绕同一平面上的任何一条与该图形不相交的直线旋转一周所产生的体积,等于图形的面积乘以其重心相应半径所画的圆周长 定理 拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。 如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得 f'(ξ)*(b-a)=f(b)-f(a) 拉格朗日中值定理的几何意义 。 在(a,b)上可导,[a,b]上连续是拉格朗日中值定理成立的充分条件。 理解——这个定理说的是什么 1.在满足定理条件的前提下,函数f(x)上必有【一点的切线】与【f(x)在x=a,b处对应的两点((a,f(a))和(b,f(b))点的连线平行)。f'(ξ)=[f(b)-f(a)]/(b-a),等号后为x=a,b对应两点的连线斜率,等号前为f(x)上一点的导数的值,也就是f(x)上一点的斜率,两斜率相等,两线平行。这是几何上的理解方式。 2.我们将f(x)函数求导,得到f'(x),众所周知f'(x)函数记录的其实就是【f(x)函数在每一个瞬间的变化状态】。即,在x=x1这一瞬间f(x)进行了程度为f'(x1)的变化,在x=x2这一瞬间f(x)进行了程度为f'(x2)的变化……。函数由f(a)变化到f(b)的过程,其实就是f'(x)函数在(a,b)区间中记录的变化状态的依次累加,就是对f'(x)函数在(a,b)区间的值进行积分的过程。那么,将这一过程中所有的变化状态的值一起取一个平均,这个平均值的数值一定在f'(x)的某一点上出现过(即f'(ξ)),因为f(x)连续,则其导数也连续。这个平均值乘上变化的区间(a到b)的长度就等于这个变化的变化量【 】。即所谓的必有一 ,使f'(ξ)*(b-a)=f(b)-f(a)。即,【a,b区间上f(x)函数的变化量】=【a,b区间内f(x)函数变化状态的平均值乘以区间长度】。这是代数理解方式。[1]

九年级数学相交弦定理和切割线定理知识精讲 人教四年制版

九年级数学相交弦定理和切割线定理知识精讲 一. 本周教学内容: 相交弦定理和切割线定理 二. 重点、难点: 1. 相交弦定理的使用特征。 2. [例 BP = [例 证明: 作DN ∥EC ,交MF 于N ,则∠1=∠2,∠C=∠4 由弦切角定理得:∠3=∠1 ∴ ∠2=∠3 ∴ DN=DF 由切割线定理,CB CA CE ?=2 DA DB DF ?=2 ∵ AC=DB ∴ CB=DA ∴ 2 2 DF CE = CE=DF ∴ CE=DN 又 ∵ ∠5=∠6 ∴ DNM CEM ???(AAS ) ∴ CM=MD [例3] 已知PT 切⊙O 于T ,PBA 为割线,交OC 于D ,CT 为直径,若OC=BD=4cm ,AD=3cm ,求PB 长。

解: 设TD=x ,BP=y ,由相交弦定理得:TD CD DB AD ?=? 即x x )8(43-=? 61=x ,22=x (舍) 由切割线定理,BP AP PT ?=2 由勾股定理,222TD PT PD += ∴ 2 2 TD BP AP PD +?= ∴ )7(6)4(22++=+y y y ∴ cm y 20= [例4] 若BC=9,AE=6解: 连AB ,∴ ∠1=∴ EF CE =由切割线定理得:1441692 =?=?=CF CB AC ∴ AC=12 [例5] P 为弦AB 上一点,C 在圆O 上,OP ⊥PC ,求证: (1)PB PA PC ?=2 (2)若CM=MO=3,OP=4,求AP

由垂径定理,CP=PD ,故在CPO Rt ?中有20462 2 2 =-=PC ∴ 由(1)结论,20)3(=+y x ② 由①—②得:37+ =x y 代②得,0203 162 =-+ x x ∴ 0601632 =-+x x ,3 61 28±-= x (舍负) ∴ AP 长为 3 61 28+- [例6] 如图,AB 切⊙O 于B ,OB 交割线ACD 于E ,AC=CE=3,OE= 2 5 ,求AB 长。 解: 设⊙O 半径为r ,DE=a ,延长BO 交⊙O 于K 由相交弦定理,ED CE BE EK ?=?,故a r r 3)2 5 )(25(=-+ ① 由AB 切⊙O 于B 知BE AB ⊥,故AD AC EB AE AB ?=-=2 22

托勒密定理塞瓦定理梅涅劳斯定理西姆松定理

托勒密定理 内容:指圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。 证明: 在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE. 则△ABE∽△ACD ∴BE/CD=AB/AC,即B E·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, ∴△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又∵BE+ED≥BD ∴AB×CD+AD×BC≥AC×BD 塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 因为(AD:DB)*(BE:EC)*(CF:FA)=1所以CD、AE、BF交于一点

用同一法证 点D,E,F分别为三角形ABC三边BC,AC,AB上的点,若AF/BF*BD/DC*CE/AE=1,则AD,BE,CF 三点共线 逆命题证明 证明:设BE,CF交与点O,AO交BC于点P。 则由赛瓦定理可知,AF/BF*BP/PC*CE/AE=1。 由已知AF/BF*BD/DC*CE/AE=1知,AF/BF*BP/PC*CE/AE=1=AF/BF*BD/DC*CE/AE。 推出BP/PC=BD/DC,所以BD/BC=BP/BC,故BD=BP。 所以D点与P点重合。则AD,BE,CF三点共线,命题得证。 梅涅劳斯定理 如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/Y A)=1 。 西姆松定理 (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。

相关文档
最新文档