排列与组合的综合问题

排列与组合的综合问题
排列与组合的综合问题

排列与组合的综合问题

一、 解题思路:

解排列组合问题,要正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:

特殊优先法:我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。

科学分类法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生

插空法:解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决

捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列

排列组合的综合问题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.

二、 问题讨论

例1、从6名短跑运动员中选4人参加4×100米接力,如果其中甲不跑第一棒,乙不跑第四棒,问共有多少种参赛方法?

解法一: 问题分成三类:(1)甲乙二人均不参加,有44A 种;(2)甲、乙二人有且仅

有1人参加,有234C (44A -33A )种;(3)甲、乙二人均参加,有24C (44A -23

3A +22A )种,故共有252种.

解法二:六人中取四人参加的种数为46A ,从6人中选4人的排列组合数减去甲跑第一

棒时从剩余5人中选3人的排列组合数,再减去乙跑第四棒时从剩余5人中选3人的排列组合数,再加上甲跑第一棒且乙跑第四棒时从剩余4人中选2人的排列组合数

46A -

243512A A C +=252种 【评述】对于带有限制条件的排列、组合综合题,一般用分类讨论或间接法两种.

例2: 有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:

(1)有女生但人数必须少于男生.

(2)某女生一定要担任语文科代表.

(3)某男生必须包括在内,但不担任数学科代表.

(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

解:(1)先取后排,有13452335C C C C +种,后排有55A 种,共有5513452335)(A C C C (C

+=5400种.

(2)除去该女生后先取后排:8404447=A C 种.

(3)先取后排,但先安排该男生:3360441447 A C C 种.

(4)先从除去该男生该女生的6人中选3人有36C 种,再安排该男生有13C 种,其余3人全排有33A 种,共3

31336A C C =360种.

【思维点拨】特殊元素或特殊位置首先考虑

例3、对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?

解:第5次必测出一次品,余下3件次品在前4次被测出,从4件中确定最后一件次品有14C 种方法,前4次中应有1件正品、3件次品,有3316C C 种,前4次测试中的顺序有44

A 种,由分步计数原理即得:14C (3316C C )44A =576。 【评述】本题涉及一类重要问题:问题中既有元素的限制,又有排列的问题,一般是先选元素(即组合)后排列

例4、在一块并排10垄的田地中,选择2垄分别种植A,B 两种作物,每种作物种植一垄,为有利于作物生长,要求A,B 两种作物的间隔不小于6垄,则不同的选垄方法共有多少种?

解: 依题意,A ,B 两种作物的间隔至少6垄,至多8垄。分3种情况:(1)若A 、B 之间隔6垄,这样的选垄方法有3A 22种.

(2)若A 、B 之间隔7垄,这样的选垄方法有

2A 22种.

(3)若A 、B 之间隔8垄,有A 22种方法. 根据分类计数原理可有3A 22+2A 22+A 22=6A 22=12种不同的选垄方法.

例5、有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.

左右相邻,那么不同排法的种数是 解法一: ①前后各一个,有8×12×2=192种方法

②前排左、右各一人:共有4×4×2=32种方法

③两人都在前排:

两人都在前排左边的四个位置:

乙可坐2个位置

乙可坐1个位置 2+2=4 1+1=2 此种情况共有4+2=6种方法

因为两边都是4个位置,都坐右边亦有6种方法,所以坐在第一排总共有6+6=12种方法

④两人都坐在第二排位置,先规定甲左乙右

∴ 甲左乙右总共有55102110128910=?+=+++++ 种方法.同样甲、乙可互换位置,乙左甲右也同样有55种方法,所以甲、乙按要求同坐第二排总共有55×2=110种方法。综上所述,按要求两人不同排法有 192+32+12+110=346种

解法二:考虑20个位置中安排两个人就坐,并且这两人左右不相邻,4号座位与5号座

位不算相邻,9号座位与10号座位不算相邻,共有346)611(2220=+-A 种

备用题:

例6、有6本不同的书

(1)甲、乙、丙3人每人2本,有多少种不同的分法?

(2)分成3堆,每堆2本,有多少种不同的分堆方法?

(3)分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?

(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少不同的分配方法?

(5)分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆方法?

(6)摆在3层书架上,每层2本,有多少种不同的摆法?

解:(1)在6本书中,先取2本给甲,再从剩下的4本书中取2本给乙,最后2本给丙,共

有90222426=??C C C (种)。

(2)6本书平均分成3堆,用上述方法重复了33

A 倍,故共有15332426=?A C C (种)。 (3)从6本书中,先取1本做1堆,再在剩下的5本中取2本做一堆,最后3本做一堆,

共有60332516=??C C C (种)

(4)在(3)的分堆中,甲、乙、丙3人任取一堆,故共有36033332516=???A C C C (种)。

(5)平均分堆要除以堆数的全排列数,不平均分堆则不除,故共有1522

1516=?A C C (种)。 (6)本题即为6本书放在6个位置上,共有72066=A (种)。

例7、(1)10个优秀指标分配给6个班级,每班至少一个,共有多少种不同的分配方法?

(2)10个优秀名额分配到一、二、三3个班,若名额数不少于班级序号数,共有多少种不同的分配方法?

解:(1)如果按指标的个数进行分类,讨论比较复杂,可构造模型,即用5个隔板插入10个指标中的9个空隙,即59C 即为所求。

(2)先拿3个指标分别给二班1个,三班2个,则问题转化为7个优秀名额分给三个班,每班至少一个,同(1)知26C 即为所求。

三、课堂小结

处理排列组合应用题的规律

(1)两种思路:直接法,间接法

(2)两种途径:元素分析法,位置分析法

(3)对排列组合的混合题,一般先选再排,即先组合再排列。弄清要完成什么样的事件是前提。

(4)基本题型及方法:捆绑法,插空法,错位法,分组分配法,均匀分组法,逆向思考法等。

排列组合综合问题

排列组合综合问题 教学目标 通过教学,学生在进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解法,提高分析问题和解决问题的能力,学会分类讨论的思想. 教学重点与难点 重点:排列、组合综合题的解法. 难点:正确的分类、分步. 教学用具 投影仪. 教学过程设计 (一)引入 师:现在我们大家已经学习和掌握了一些排列问题和组合问题的求解方法.今天我们要在复习、巩固已掌握的方法的基础上,来学习和讨论排列、组合综合题的一般解法. 先请一位同学帮我们把解排列问题和组合问题的一般方法及注意事项说一下吧! 生:解排列问题和组合问题的一般方法直接法、间接法、捆绑法、插空法等.求解过程中要注意做到“不重”与“不漏”. 师:回答的不错!解排列问题和组合问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等. 解排列问题和组合问题,一定要防止“重复”与“遗漏”. (教师边讲,边板书) 互斥分类——分类法 先后有序——位置法 反面明了——排除法 相邻排列——捆绑法 分离排列——插空法 (二)举例 师:我下面我们来分析和解决一些例题. (打出片子——例1) 例1 有12个人,按照下列要求分配,求不同的分法种数. (1)分为两组,一组7人,一组5人; (2)分为甲、乙两组,甲组7人,乙组5人; (3)分为甲、乙两组,一组7人,一组5人; (4)分为甲、乙两组,每组6人; (5)分为两组,每组6人; (6)分为三组,一组5人,一组4人,一组3人; (7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人; (8)分为甲、乙、丙三组,一组5人,一组4人,一组3人; (9)分为甲、乙、丙三组,每组4人; (10)分为三组,每组4人. (教师慢速连续读一遍例1,同时要求学生审清题意,仔细分析,周密考虑,独立地求解.这是一个层次分明的排列、组合题,涉及非平均分配、平均分配和排列组合综合.各小题之

排列与组合的综合应用.

高三数学(理一轮复习—— 10.3排列与组合的综合应用 教学目标:1. 进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解 法,提高分析问题和解决问题的能力,学会分类讨论的思想. 2. 使学生掌握解决排列、组合问题的一些常用方法。 教学重点:排列组合综合题的解法。教学过程: 一.主要知识: 解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系, 还要考虑“是有序”的还是“无序的” ,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法: 1.特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。 2.科学分类法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行 3.分配、分组(堆问题的解法: 4. 插空法 :解决一些不相邻问题时, 可以先排一些元素然后插入其余元素, 使问题得以解决。 5.捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个” 6.排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法 . 7.剪截法(隔板法 :n 个相同小球放入m(m≤ n 个盒子里 , 要求每个盒子里至少有一个小球

的放法等价于 n 个相同小球串成一串从间隙里选 m-1个结点剪成 m 段 (插入 m -1块隔板 , 有 11 --m n C 种方法 . 8. 错位法:编号为 1至 n 的 n 个小球放入编号为 1到 n的 n 个盒子里 , 每个盒子放一个小球 . 要求小球与盒子的编号都不同 , 这种排列称为错位排列 . 特别当 n=2,3,4,5时的错位数各为 1,2,9,44.2个、 3个、 4个元素的错位排列容易计算。关于 5个元素的错位排 列的计算,可以用剔除法转化为 2个、 3个、 4个元素的错位排列的问题: ① 5个元素的全排列为:5 5120A =; ②剔除恰好有 5对球盒同号 1种、恰好有 3对球盒同号 (2个错位的 351C ?种、恰好有 2对球盒同号 (3个错位的 252C ?种、恰好有 1对球盒同号 (4个错位的 1 59C ?种。 ∴ 120-1-351C ?-252C ?-1 59C ?=44. 用此法可以逐步计算:6个、 7个、 8个、……元素的错位排列问题。 二.典例分析 【题型一】“分配” 、“分组”问题 例 1.将 6本不同的书按下列分法,各有多少种不同的分法? ⑴分给学生甲 3 本,学生乙 2本,学生丙 1本;

排列组合方法归纳大全

排列组合方法归纳大全 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为

四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略 例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是

解决排列组合难题二十一种方法

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C ,然后排首位共有14C 最后排其它位置共有34A ,由分步计数原理得113434288C C A = C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

排列组合综合讲义

排列组合综合讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++ 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =??? 种不同的方法.又称乘法原 理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列: 一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一

列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2)(1)m n n n n n m =---+ ,m n +∈N ,,并且 m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合: 一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==- ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =) ⑶排列组合综合问题 解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法: 元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置; 2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

完整版排列组合题型归纳

排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3. 学会应用数学思想和方法解决排列组合问题. 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有 m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有口种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

高考一轮复习教案十二(3)排列与组合的综合应用(教师)文科用

模块:十二、排列组合、二项式定理、概率统计 课题:3、排列与组合的综合应用 教学目标:进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解法,提高分析问题和解决问题的能力,学会分类讨论的思想. 掌握解决排列、组合问题的一些常用方法. 重难点:掌握解决排列、组合问题的一些常用方法. 一、知识要点 常用解题方法: 1、特殊优先法 2、分类讨论法 3、分组(堆)问题 4、插空法 5、捆绑法 6、排除法 7、隔板法 8、错位法 9、容斥法 二、例题精讲 例1、将6本不同的书按下列分法,各有多少种不同的分法? (1)分给学生甲3 本,学生乙2本,学生丙1本; (2)分给甲、乙、丙3人,其中1人得3本、1人得2 本、1 人得1 本; (3)分给甲、乙、丙3人,每人2本; (4)分成3堆,一堆3 本,一堆2 本,一堆1 本; (5)分成3堆,每堆2 本 (6)分给分给甲、乙、丙3人,其中一人4本,另两人每人1本; (7)分成3堆,其中一堆4本,另两堆每堆1本。 答案:(1)60;(2)360;(3)90;(4)60;(5)15;(6)90;(7)15. 例2、求不同的排法种数: (1)6男2女排成一排,2女相邻; (2)6男2女排成一排,2女不能相邻; (3)4男4女排成一排,同性者相邻; (4)4男4女排成一排,同性者不能相邻. 答案:(1)10080;(2)30240;(3)1152;(4)1152.

例3、有13名医生,其中女医生6人.现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为P ,则下列等式 (1)514 1376;C C C - (2)23324157676767C C C C C C C +++; (3)514513766C C C C --; (4)23 711C C ; 其中能成为P 的算式有_________种. 答案:(2)(3) 例4、对某种产品的6件不同正品和4件不同次品,一一进行测试,到区分出所有次品为止.若所有次品恰好在第五次测试被全部发现,则这样的测试方法有 种. 答案:576种 例5、某班新年联欢会原定的5个节目已排成节目单,开演前有增加了2个新节目,如果将这两节目插入节目单中,那么不同的插法种数为 . 答案:42. 例6、从10 种不同的作物中选出6 种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有 种. 答案:120960 例7、将3种作物种植在如图的5块试验田里,每块种植一种作物且相邻的 试验田不能种植同一种作物,不同的种植方法共有________种. 答案:42 例8、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有 种. 答案:141种 例9、从黄瓜,白菜,油菜,扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有 种. 答案:18种 例10、有四个不同的小球,全部放入四个不同的盒子内,恰有两个盒子不放球的放法总数为

排列数、组合数公式及二项式定理的应用

排列数、组合数及二项式定理整理 慈济中学全椒 刘 1、排列数公式 m n A =)1()1(+--m n n n Λ=!! )(m n n -.(n ,m ∈N*,且m n ≤). 2、排列恒等式 (1) 1(1)m m n n A n m A -=-+;(2) 1m m n n n A A n m -= -;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5) 1 1m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +?+?++?=+-L . 3、组合数公式 m n C =m n m m A A =m m n n n ???+--ΛΛ21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 4、组合数的两个性质 (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1 +. 5、排列数与组合数的关系 m m n n A m C =?! . 6、二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L 【注】: 1.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 2.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。

组合的综合应用

组合的综合应用 探究点1 有限制条件的组合问题 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选. (2)至多有两名女生当选. (3)既要有队长,又要有女生当选. 【解】 (1)至少有一名队长含有两种情况:有一名队长和两名队长,故共有C12·C411+C22·C311=825种.或采用排除法有C513-C511=825种. (2)至多有两名女生含有三种情况:有两名女生、只有一名女生、没有女生,故共有C25·C38+C15·C48+C58=966种. (3)分两种情况: 第一类:女队长当选,有C412种; 第二类:女队长不当选, 有C14·C37+C24·C27+C34·C17+C44种. 故共有C412+C14·C37+C24·C27+C34·C17+C44=790种. [变问法]在本例条件下,至多有1名队长被选上的方法有多少种? 解:分两类情况: 第一类:没有队长被选上,从除去两名队长之外的11名学生中选取5人有C511=462种选法.第二类:一名队长被选上,分女队长被选上和男队长被选上,不同的选法有:C411+C411=660种选法. 所以至多1名队长被选上的方法有462+660=1 122 种. 有限制条件的组合问题分类 有限制条件的抽(选)取问题,主要有两类: 一是“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数; 二是“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏. 1.若从1,2,3,…,9这9个整数中取4个不同的数,使其和为奇数,则不同的取法共有( ) A.60种B.63种

奥数(排列组合)

排列组合应用题的教学设计 致远高中朱英2007.3 解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。 引例1 现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动: (1)选其中一人为负责人,共有多少种不同的选法。 (2)每组选一名组长,共有多少种不同的选法4 评述:本例指出正确应用两个计数原理。 引例2 (1)平面内有10个点,以其中每2个点为端点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?评述:本例指出排列和组合的区别。 求解排列组合应用题的困难主要有三个因素的影响: 1、限制条件。 2、背景变化。 3、数学认知结构 排列组合应用题可以归结为四种类型: 第一个专题排队问题 重点解决: 1、如何确定元素和位置的关系 元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。 例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法? 分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案34(种),而有的同学则做出容易错误的答案43(种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了! 法一:元素分析法(以信为主) 第一步:投第一封信,有4种不同的投法; 第二步:接着投第二封信,亦有4种不同的投法; 第三步:最后投第三封信,仍然有4种不同的投法。 因此,投信的方法共有:34(种)。 法二:位置分析法(以信箱为主) C(种); 第一类:四个信箱中的某一个信箱有3封信,有投信方法1 4第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,

完整版例析立体几何中的排列组合问题

例析立体几何中的排列组合问题 过月圆春晖中学在数学中,排列、组合无论从内容上还是从思想方法上,都体现了实际应用的观点。立体几何与排列组合综合问题是高考命题的新趋势,体现了《考试大纲》要求的在知识交汇处命题的指导思想,应引起考生的重视。立体几何中的计数问题也是高考的热点题型,解决这类问题的基本方法是以点带面法, 下面列举立体几何中排列、组合问题的几个例子。1 点 1.1 共面的点 11997年全国高考(文))(例 A3A在同四面体的一个顶点为个点,使它们和点,从其它顶点与棱的中点中取)一平面上,不同的取法有( A30 B33 C36 D39种种.种...种4666A所解析:四面体有个中点, 每个面上的个顶点,个点共面。点条棱有 34AA个面内,共有在点组合有个,点在的每个面中含个组合;点的A6333 点与这条棱对棱的中点共面。条棱的个点,这条棱上,每条棱上有在 A共面的四点组合共有个。所以与点 B答案:97文科试题中难度最大的选点评:此题主要考查组合的知识和空间相像能力;属3点与它对棱上的中点共面的情况计择题,失误的主要原因是没有 把每条棱上的算在内。1.2 不共面的点 21997年全国高考(理))(例 104个不共面的点,不同的取法共有个点,在其中取四面体的顶点和各棱中点共)(A150 B147 C144 D141 种.种.种.种. 410 4点共面的情况有三类:第一个点中任取个点有解析:从种取法,其中

4个点位于四面体的同一个面内,有种;第二类,取任一条棱上类,取出的346种;第三类,由中位线构成的平行四边的个点及对棱的中点,这点共面有43种。形,它的个顶点共面,有 以上三类情况不合要求应减掉,所以不同取法共有种。 D答案:。点评:此题难度很大,是当时高考中得分最低的选择题,对空间想像能力要求高,很好的考察了立体几何中点共面的几种情况;排列、组合中正难则 反易的解题技巧及分类讨论的数学思想。2 直线 例3(2005年全国高考卷Ⅰ(理)) 过三棱柱任意两个顶点的直线共15条,其中异面直线有() A.18对B.24对C.30对D.36对 分析:选项数目不大,若不宜用公式直接求解,可考虑用树图法。 解析:法一:一条底面棱有5条直线与其异面。 例:与AB异面的直线分别是B1C、A1C、B1C1、A1C1、CC1。 侧面中与底面相交的棱有4条与其异面的直线; 例:与BB1异面的直线分别是AC、AC1、A1C1、A1C,侧面中的对角线有5 条与其异面的直线; 例: 与AB1异面的直线分别是BC、BC1、CC1、A1C、A1C1,而每条直线都数 两遍。共有。 法二:一个四面体中有3对异面直线,在三棱柱的六个顶点中任取四个,可构 故共有异面直线。成四面体的个数为:D 答案:点评:解法一是例举法,把符合要求的所有的情况全列出来,列举时一定要按一定的次序进行,以防遗漏和重复,这一看似笨拙的方法对数目不太大的情况常给人以清新,大智若愚之感,在近年高考中,这一方法经常用到;解法二是 利用影射,构造四面体解决的,有较高的技巧,在竞赛中时常出现。3 平面

排列组合和排列组合计算公式复习过程

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n; Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数

排列组合综合题型及答案

排列组合综合题型 1. 10件不同厂生产的同类产品 (1) 在商品评选会上,有两件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次, 有多少种不同的选法?(16804 8=p ) (2) 若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的 布置方法?(504004 826=?p p ) 2. 把4个班平均分给两个教师任教,问不同的分配方法有多少种?(62 4=C ) 3. 从5名男生、3名女生中选5名担任5门不同学科的课代表,求符合下列条件的方法数:(1)女生必须少 于男生;(2)女生甲担任语文课代表;(3)男生乙必须是课代表,但不任数学课代表;(4)女生甲必须任语文课代表,男生乙必须任课代表,但不任数学课代表。 ((1)5520)(552335134555=++P C C C C C (2)84047=P (3)33601447=P P (4)3601 336=P P ) 4. 从一班50人中选出5人,从二班52人中选出5人,组成两个5人小组(一、二班人混合选),然后各组选 正、副组长各1人,共有多少种选法(答案用组合数表示)?()2 1(2 5255105 52550P P C C C ) 5. 从6名短跑运动员中选4人组成1004?米接力队,甲不跑第一棒,乙不跑最后一棒,有几种选法? (252)(24351435=-+P P C P 或 252)2(2 2334424223313341244=+-++P P P C C P P C C P ) 6. 按以下要求分配6本不同的书,各有几种分法?(均只要求列式) (1) 平均分给甲、乙、丙三人,每人2本;(2 42 6C C ) (2) 平均分成三份,每份2本;(332426/p C C ) (3) 甲、乙、丙三人,甲得1本,乙得2本,丙得3本;(3 32516C C C ) (4) 甲、乙、丙三人一人得1本,一人得2本,一人得3本;(3 33 32 51 6P C C C ) (5) 分成三份,一份1本,一份2本,一份3本;(3 32 51 6C C C ) (6) 甲、乙、丙三人中。甲得4本,乙、丙每人各得1本 ;(2 24 6P C 或1 51 6C C ) (7) 甲、乙、丙三人中。一人得4本,另两人每人得1本 ;(224613P C C 或4633C P 或22124633/P C C P ) (8) 分成三份,一份4本,另两份每份1本;(4 6C ) 7. 10人排成前后两排,前4后6,根据下列各种情况,各有多少种排法?(均只要求列式) (1) 无其他条件;(10 10P ) (2) 甲不排在前排,乙、丙不排在后排;(772414P P C ) (3) 甲、乙不相邻,且一定在后排;(88223P P 或8824)3(P P -) (4) 甲、乙不相邻。(8826882288141622)5(3)(P P P P P C C P -+++) 8. 10人坐成前后两排,每排5人,按照以下要求,各有多少种坐法?(均只要求列式) (1) 无其它约束条件;(10 10P ) (2) 若某2人必须在前排,另外某1人必须坐在后排;(771525P P P ) (3) 在(2)中,若指定坐前排的2人须相邻,指定坐后排的1人不在两端。(771322)4(P C P +)

排列组合综合应用

第九讲 排列组合综合应用 【内容概述】 乘法原理是指做一件事,完成它需要分成几个步骤,做第一步有m 1种不同的方法, 做第二步有m 2种不同的方法…做第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×……×m n 种不同方法(即每一步都不能单独完成这件事情,需要所有步骤合在一 起才能完成这件事情) 加法原理是指做一件事,完成它可以有几类办法,在第一类办法中,有m 1种不同的 方法,在第二类办法中,有m 2种不同的方法……在第n 类办法中,有m n 种不同的方法。 那么完成这件事共有N=m 1+m 2+m n 种不同方法。(即每一类办法都能独立完成,每一类与 另一类不重复,所有这些类型合起来构成这个事情) 【典型题解】 例1 某人到食堂去买饭,食堂里有4种荤菜,3种素菜,2种汤,他要各买一样,共有多少种不同的买法? 【答案解析】根据题目条件可知,买饭可以分3个步骤。直接利用乘法原理计算。 不同的买法的种数:24234=??(种) 练习一“IMO ”是国际数学奥林匹克的缩写,把这三个字母用三种不同的颜色来写,现有五种不同颜色的笔,问共有多少种不同的写法? 【答案解析】根据题目条件可知,写完IMO 可以分三个步骤,第一步写“I ”有5种写法,第二步写“M ”有4种写法,第三步写“O ”有3种写法。直接利用乘法原理计算。 不同的写法的种数60345=??(种) 例2 一个篮球队,五名队员A 、B 、C 、D 、E ,由于某种原因,C 不能做中锋,而其余 四人可以分配到五个位置的任何一个上,问:共有多少种不同的站位方法? 【答案解析】把球场的上的五个位置分别称为1、2、3、4、5号位;令1号位为中锋,由于C 不能做中锋,那么还有4种不同的选择方法,2号位还有剩下的4个人可供选择,3号位还有剩下的3个人可供选择,4号位还有剩下的2个人可供选择,5号位只剩个人可供选择,根据乘法原理,它们的积就是全部的选择方法. 不同的站位方法:9612344=????(种) 练习二 广州电话号码有8个数码,其中第一个数字不为0,而且数字不重复,这样的电话号码共有多少个? 【答案解析】首先考虑第1个位置,有9种选择。其它位置根据乘法原理,依次有9、8、7、6、5、4、3种选择。 电话号码个数:163296034567899=???????(个)

排列与组合综合用题

排列与组合的综合应用题(2) 授课教师:黄冈中学高级教师汤彩仙 一、知识概述 例1、有13名医生,其中女医生6人.现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,设不同的选派方法种数为P,则下列等式: ①②;③;④; 其中能成为P 的算式有________.(填序号) 答案:②③ 例2、袋中有3个不同的红球,4个不同的黄球,每次从中取出一球,直到把3个红球都取出为止,共有多少种不同的取法? 解:++++=4110(种). 例3、某停车场有连成一排的9个停车位,现有5辆不同型号的车需要停放,按下列要求各有多少种停法?(1)5辆车停放的位置连在一起; (2)有且仅有两车连在一起; (3)为方便车辆进出,要求任何3辆车不能在一起. 解:(1)(种).

(2)(种). (3)要求任何3辆车不能连在一起,可以分成①5辆车均不相邻,②有且仅有两辆车相邻,③有2组2辆车相邻,三种情况. 有. 例4、设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内: (1)只有一个盒子空着,共有多少种投放方法? (2)没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? (3)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?解:(1). (2). (3)(种). 法二:恰有两个球的编号与盒子编号是相同时,投法数为种; 恰有三个球的编号与盒子编号是相同时,投法数为种; 恰有五个球的编号与盒子编号是相同时,投法数为1种; 故至少有两个球的编号与盒子编号是相同的投法数为

例5、某学习小组有8名同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有一人参加,共有180种不同的选法,那么该小组中男女同学分别有多少人? 解:设有男生x人,女生8-x人,(x∈N+,且2≤x≤7). 则有,即x(x-1)(8-x)=60. ∴x=6或x=5. ∴男生6人,女生2人或男生5人,女生3人. 例6、一栋7层的楼房备有电梯,现有A,B,C,D,E五人从一楼进电梯上楼,求:(1)有且仅有一人要上7楼,且A不在2楼下电梯的所有可能情况种数. (2)在(1)的条件下,一层只能下1个人,共有多少种情况? 解:(1)分A上不上7楼两类A上7楼,有54种;A不上7楼,有4×4×53种.共有54+4×4×53=2625种. (2)(种). 例7、某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有__________种.(以数字作答) 解:(种).

排列与组合的综合问题

排列与组合的综合问题 一、基础热身: 1、圆周上有2n(n>1)个等分点,以其中三个点为顶点的直角三角形 有个(用数字作答)。 2、安排6名同学参加“中国梦我的梦”演讲比赛,要求甲选手不是第一个演讲, 也不是最后一个演讲,不同的排法种数是(用数字作答)。 3、从1、3、5、7中选2个数,再从2、 4、6中选2个数,则选出的4个数排成 的四位数有个(用数字作答)。 4、某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目 不超过2个,则该外商不同的投资方案有种。(用数字作答)。 小结:在处理排列组合综合问题时,应遵循“先特殊后一般”、“先取后排”、“先分类后分步”的基本原则,通过合理的分解将综合问题转化为基本问题来解决。 二、巩固提升: 1、6名运动员站在6条跑道上准备参加比赛,其中甲不能站第一跑道也不能站第 二跑道,乙必须站第五或第六跑道,则不同的站法总数是 (用数字作答)。

2、将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案 共有(用数字作答)。 3、男生5人和女生3人排成一行,要求两端不排女生,且任何2名女生都不相邻, 则不同的排法种数为(用数字作答)。 4、从6个人中选4人分别到张家界、韶山、衡山、大围山四个景点游览,要求每 个景点有1个人游览,每人只游览一个景点,且这6人中甲乙两个不去张家界游览,则不同的选择方案有(用数字作答)。 5、已知直线ax+by+c=0中的a、b、c是取自集合{3,2,1,0,1,2,3} ---中的3个不同元素,并且该直线的倾斜角是锐角,则这样的直线的条数共有(用数字作答)。 6、21中K1101班班委会为了调整同学们高三的紧张生活,利用班会课安排了5 个表演节目,这5个节目已经排成节目单,就在节目表演前,吴楷彬和吴昊天两人各有一个节目要加入,如果将他们的两个节目插入原节目中,那么不同插法的种数为(用数字作答)。 规律小结: 1、解排列组合综合问题时应注意以下几点: ①、把具体问题转化或归结为排列或组合问题 ②、通过分析确定运用分类还是分步 ③、分析题目条件时,避免选取时重复或遗漏 2、解排列组合综合问题常用的方法: ①、直接法与间接法②、分类法与分步法③、元素分析法与位置分析法④、插空法与捆绑法

排列与组合的应用.

排列与组合的应用 四川成都市大弯中学 李植武 摘要 在信息学奥林匹克竞赛中,多次出现了排列与组合的竞赛题目。本文介绍了排列与组合的概念、公式,重点讲解了排列与组合的生成算法,最后通过几个竞赛题目的解决,体现了排列与组合在信息学竞赛中的应用。 关键词 排列 组合 生成 应用 说明:本文中的pascal 程序在Lazarus v0.9.22 beta 下调试完成,c 程序dev-c++ 4.9.9.2下调试完成,所有程序通过相应数据测试。 一、排列与组合 1.排列及公式 (1)线排列 一般地,从n 个不同元素中,取出m(m ≤n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个线排列;从n 个不同元素中取出m(m ≤n)个元素的所有线排列的个数,叫做从n 个不同元素中取出m 个元素的排列数, 用符号 m n A 表示。 )! (!A 1)-m -...(n )2)(1(m n m n n n n n A m n -= --= 规定 0!=1。 (2)圆排列 从n 个不同元素中取出m 个元素按照某种次序(如逆时针)排成一个圆圈, 称这样的排列为圆排列,圆排列个数为)! (! m n m n m A m n -= 。 因为从n 个不同元素中取出m 个元素排成一列的个数是m n A 。不妨设一个排 列是:a 1a 2…a m 。而这个排列与排列a 2…a m a 1, a 3…a m a 1a 2,…, a m a 1a 2…a m-1,是一样 的圆排列,共有m 个,所以一个圆排列对应m 个普通排列,所以有圆排列数m A m n 。 (3)无限重排列 从n 个不同元素中取r 个元素按次序排列,每个元素可以取无限次,这样的排列称为无限重排列。显然,其排列数为n r 。 (4)有限重排列 从k 个不同元素{ a 1a 2…a k }中取n 个元素按次序排列,元素a i 可以取r i 次,r 1+r 2+...+r k =r ,这样的排列称为有限重排列。 实际上,这个问题与下面的问题等价:

相关文档
最新文档