概率论与数理统计-大数定律与中心极限定理、样本及其分布

概率论与数理统计-大数定律与中心极限定理、样本及其分布
概率论与数理统计-大数定律与中心极限定理、样本及其分布

概率论与数理统计练习题

系 专业 班 姓名 学号 第五章 大数定律与中心极限定理、第六章 样本及其分布

一、选择题:

1.设n μ是n 次重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则对任意的0ε>均有lim {

}n

n P p n

με→∞

-≥ [ A ]

(A )0= (B )1= (C )0> (D )不存在 2. 设,,

,,

n X X X 12为独立同分布的随机变量列,且均服从参数为λλ>(1)的指数分布,记

()x Φ为正态分布函数,则 (考研题 2005) [ C ]

(A

)lim }()n

i

n X

n P x x λ

→∞

-≤=Φ∑ (B

)lim }()n

i

n X

n P x x λ

→∞

-≤=Φ∑

(C

)lim }()n

i n X n

P x x λ→∞

-≤=Φ∑ (D

)lim }()n

i

n X

P x x λ

→∞

-≤=Φ∑

3.设随机变量(,),(,),X N Y N 0101则 (考研题 2002) [ C ]

(A )X Y +服从正态分布 (B )22

X Y +服从χ2分布

(C )22X Y 和服从χ2分布 (D )22

/X Y 服从F 分布 二、填空题:

1.对于随机变量X ,仅知其1

()3,()25

E X D X ==

,则可知{|3|3}P X -<≥ 2. 设总体X 服从参数为2的指数分布,,,

,,

n X X X 12是来自总体X 的简单随机样本,则当

n →∞时,21

1

i i Y X n ==∑n

依概率收敛于 (考研题 2003)

3.设总体2

~(,)X N μσ,12,,

,n X X X 为其样本,记1

1n i i X X n ==∑,2

211()1n i i S X X n ==--∑,

则)/Y X S μ=-服从的分布是 .

224225

1

2(1)t n -分布

三、计算题:

1.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差是独立的且在

(0.5,0.5)-上服从均匀分布。 问:(1)若将1500个数相加,误差总和的绝对值超过15的概率是

多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90 ?

2. 一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是一个随机变量,它取1元、1.2元、1.5元各个值的概率分别为0.3、0.2、0.5。某天售出300只蛋糕。 (1)求收入至少400元的概率; (2)求售出价格为1.2元的蛋糕多于60只的概率。

1500

1500

1

1

(1)()0,()1/12.{||15}{| 1.34}2(1(1.34))0.18020.1802

(1500152)

{||10}

2i

i i i

i i

n

i n

i

i X i E X D X X P X P X P X P ====>=>≈≈-Φ=

<=<≈Φ

若将个数解:随相加,误差总和的绝对值超过的机变量表示第个数的舍概率为入误差,则10.90.95,100.94410n -≈∴Φ=?=最多可有441个数相加使得误差总和的绝对值小于的概率不小于,300

3001(1)() 1.29,()0.0489.300 1.29{400} 3.39}1(3.39)=0.(2)~(300,0.2),()60,()484.{00.i i i i i i X E X D X X P X P Y Y B E Y D Y P ===-?>=>≈=-Φ==∑

答解:

设随机变量为出售一只蛋糕的收入,则设出;收入至少元的概率几乎为售1.2元的蛋0糕数量为,则6060}{0}(0)1.2600.0.5

48 5.Y Y P ->=>=Φ=答售出价格为元的蛋糕多于只的概率:

3. 总体2(,)N μσ,在该总体中抽取一个容量为n =16的样本1216(,,

)X X X 。

求:(1)2

22

11{()2}2n i i P X n σμσ=≤-≤∑; (2)2221

1{()2}2n i i P X X n σσ=≤-≤∑。

,

222

1

2222211

2

22

2

2

12211()~(16)11{()2}{8()32}0.950.010.942(1)1~(1),()11{8()32}0.920.0050.915n

i i n n

i i i i n i i n i i X P X P X n n S n S X X n P X X μχσσμσμσχσσ=====-∴≤-≤=≤-≤=-=--=--∴≤-≤=-=∑

∑∑

解:其中

概率论与数理统计练习题

系 专业 班 姓名 学号

第七章 参数估计(一)

一、选择题:

1.矩估计必然是 [ C ] (A )无偏估计 (B )总体矩的函数 (C )样本矩的函数 (D )极大似然估计 2.设12,X X 是正态总体(,1)N μ的容量为2的样本,μ为未知参数,μ的无偏估计是 [ D ] (A )

122433X X + (B )121244X X + (C )123144X X - (D )122355

X X + 3.设某钢珠直径X 服从正态总体(,1)N μ(单位:mm ),其中μ为未知参数,从刚生产的一大堆

钢珠抽出9个,求的样本均值31.06X =,样本方差2

290.98S =,

则μ的极大似然估计值为 [ A ] (A )31.06 (B )(31.06-0.98 , 31.06 + 0.98) (C )0.98 (D )9×31.06 二、填空题:

1.如果1?θ与2?θ都是总体未知参数θ的估计量,称1?θ比2?θ有效,则1?θ与2

?θ的期望与方差一定满 足

2.设样本1230.5,0.5,0.2x x x ===来自总体1

~(,)X f x x

θθθ-=,用最大似然法估计参数θ时,

似然函数为()L θ=

3.假设总体X 服从正态分布2

12

(,),,,(1)n N X X X n μσ>为X 的样本,

1

2

211

()n i i i C X X σ-+==-∑是2

σ的一个无偏估计,则C =

三、计算题:

1.设总体X 具有分布律,其中(01)θθ<<为未知参数,

已知取得了样本值1231,2,1x x x ===,试求θ

1212????

()(),()()E E D D θθθθθ==<3131

123()(0.05)x x x θθθθ--=1

22

n -()123556

41,2,1()2122.

5()2(56)0.

65

6

x x x L L θθθθθθθθθθ====-=-'=-=?=解:当样本的最大似取然时,似然函数为

所估计值以

2.设12,,

,n X X X 是来自于总体10~()0

x X f x θθ

?≤≤?

=???其它

(0)θ>的样本,

试求:(1)θ的一个无偏估计1θ;(2)θ的极大似然估计2.θ

3.设总体X 的概率密度为(1)01()0

x x f x θθ?+<<=?

?其它

,其中1θ>-是未知参数,12,,,n

X X X 为一个样本,试求参数θ的矩估计量和最大似然估计量。

*4. 设12,,

,n x x x 为来自正态总体20(,)N μσ的简单随机样本,其中0μ已知,2σ>0未知,X 和

S 2分别表示样本均值和样本方差。(1)求2σ的极大似然估计2σ;(2),计算22E D σσ和。(考研

题 2002) 1

111?(1)(),2,221?

(2)2()2.22(2),,(;,,),0,1,,;,,( ,n n

n i n n i X E X X X E X E X n X n x x L x x x i n L L x x x i θ

θ

θθθθθθθθθθθθθ--=∴

=?===??=∴=?=<≤=?==112解:

总体服从均匀分布,是的无偏估计。设为样本的一组观测值,于是似然函数为:

显然是的一个单值递减函数.要使()达到极大,就要使达到最小,但不能小于每一个212,,),?max{,,,}n n x x x θθ?=3所以的极大似然估计量为:11100121

111121?()(1)(1)..()221,,,()(1)()(ln ())ln ()ln(1)(ln ),ln 01?=ln n n n i i n n

i

i i i i

X E X x x dx x x dx X X X X X L x d L n L n x x d n x θθθθθθθθθθθθθθθθθθθθ+===++-=+=+=∴=?=++-=+=++=+=+-??

∑∑

解:矩估计法设样本的极大似然估计函数为:取对数求导得所以的极大似然估计量为1

1.()n

i =-∑

极大似然估计法22221()()22222

11

22

21

22

22

22411

2,,(,;,)(2)()ln ln(2),22ln 111?()0,()221?()((1n

i i i i n x x n n n i n i i n n i i i i x x L x x e x L L n x x X B n E E X n μμσσμσπσμπσσμσσσσσ=-----====?∑?=

=-=--?=-+-==-=?=∑

∑∑

解:设为样本的一组观测值,于是似然函数为:

,两边取对数 222222

22112422111))(()())(()()).???()()()......n n

i i i n X E X nE X n n n n n n D E E σσμμσσ

σσ==--=-=+-+==-=∑∑

概率论与数理统计练习题

系 专业 班 姓名 学号

第七章 参数估计(二)

一、选择题:

1.设总体X 服从正态分布2~(,)X N μσ,其中μ未知,2

σ已知,12,,

,n X X X 为样本,

1

1n

i i X X n ==∑,则μ的置信水平为0.95的置信区间是 [ D ]

(A

)0.95

0.95

(,X Z X Z -+ (B

)0.05

0.05

(,X Z X Z -+

(C

)0.975

0.975

(,X Z X Z -+ (D

)0.025

0.025

(,X Z X Z -+

2.设总体2~(,)X N μσ,对参数μ或2

σ进行区间估计时,不能采用的样本函数有 [ D ]

(A

X (B

X (C )2

1n

i i X X σ=??- ??

?∑ (D )1n X X -

二、计算题:

1.设总体X 的方差为2

)3.0(,根据来自X 的容量为5的简单随机样本,测得样本均值为21.8,求X 的数学期望的置信度为0.95的置信区间。

2.设冷抽铜丝的折断力服从正态分布2

~(,)X N μσ,从一批铜丝任取10根,测得折断力如下:578、572、570、568、572、570、570、596、584、572,求方差2

σ的0.90的置信区间。

22~(0,1),)(21.8 1.96,21.8 1.96)(21.537,22.063)N X z X z ααμα-+=-?+≈,则可得的1-置信水平下的置信区间为:(2

2

2222222220.050.95122575.2,75.73

(1)~(1)(1)(1)975.73975.73975.73975.73,,,(40.28,204.98).

(1)(1)(9)(9)16.919 3.325X S n S n n S n S n n ααχσασχχχχ-==--??

??--???? ???

=== ? ? ?--???? ???

解:取统计量,则可得的1-置信水平下的置信区间为:

3.设来自总体~(,25)X N μ得到容量为10的样本,算的样本均值19.8X =,来自总体~(,36)Y N μ得到容量为10的样本,

算的样本均值24.0Y =,两样本的总体相互独立,求12μμ-的90%的置信区间。

4.某车间两条生产线生产同一种产品,产品的质量指标可以认为服从正态分布,现分别从两条生产线的产品中抽取容量为25和21的样本检测,算的修正方差分别是7.89和5.07,求产品质量指标方差比的95%的置信区间。

12~(0,1)() 1.65 4.2 1.65(8.28,0.12).N X Y μμα-?-±-+=-- ?,则可得的1-置信水平下的置信区间为:

2211122222

221

1222122120.0250.975122/~(1,1)117.8917.891,(,)(1,1)(1,1) 5.07(24,20) 5.07(24,20)7.8917.89(, 2.03)(0.45.07 3.37 5.0722

12S F n n S S S S F n n S F n n F F αασσσασ-

--?? ?=?? ?---- ???=??=解:取统计量,则可得/的1-置信水平下的置信区间为:

62,3.159)

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

中心极限定理的创立与发展

中心极限定理的创立与发展 -----杨静邓明立 概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。 在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。 极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

实验十三 二项分布的计算与中心极限定.

实验十三二项分布的计算与中心极限定 [实验目的] 1.研究用Poisson逼近与正态逼近进行二项分布近似计算的条件 2.检验中心极限定理 §1 引言 二项分布在概率论中占有很重要的地位。N次Bernoulli实验中正好出现K次成功的概 率有下式给出b k;n,p C n k p k1p n k ,k=0,1,2,……..n.二项分布的 值有现成的表可查,这种表对不同的n及p给出了b(k;n.p)的数值。在实际应用中。通常可用二项的Poisson逼近与正态逼近来进行二项分布的近似计算。在本实验中,,我们来具体地研究在什么条件下,可用Poisson逼近与正态逼近来进行二项分布的近似计算。 在概率论中,中心极限定理是一个很重要的内容,在本实验中,我们用随即模拟的方法来检验一个重要的中心极限定理——Liderberg-Levi中心极限定理。 §2 实验内容与练习 1.1二项分布的Poisson逼近 用Mathematica软件可以比较方便地求出二项分布的数值。例如n=20;p=0,1;Table[Binomial[n,k]*p^k*(1-p)(n-k),{k,0,20}]给出了b(k;20,0.1)(k=0,1,2,…..,20)的值。 联系 1 用Mathematica软件给出了b(k;20,0.1),b(k;20,0.3)与 b (k;20,0.5)(k=0,1,2,…..,20)的值。 我们可用Mathematica软件画出上述数据的散点图,下面的语句给出了b(k;20.0.1)的(连线)散点图(图13。1): LISTpOLT[table[Binomi al[20,k]*0.1^k*0.9^(20-k), {k,0,20}],PlotJoined->True] 图13.1 b(k;20,0.1) b k;n,p C n k p k1p n k (k=1,1,2,……,20)的散点图 练习2绘出b(l;20,0.3)与b(k;20,0.5)(k=0,1,2,…,20)的散点图 根据下面的定理,二项分布可用Poisson分布来进行近似计算。 定理13。1 在Bernoulli实验中,以P n 代表事件A在试验中出现的概率,它与试验总数有关. 如果np n→→λ,则当n→∞时,b k;n,p k k e 。 由定理13,1在n很大,p很小,而λ=np大小适中时,有 b k;n.p c k n p k1p n k k k e

数理统计作业二__用数学实验的方法验证大数定理和中心极限定理

验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式 =RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k,k=1,2,3······来验证中心极限定理。因为E k, k=1,2,3······之间是独立同分布,所以 )5.0, ( ~ E n 1 k k n B ∑ =。由中心极 限定理可知,当n的取值足够大时,∑ = n 1 k k E 这一随机变量的分布与正太分 布具有很好的近似,下面用MATLAB软件分别画出n取不同值时∑ = n 1 k k E 的分 布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N(5,2.5)。 MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: ⑤观察得出,当N足够大时,其密度函数服从正态分布,即满足 中心极限定理。

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

(习题课5)--大数定律与中心极限定理

大数定律与中心极限定理 背景:概率论中用来阐明大量随机现象平均结果的稳定性的一系列定理,称为大数定律。 1、定义:设X 1,X 2……X k 是随机变量序列,E(X k )存在,一、大数定律 1 1n i i X X n ==∑, 0,ε>若对于任意的有lim (X E(X ))=0 n n P ε→∞ - ≥lim (X E(X ))=1n n P ε→∞ -<则称随机变量{X k }服从大数定律。设随机变量X 具有有限数学期望EX 和方差DX ,则对于任意正数 ,如下不等式成立。 {}2 DX P X EX εε -≥≤ ——切比雪夫不等式 2、切比雪夫(Chebyshev)不等式 ε3、Chebyshev 大数定理(样本平均数稳定性) 定理:设随机变量X 1,X 2,…,X n ,…相互独立,且服从同一分布,并具有数学期望及方差,则对于任意正数,恒有 εμ 2σ

1 1n i i x x n μ ==≈∑注:观测量X 在相同的条件下重复观测n 次,当n 充分大时,“观测值的算术平均值接近于期望” 是一大概率事件。 11lim 1n i n i P X n με→∞ =?? -<=???? ∑11lim 0n i n i P X n με→∞ =??-≥=???? ∑定理:设是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对于任意正数恒有 lim 0n n P p n με→∞ ??-≥=???? 注:此定理说明可通过多次重复一个试验,确定事件A 在每次试验中出现的概率 ()n p P A n μ≈=4、伯努利大数定理(频率的稳定性) ε n μ

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

大数定理和中心极限定理

大数定理 概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。 发展历史 1733年,德莫佛—拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了二项分布的极限分布是正态分布。拉普拉斯改进了他的证明并把二项分布推广为更一般的分布。1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法。这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”。20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进展。伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理。 表现形式 大数定律有若干个表现形式。这里仅介绍高等数学概率论要求的常用的三个重要定律:?切比雪夫大数定理 设 是一列两两不相关的随机变量,他们分别存在期望 和方差 。若存在常数C使得: 则对任意小的正数ε,满足公式一: 将该公式应用于抽样调查,就会有如下结论:随着样本容量n的增加,样本平均数将接近于总体平均数。从而为统计推断中依据样本平均数估计总体平均数提供了理论依据。 ?伯努利大数定律 设μ是n次独立试验中事件A发生的次数,且事件A在每次试验中发生的概率为P,则对任意正数ε,有公式二: 该定律是切比雪夫大数定律的特例,其含义是,当n足够大时,事件A出现的频率将几乎接近于其发生的概率,即频率的稳定性。 在抽样调查中,用样本成数去估计总体成数,其理论依据即在于此。 ?辛钦大数定律

第五章大数定律及中心极限定理

第五章 大数定律及中心极限定理 第一节引言、第二节大数定律 一、教学目的要求 1.了解大数定律及中心极限定理的提出和发展历史。 2.掌握引理:切贝雪夫不等式。 3.掌握常用的切贝雪夫大数定律、贝努里大数定理、辛钦大数定律的适用条件及定律内容,会解答有关问题。 二、教学方法 讲授法:讲授大数定律、中心极限定理的概念。 演绎法:推导切贝雪夫不等式、定理1,2,3及例题 三、重点难点 重点:掌握切贝雪夫不等式及握常用的大数定律。 难点:大数定律应用具体应用。 四、课时安排:2课时 五、教具准备:多媒体。 六、教学步骤: (一)明确目标:通过问题引入本次课的教学,明确大数定律、中心极限定理的概念,掌握贝雪夫不等式的推导及应用,定理1及2的证明,了解定理3的条件及应用。 (二)教学过程及教学内容: 1问题引入:大数定律及中心极限定理的提出和发展历史 2.内容: (1)定义5.2.1 设ΛΛ,,,,21n X X X 是随机变量序列,记 )(1 21n n X X X n Y +++= Λ, 若存在一个常数序列ΛΛ,,,,21n a a a ,使得对任意正数ε,有 {}1lim =<-∞ →εn n n a Y P 则称随机变量序列{}n X 服从大数定律(Law of Great Numbers )。 (2)定义5.2.2 设ΛΛ,,,,21n X X X 是随机变量序列,a 是一个常数,若对任意正数ε,有 {}1lim =<-∞ →εa X P n n 则称随机变量序列{}n X 依概率收敛(Convergence In Probability)于常数a ,记为:a X P n ?→?。 (3)推论:可以证明:若a X P n ?→? ,b Y P n ?→?,),(y x g 在点),(b a 连续,则有:

抽样技术上机实验_中心极限定理验证

均匀分布中心极限定律的实现: clc clear n=200000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; sigma=1/12; population=0:0.001:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-0.5)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%% 两点分布的实现: clc clear n=10000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; p=0.5; sigma=p*(1-p); population=0:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-p)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 两点分布1以概率0.4发生

中心极限定理实验仿真

中心极限定理的仿真实验 目的:模拟投掷一枚骰子出现的点数的试验,重复进行104次,统计出现的点数和,并将数据标准化处理后,画出频率直方图,通过观察比较验证数据的正态性。 所用的软件:Microsoft EXCEL 步骤如下: 1 打开excel软件,在A2格子中输入=INT(6*RAND())+1,按回车就会产生一个1-6中的某一个随机整数,并且出现1-6中每一个整数的概率是相同的。 2鼠标点击A2格子,并移动到格子的右下角,出现”+”后往下拖动鼠标直到出现A501时停下来,这样就得到了500个随机数据,都是在1-6中随机取值的。(当然你越往下拖,产生的随机整数越多,试验效果越好) 3 在第二列重复第1步和第2步,第三列,第四列……直到CZ列都和第二列同样操作,这样产生了104列随机数据。 4 在DB列分别求出每行数据的和,用的函数是“SUM”,接着依次求出500行数据的和。 5 复制DB列到DC列,注意值复制数值。 6 对DC列数据进行排序, 7对DC列数据进行标准化处理,即每个数据减去平均值再除以标准差(均值函数为average,样本方差函数为var)

8处理后的数据放在DE列。根据最大值和最小值,把数据分到20个区间,这里数据范围从-2.7到2.7,故每个区间长度为0.27,这样得到(-2.7,-2.43],……,(2.43,2.7)共20个区间(也可以分15个区间,这时区间长度为0.36)。 9统计每个区间里的数据个数,用函数countif(区域,条件),详见EXCEL文件。 10 画出频率直方图,大家可以看到,投掷104次骰子后出现的点数和数据标准化后出现标准正态分布的特征。 请大家按照以上方法,产生200列数据,每列1000个数据,按照以上步骤做好中心极限定理的仿真实验。按个步骤写出实验过程,并将计算结果或图标截图后放在每个步骤后面,完整一份实验报告。

两点分布和中心极限定理(总)

两点分布和中心极限定理 1 两点分布 伯努利分布(the Bernoulli distribution),又名两点分布或者0-1分布,是一个离散型概率分布,为纪念瑞士科学家雅各布·伯努利而命名。若伯努利试验成功,则伯努利随机变量取值为1。若伯努利试验失败,则伯努利随机变量取值为0。记成功的概率为p ,失败的概率为1q p =-。 pdf 为:()() 1if 111if 00otherwise x x p x f x p p p x -=??=-=-=??? CDF 为:()000111 for x F X q for x for x

2.1.1 定理 设n μ为n 重伯努利试验中事件A 出现的次数,已知每次试验事件A 出现的概率为p ,01p <<,则对任意x ,有 ()2/2 lim d x t n P x x e t --∞ →∞???<=Φ=?? ? 2.1.2 证明 随机变量n μ可表示为n 个独立的服从()1,B p 分布的随机变量 ()1,2, ,i X i n =和和,即1 n n i i X μ==∑,而()i E X p =,()()1i D X p p =-, 1,2, ,i n =,由独立同分布的中心极限定理有: 2/2lim lim d n i x t n n X np x x t -→∞→∞?? - ?????<=<=???? ? ∑? 由此定理可知,正态分布是二项分布(两点分布)的极限分布,因此,当n 很大时,有如下所示的近似计算二项分布的常用方法: ()() ()()2 1 2/2121d m n m m m m t n n m C p p P t P m m e βα μβα-=-= -??=<<≈=≤≤Φ-Φ∑ 其中()x Φ为()0,1N 的分布函数,且 αβ= = 2.2 中心极限定理的证明 设{}i ξ是独立随机变量序列,i ξ服从相同分布,且()i E ξμ=,()20i D ξσ=>,则当n →∞时,有:

考研数学一-概率论与数理统计大数定律和中心极限定理.doc

考研数学一-概率论与数理统计大数定律和中心极限定理 (总分:48.00,做题时间:90分钟) 一、选择题(总题数:9,分数:9.00) 1.设随机变量X1,X2,…,X n,…独立同分布,EX i=μ(i=1,2,…),则根据切比雪夫大数定律,X1,X2,…,X n,…依概率收敛于μ,只要X1,X2,…,X n,… (分数:1.00) A.共同的方差存在. B.服从指数分布. C.服从离散型分布. D.服从连续型分布. 2.假设天平无系统误差.将一质量为10克的物品重复进行称量,则可以断定“当称量次数充分大时,称量结果的算术平均值以接近于1的概率近似等于10克”,其理论根据是 (分数:1.00) A.切比雪夫大数定律. B.辛钦大数定律. C.伯努利大数定律. D.中心极限定理. 3.下列命题正确的是 (分数:1.00) A.由辛钦大数定律可以得出切比雪夫大数定律. B.由切比雪夫大数定律可以得出辛钦大数定律. C.由切比雪夫大数定律可以得出伯努利大数定律. D.由伯努利大数定律可以得出切比雪夫大数定律. 4.设X1,…,X n…是相互独立的随机变量序列,X n服从参数为n的指数分布(n=1,2,…),则下列随机变量序列中不服从切比雪夫大数定律的是 (分数:1.00) __________________________________________________________________________________________ 5.假设随机变量序列X1,…,X n…独立同分布且EX n=0 1.00) A. B. C. D. 6.设X n,n≥1为相互独立的随机变量序列且都服从参数为λ的指数分布,则 1.00) __________________________________________________________________________________________

中心极限定理发展

概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。1920年,G.波伊亚称这类定理为中心极限定理。它是概率论中最重要的一类定理,有着广泛的实际背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。 独立随机变量的中心极限定理 历史上最初的中心极限定理是讨论 n重伯努利试验(见二项分布)中,事件A出现的次数μn渐近于正态分布的问题。若记事件A出现的概率为p(A)=p,不出现的概率为q=1-p,1716年前后,A.棣莫弗对p=1/2作了讨论,随后,P.-S.拉普拉斯推广到一般情形,得到:当-∞<α0,使当 那么当n→∞,的分布渐近于标准正态分布 ,即

随着特征函数(见概率分布)的引入,中心极限定理的研究得到了很快的发展。20世纪20年代,Y.W.林德伯格和P.莱维证明了林德伯格-莱维定理:对于独立同分布的随机变量序列{x n},当Exk=α及varxk=ζ2有限时,部分和S n的标 准化的分布渐近于标准正态分布。它在数理统计的大样本理论中有重要的应用。1935年,林德伯格和W.费勒又进一步解决了独立随机变量 序列的中心极限定理的一般情形,即林德伯格-费勒定理: 且费勒条件成立,当且仅当林德伯格条件成立,即对任给正实数η, , 式中F k(x)=p(xk≤x)。这个结果使长期以来作为概率论中心议题之一的关于独立随机变量序列的中心极限定理得到根本解决。前述诸结果都是它的推论。 此后中心极限定理的研究基本上围绕几个方面进行:一是减弱对随机变量独立性的要求,考虑具有某种相依性的随机变量;一是讨论向标准正态密度函数收敛的问题;再就是估计向正态分布收敛的速度及有关问题。 局部极限定理 向正态密度函数收敛的问题虽然在概率论的早期工作中就出现了,但是一般性结果直至20世纪中期才得到。在棣莫弗-拉普拉斯定理形成的过程中,首先解决的是,在 n重伯努利试验中,事件 A出现的次数μn等于k的概率 p n(k)=p(μn=k)渐近于正态密度的问题,即所谓棣莫弗-拉普拉斯局部极限定理:在 任给的有限区间[с,d]中,对于满足的k,一致地成立, ,式中是标准正态密度函数。这一结论的推广就是讨论取值为b+Nk(N=0,±1,…)的独立随机变量序列{x k}的相应问题,即格点极限定理。对于独立同分布情形,1948年Б.Β.格涅坚科给出了相当简明的充分必要条件;对于独立非同分布情形,于50年代 也给出了充分条件。当独立随机变量序列{xk}的标准化部分和的密度函数

中心极限定理证明

中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此

故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有的把握使出现六点的概率与之差不超过,问需要抛掷多少次 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

习题课课堂课件

电子科技大学概率论与数理统计MOOC 第5章 习题课:大数定律和中心极限定理 主讲人:龚丽莎

12100,, X X X 1. 设噪声电压相互独立且都服从区间(0, 6) 上的均匀分布(单位:伏特),用切比雪夫不等式估计叠加后的总噪声电压 1001 k k Y X ==∑在260伏到340伏之间的概率。 解: 由题意知100 1()1003300,k k E Y E X =??==?= ???∑21001 6()()10030012k k D Y D X ===?=∑{}{}260340()40P Y P Y E Y ≤≤=-≤第五章大数定律和中心极限定理 D Y 2()40≥1-1316=

2.设{X k }为相互独立的随变量序列,且 {}{}1/2,1,2, k k P X k P X k k αα===-= =0α≤{}k X 证明:当时,服从大数定律。 证明:{X k }为相互独立的随变量序列,且 ,2,1,02 121)(==-=k k k X E k αα),0(1)(2 1)()(2222≤≤=+==ααααk k k X E X D k k 即期望存在,方差一致有界,满足切比雪夫大数定律的条件,故{X k }服从大数定律。

3. 某快餐店出售四种快餐套餐,价格分别为6元,10元,15元,18元。已知这四种套餐售出的概率分别为0.25, 0.45, 0.2, 0.1。若某天该店售出套餐500份,试用中心极限定理计算:(1) 当天营业额至少为5500元的概率;(2) 15元套餐至少售出80份的概率。 是售出的第i 份套餐价格(i =1,…,500),则 解:设X i X i 6101518 p0.250.450.20.1 且X 相互独立。 i

中心极限定理

心极限定理(上) 骰子和生日 了解中心极限定理 马克.吐温讽刺道:有三种避免讲zhenxiang的方式:谎言,该死的谎言和统计数据。这个笑话很中肯,因为统计信息频繁地看似一个黑匣子——了 解统计定理怎样让通过数据取得结论变成可能,这是有难度的。 但因为不论是喷气发动机可靠性还是安排我们平日看的电视节目的流程,数据分析,类似的任何事情中都扮演着重要角色,所以至少获取对统 计基本理解是重要的。要了解其中一个重要概念是中心极限定理。 在这篇文章中,我们将解释中心极限定理,通过普通的例子,诸如掷骰子和美国职业棒球联赛球员生日来展示如何操作它。 定义中心极限定理 某典型课本对中心极限定理的定义如下:

当样本容量增加时,样本均值X的分布接近均值等于μ,标准差σ/√n 注: μ是总体均值 σ是总体标准差 n是样本大小 换句话说,如果我们多次采用大小为n的独立随机抽样,那么当n足够大的时,样本平均值的分布就接近正态分布。 那么多大才是足够大呢?一般来说,样本容量大于或者等于30认为是足够大,此时中心极限定理起作用。如果总体分布越要接近正态分布,那么需要更多的样本来使用该定理。对于严重不对称的或者有几个模板的总体来说,也许要求更大的样本。 为什么有关呢 从一个总体中收集所有的数据是很难操作或者不可行的,统计学就是基于这个情况产生的。换种方式来做,我们可以从总体中获取数据的子集,然后对这个样本进行统计分析,以得到总体的结论。 举例来说,我们可以从工业生产流程中收集多个随机样本,然后使用各个样本的平均值来推断整个过程的稳定性。 2个常用于解释总体的特征值分别是平均值和标准差。当数据遵循正态分布,均值表示分布的中心位置,标准差揭示分布情况。

中心极限定理的应用

毕业论文 题目中心极限定理的应用 学生姓名张世军学号1109014148 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(统计类)11级2班指导教师程小静 2015 年 5 月 25 日

中心极限定理的应用 张世军 (陕西理工学院数学与计算机科学学院数学与应用数学专业2011级数应2班,陕西汉中 723000) 指导教师:程小静 [摘要]中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类重要定理。本文首先从中心极限定理的内容出发,给出几种常见的中心极限定理并对其进行了证明;其次讨论了中心极限定理在供应电力、器件价格、商场管理、烟卷制造业、社会生活、军事问题等这几个方面的实际应用;最后总结分析了中心极限定理在应用上的优缺点。 [关键词]随机变量;中心极限定理;正态分布;概率论;近似计算 Central Limit Theorem of Application Zhang Shijun (Grade11,Class02,Major Mathematics and Applied Mathematics Specialty,Mathematics and computer scienceDept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Cheng Xiaojing Abstract:The central limit theorem is an important limit theorem in probability theory to discuss a set of random variables and the distribution of the normal distribution. Firstly starting from the content of the central limit theorem, given several common central limit theorems and its proofs; Second central limit theorem is discussed in the electric power supply, prices, market management, cigarette manufacturing, social life, the practical application of this a few aspects such as military questions; Summarized and analyzed the advantages and disadvantages of central limit theorem on the application. Keywords:Random variables; Central limit theorem; Normal distribution; Probability theory;Approximate calculation

相关文档
最新文档