汽车安全气囊碰撞有限元分析外文翻译

汽车安全气囊碰撞有限元分析外文翻译
汽车安全气囊碰撞有限元分析外文翻译

FINITE ELEMENT ANALYSIS OF AUTOMOBILE CRASH SENSORS FOR AIRBAG SYSTEMS

ABSTRACT

Automobile spring bias crash sensor design time can be significantly reduced by using finite element analysis as a predictive engineering tool.The sensors consist of a ball and springs cased in a plastic housing.Two important factors in the design of crash sensors are the force-displacement response of the sensor and stresses in the sensor springs. In the past,sensors were designed by building and testing prototype hardware until the force-displacement requirements were met. Prototype springs need to be designed well below the elastic limit of the https://www.360docs.net/doc/d77896080.html,ing finite element analysis, sensors can be designed to meet forcedisplacement requirements with acceptable stress levels. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort.

MSC/ABAQUS has been used to analyze and design airbag crash sensors.The analysis was geometrically nonlinear due to the large deflections of the springs and the contact between the ball and springs. Bezier 3-D rigid surface elements along with rigid surface interface (IRS) elements were used to model ball-to-spring

contact.Slideline elements were used with parallel slideline interface (ISL) elements for spring-to-spring contact.

Finite element analysis results for the force-displacement response of the sensor were in excellent agreement with experimental results.

INTRODUCTION

An important component of an automotive airbag system is the crash sensor. Various types of crash sensors are used in airbag systems including mechanical,

electro-mechanical, and electronic sensors. An electro-mechanical sensor (see Figure 1) consisting of a ball and two springs cased in a plastic housing is discussed in this

paper. When the sensor experiences a severe crash pulse, the ball pushes two springs into contact completing the electric circuit allowing the airbag to fire. The

force-displacement response of the two springs is critical in designing the sensor to meet various acceleration input requirements. Stresses in the sensor springs must be kept below the yield strength of the spring material to prevent plastic deformation in the springs. Finite element analysis can be used as a predictive engineering tool to optimize the springs for the desired force-displacement response while keeping stresses in the springs at acceptable levels.

In the past, sensors were designed by building and testing prototype hardware until the forcedisplacement requirements were met. Using finite element analysis, the number of prototypes built and tested can be significantly reduced, ideally to one, which substantially reduces the time required to design a sensor. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort.

MSC/ABAQUS [1] has been used to analyze and design airbag crash sensors. The analysis was geometrically nonlinear due to the large deflections of the springs and the contact between the ball and springs. Various contact elements were used in this analysis including rigid surface interface (IRS) elements, Bezier 3-D rigid surface elements, parallel slide line interface (ISL) elements, and slide line elements. The finite element analysis results were in excellent agreement with experimental results for various electro-mechanical sensors studied in this paper.

PROBLEM DEFINITION

The key components of the electro-mechanical sensor analyzed are two thin metallic springs (referred to as spring1 and spring2) which are cantilevered from a rigid plastic housing and a solid metallic ball as shown in Figure 1. The plastic housing contains a hollow tube closed at one end which guides the ball in the desired direction. The ball is held in place by spring1 at the open end of the tube. When the sensor is assembled, spring1 is initially displaced by the ball which creates a preload on spring1. The ball is able to travel in one direction only in this sensor and this direction will be referred

to as the x-direction (see the global coordinate system shown in Figure 2) in this paper. Once enough acceleration in the x-direction is applied to overcome the preload on spring1, the ball displaces the spring. As the acceleration applied continues to increase, spring1 is displaced until it is in contact with spring2. Once

the sensor to perform its function within the airbag system.

FINITE ELEMENT ANALYSIS METHODOLOGY

When creating a finite element representation of the sensor, the following simplifications can be made. The two springs can be fully restrained at their bases implying a perfectly rigid plastic housing. This is a good assumption when comparing the flexibility of the thin springs to the stiff plastic housing. The ball can be represented by a rigid surface since it too is very stiff as compared to the springs. Rather than modeling the contact between the plastic housing and the ball, all rotations and translations are fully restrained except for the xdirection on the rigid

surface representing the ball. These restraints imply that the housing

will have no significant deformation due to contact with the ball. These restraints also ignore any gaps due to tolerances between the ball and the housing. The effect of friction between the ball and plastic is negligible in this analysis.The sensor can be analyzed by applying an enforced displacement in the x-direction to the rigid surface representing the ball to simulate the full displacement of the ball. Contact between the ball and springs is modeled with various contact elements as discussed in the following section. A nonlinear static analysis is sufficient to capture the force-displacement response of the sensor versus using a more expensive and time consuming nonlinear transient analysis. Although the sensor is designed with a ball mass and spring stiffness that gives the desired response to a given acceleration, there

is no mass associated with the ball in this static analysis. The mass of the ball can be determined by dividing the force required to deflect the springs by the acceleration input into the sensor.

Mesh

The finite element mesh for the sensor was constructed using MSC/PATRAN [2]. The solver used to analyze the sensor was MSC/ABAQUS. The finite element mesh including the contact elements is shown in Figure 2. The plastic housing was assumed to be rigid in this analysis and was not modeled. Both springs were modeled with linear quadrilateral shell elements with thin shell physical properties. The ball was assumed to be rigid and was modeled with linear triangular shell elements with Bezier 3-D rigid surface properties.

To model contact between the ball and spring1, rigid surface interface (IRS) elements were used in conjunction with the Bezier 3-D rigid surface elements making up the ball. Linear quadrilateral shell elements with IRS physical properties were placed on spring1 and had coincident nodes with the quadrilateral shell elements making up spring1. The IRS elements were used only in the region of ball contact.

To model contact between spring1 and spring2, parallel slide line interface (ISL) elements were used in conjunction with slide line elements. Linear bar elements with ISL physical properties were placed on spring1 and had coincident nodes with the shell elements on spring1. Linear bar elements with slide line physical properties were placed on spring2 and had coincident nodes with the shell elements making up spring2.

Material

Both spring1 and spring2 were thin metallic springs modeled with a linear elastic material model. No material properties were required for the contact or rigid surface elements.

Boundary Conditions

Both springs were assumed to be fully restrained at their base to simulate a rigid plastic

housing. An enforced displacement in the x-direction was applied to the ball. The ball wasfully restrained in all rotational and translational directions with the exception of the xdirection translation. Boundary conditions for the springs and ball are shown in Figure 2.

DISCUSSION

Typical results of interest for an electro-mechanical sensor would be the deflected shape of the springs, the force-displacement response of the sensor, and the stress levels in the springs. Results from an analysis of the electro-mechanical sensor shown in Figure 2 will be used as

full ball travel. Looking at the deflected shape of the springs can provide insight into the performance of the sensor as well as aid in the design of the sensor housing.

Stresses in the springs are important results in this analysis to ensure stress levels in the springs are at acceptable levels. Desired components of stress can be examined through various means including color contour plots. One of the most important results from the analysis is the force-displacement response for the sensor shown in Figure 4. From this force-displacement response, the force required to push spring1 into contact with spring2 can readily be determined. This force requirement can be used with a given acceleration to determine the mass required for the ball. Based on these results, one or more variations of several variables such as spring width, spring thickness, ball diameter, and ball material can be updated until the force-displacement requirements are achieved within a desired accuracy.

A prototype of the sensor shown in Figure 2 was constructed and tested to determine its actual force-displacement response. Figure 4 shows the MSC/ABAQUS results along with the experimental results for the force-displacement response of the sensor. There was an excellent correlation between finite element and experimental results for this sensor as well as

for several other sensors examined. Table 1 shows the difference in percent between finite element and experimental results including force at preload on spring1, force at spring1-tospring2 contact, and force at full ball travel for two sensor configurations. Sensor A in Table 1 is shown in Figure 1. Sensor B in Table 1 is based on the sensor shown in Figure 2.

The sensor model analyzed in this paper was also analyzed with parabolic quadrilateral and bar elements to ensure convergence of the solution.

Force-displacement results converged to less than 1% using linear elements. The stresses in the springs for this sensor converged to within 10% for the linear elements. The parabolic elements increased solve time by more than an order of magnitude over the linear elements. With more complex spring shapes, a denser linear mesh or parabolic elements used locally in areas of stress concentrations would be necessary to obtain more accurate stresses in the springs.

Notes: 1. Sensor A results are based on 1 prototype manufactured and tested. Sensor Bexperimental results are based on the average of 20 prototypes

manufacturedand tested.

2. No experimental data for force at full ball travel for Sensor A.

3. %Difference=(FEA Result - Experimental Result)/Experimental Result

CONCLUSIONS

MSC/ABAQUS has been used to analyze and design airbag crash sensors. The finite element analysis results were in excellent agreement with experimental results for several electromechanical sensors for which prototypes were built and tested. Using finite element analysis, sensors can be designed to meet force-displacement requirements with acceptable stress levels. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort. This paper has demonstrated the power of finite element analysis as a predictive engineering tool even with the use of multiple contact element types.

汽车安全气囊系统撞击传感器的

有限单元分析

摘要:汽车弹簧碰撞传感器可以利用有限单元分析软件进行设计,这样可以大大减少设计时间。该传感器包括一个球和一个有弹簧在内的塑料套管的外壳。传感器设计的重要因素是碰撞中的两个传感器的力位移响应和传感器的弹簧压力。以前传感器的设计、制作和测试需要满足力位移原型硬件的要求。弹簧必须远低于材料的弹性极限而设计。利用有限元分析,传感器可以被设计为满足力位移的水平压力。本文的讨论说明利用有限单元分析进行设计可以节省很多时间。

MSC/ABAQUS已经被用于分析和设计安全气囊碰撞传感器。弹簧的大挠度和球与弹簧之间的接触用几何非线性分析。贝塞尔三维刚性球表面元素和惯性基准系统刚性表面界面元素被用于塑料球与弹簧接触面的分析。滑动轨道分析被用于弹簧与弹簧接触的平行界面间。有限元传感器的力位移响应分析结果与实验结果非常一致。

引言

汽车安全气囊系统的重要组成部分是碰撞传感器。包括机械、电子传感器在内的碰撞传感器主要用于各类安全气囊系统。本文研究的是由一个球和一个塑料套管和两个弹簧组成的机电传感器(见图1)。当传感器遇到严重的撞击脉冲,球被推入完成电路连接然后两个弹簧接触到消防安全气囊。这两个弹簧的力位移设计关键是要满足不同的加速度对传感器的输入要求。传感器的弹簧强度必须保持低于弹簧材料屈服强度,防止弹簧塑性变形。有限元分析,可以作为预测工具,以优化工程所需的力和位移反应,同时保持在弹簧压力可接受的水平。

过去传感器的设计需要不断地进行制作和测试,直到力位移原型硬件得到满足需要的条件。利用有限元分析,制作和测试原型的数量大大减少,这大大降低了传感器设计的时间。本文讨论的内容可以表明有限单元分析软件能够节省原型制作时间的能力。

MSC/ABAQUS [1]已经用于分析和设计安全气囊碰撞传感器。对于大挠度的弹簧与球接触的有限单元分析应是几何非线性的。各种接触单元中使用了这个包括硬表面界面分析,例如贝塞尔曲线的三维刚性表面元素,平行线界面元素,以及滑线元素。有限元分析结果与各种机械文献研究传感器的实验结果非常一致。

问题的定义

机电传感器的关键部件是由两个以悬臂式存在于硬性塑料外壳和刚性球之

间的两个金属弹簧组成的。在塑料外壳中包含一个能指导球运动方向的一端封闭的真空管。球在真空管中被弹簧顶在管子的一端。传感器组装时弹簧被球顶着产生最初的预紧力。球在传感器中只能沿着一个方向运动,这个方向被称为X方向。一旦在X方向的加速度足够用来克服spring1的预紧力,球就能是弹簧弹开。如果加速度继续增加,弹簧1就能直接与弹簧2接触。一旦弹簧1与弹簧2接触上,一个电路接通然后启动安全气囊的体统。

当创建一个传感器的有限元描述时,剩下的可以被简化。这两个弹簧完全的被固定在刚性的塑料外壳中。当一个刚性外壳和薄的弹簧作比较时这是一个很好的假设。当球和弹簧接触时球可以被表示为一个刚性表面。球和外壳接触的建模系统中,除了球在X轴移动外壳中的所有的转动和移动都受到限制。

球与外壳之间的公差。在有限元分析中球和塑料外壳的摩擦可以忽略不计。传感器在X轴的分析,可以用一个刚性表面的的移动表示球的所有移动。下面讨论的是球与弹簧间的接触,和各种不同的接触原理。一个非线性静态分析,足以捕获耗费大量时间的非线性瞬态传感器的力位移响应。虽然该传感器的设计是由球质量和给定一个加速度回应的弹簧刚度组成的,但是在静态分析中没有球的质量。

单元网格

球的质量可以被把球挤进传感器的偏转力所确定。利用MSC / Patran的[2]构建传感器的有限单元网络。用MSC/ABAQUS来求解并分析传感器。包括接触单元的有限元网格,如图2所示的内容。该塑料外壳在这种分析中被假定为是刚性

的。然后对线性弹簧与薄壳四边形进行了物理性质的建模。球被假定为刚性的,

并以线性贝塞尔3 - D刚性表面性质做参考。模型之间的球和弹簧1的接触,使用了刚性表面接触和贝塞尔3 - D刚性表面性质的原理。线性物理性质与IRS物理性质被用在弹簧1上,并保证四边形外壳与弹簧1的节点同步。惯性基准系统元件只用在球状接触区域。

在弹簧1和弹簧2的接触模型中,滑道连接原理用了平行滑道连接原理。线性杆元和ISL物理性质被一起用在了弹簧1上并与外壳组成弹簧1同步节点。滑线与直线杆单元的物理性能用在spring2并与外壳组成弹簧2同步节点。

材料

弹簧1和弹簧2都是具有线性弹性材料的薄金属弹簧。材料特性必须是接触的或刚性的表面元素。

临界条件

假设两弹簧被完全的固定在刚性塑料外壳中。球在X轴上有一个强制的位移。除了X轴的平移以外球在所有方向的移动和转动都受到约束。球和弹簧的临界条件,如图2所示。

讨论

电动机械传感器的重要因素是弹簧的偏转形状,传感器的力位移响应和弹簧的压力水平线。

器中球的所有偏转和移动。研究弹簧的偏转形状何以提供更多的对传感器的执行性能设计以及外壳设计的见解。在确保弹簧能够承受所受到的水平压力时,对弹簧的分析是非常重要的。可以通过各种手段检查各部件的压力。分析中最重要的部分之一是图4所示的传感器力位移响应。在这个力位移响应中,外力必须能够轻易地推动弹簧1接触到弹簧2。这个力必须能够保证作用在球上并且给它一个足够的加速度。根据这些结果,一个或者更多的变量例如弹簧的宽度、球的直径、球的材料都可以被设计直到达到理想的精度范围。

图2所示传感器模型的建立和测试,确定了他的实际受力和力位移响应。图4

显示的MSC / ABAQUS分析结果为传感器的力位移响应的实验结果。

机电传感器和一些其他的传感器之间的有限元实验结果有着很高的相关性。表1显示了包括弹簧1、弹簧和弹簧1与弹簧2接触和球的转动与位移的实验结果。表1中传感器A如图1所示。表1中传感器B如图2所示。

为确保解决方案的衔接,还对传感器模型外壳进行了分析。力位移不足1%时按线性原理分析。弹簧对传感器的压力小于10%的按线性原理分析。用抛物线原理要比用线性原理分析费更多的时间。随着弹簧形状变的更加复杂,弹簧的分析必须要获得一个更精准密集的受力的线性网或局部受力的网。

注释:

1.传感器A的结果是根据模型1制作和测试的。传感器B的结果是根据20个模型的数据制作和测试的。

2.没有球运动队模型A产生压力的实验数据。

3.误差=(有限元分析结果—实验结果)/实验结果。

结论

MSC/ABAQUS软件已被用于分析和设计安全气囊碰撞传感器。对于机电传感器模型的建立和测试来说有限元分析的结果和实验结果非常一致。利用有限元分析,传感器可以被设计为满足力位移性的需要与可接受的压力水平。本文的讨论说明利用有限单元分析进行设计可以节省很多时间。本文能够说明有限元分析作为一个分析对重要接触元件进行分析的能力。

人民币汇率变动对我国经常项目的影响的【外文翻译】

论文“人民币汇率变动对我国经常项目的影响”的外文翻译 中文部分: 中国独立的货币政策,汇率制度和资本帐户 作者:普拉萨德 国籍:美国 出处及类别:在彼得森国际经济研究所关于中国人民币汇率政策的会议上提交的发表时间及页码:2007年10月19日,P7-13 中国的货币政策当然是最近以来最受瞩目的。维持固定汇率是否是部分重商主义者蓄意的战略以促进出口导向型增长,一直受到激烈的辩论。一方面,自1995年以来中国一直采取相对美元较为稳定的汇率。甚至在亚洲(金融)危机时期人民币有巨大的贬值诱惑时这项政策也仍然维持。另一方面,这十年期间汇率一直保持升值,而仅仅通过大规模干预外汇市场。随着出口的持续高速增长和经常帐户盈余的不断膨胀,在2006年几乎达到国内生产总值的10%,这一直被视为严重低估货币的初步证据。 正如下文更加详细的讨论,(我们)关注的主要问题之一是:汇率灵活性的缺失不仅降低了货币政策的独立性,而且阻碍了银行业的改革。中国人民银行无法把利率作为一个主要的货币政策工具,这意味着,信贷增长将由粗放和非以市场为导向的工具所控制,包括信贷增长的目标/上限以及“非审慎的行政措施”。 中国对汇率政策和资本帐户自由化的方式可能表明了一个愿望,即在贸易开放和资本流动时维护国内、外的稳定。而由此带来的大量的外汇储备积累可能是作为由脆弱的银行体系造成的漏洞的保险。但有一点,当扭曲的政策需要维持时,这种方式会产生不平衡,潜在地强加了巨大的福利代价,自己也成为不稳定的根源。 首先,为什么汇率制度如此重要?毕竟,汇率只是一个相对的价格。此外,经济模型告诉我们,宏观经济基本面最终取决于真正重要的---实际汇率,而非名义汇率。也就是说,如果名义汇率不跟随经济基本面的调整而调整,(则)相

汽车专业毕业设计外文翻译

On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. S. Melzi,E. Sabbioni Mechanical Systems and Signal Processing 25 (2011):14~28 电脑估计车辆侧滑角的数值和实验结果 S.梅尔兹,E.赛博毕宁 机械系统和信号处理2011年第25期:14~28

摘要 将稳定控制系统应用于差动制动内/外轮胎是现在对客车车辆的标准(电子稳定系统ESP、直接偏航力矩控制DYC)。这些系统假设将两个偏航率(通常是衡量板)和侧滑角作为控制变量。不幸的是后者的具体数值只有通过非常昂贵却不适合用于普通车辆的设备才可以实现直接被测量,因此只能估计其数值。几个州的观察家最终将适应参数的参考车辆模型作为开发的目的。然而侧滑角的估计还是一个悬而未决的问题。为了避免有关参考模型参数识别/适应的问题,本文提出了分层神经网络方法估算侧滑角。横向加速度、偏航角速率、速度和引导角,都可以作为普通传感器的输入值。人脑中的神经网络的设计和定义的策略构成训练集通过数值模拟与七分布式光纤传感器的车辆模型都已经获得了。在各种路面上神经网络性能和稳定已经通过处理实验数据获得和相应的车辆和提到几个处理演习(一步引导、电源、双车道变化等)得以证实。结果通常显示估计和测量的侧滑角之间有良好的一致性。 1 介绍 稳定控制系统可以防止车辆的旋转和漂移。实际上,在轮胎和道路之间的物理极限的附着力下驾驶汽车是一个极其困难的任务。通常大部分司机不能处理这种情况和失去控制的车辆。最近,为了提高车辆安全,稳定控制系统(ESP[1,2]; DYC[3,4])介绍了通过将差动制动/驱动扭矩应用到内/外轮胎来试图控制偏航力矩的方法。 横摆力矩控制系统(DYC)是基于偏航角速率反馈进行控制的。在这种情况下,控制系统使车辆处于由司机转向输入和车辆速度控制的期望的偏航率[3,4]。然而为了确保稳定,防止特别是在低摩擦路面上的车辆侧滑角变得太大是必要的[1,2]。事实上由于非线性回旋力和轮胎滑移角之间的关系,转向角的变化几乎不改变偏航力矩。因此两个偏航率和侧滑角的实现需要一个有效的稳定控制系统[1,2]。不幸的是,能直接测量的侧滑角只能用特殊设备(光学传感器或GPS惯性传感器的组合),现在这种设备非常昂贵,不适合在普通汽车上实现。因此, 必须在实时测量的基础上进行侧滑角估计,具体是测量横向/纵向加速度、角速度、引导角度和车轮角速度来估计车辆速度。 在主要是基于状态观测器/卡尔曼滤波器(5、6)的文学资料里, 提出了几个侧滑角估计策略。因为国家观察员都基于一个参考车辆模型,他们只有准确已知模型参数的情况下,才可以提供一个令人满意的估计。根据这种观点,轮胎特性尤其关键取决于附着条件、温度、磨损等特点。 轮胎转弯刚度的提出就是为了克服这些困难,适应观察员能够提供一个同步估计的侧滑角和附着条件[7,8]。这种方法的弊端是一个更复杂的布局的估计量导致需要很高的计算工作量。 另一种方法可由代表神经网络由于其承受能力模型非线性系统,这样不需要一个参

新能源电动汽车市场分析报告

新能源电动汽车行业分析报告 班级:车辆122 姓名:刘书成 学号:201210603103

在这深入研究新能源汽车的产业,包括它的产业链、产业结构、产业运营等。还将通过国内外数个案例来进行具体分析。进一步让读者了解新能源电动汽车的发展。 一、产业研究(一)新能源产业链上游:IC制造、正极材料、负极材料、电解液、隔膜、有色资源、钢铁等。 中游:电控系统(电池管理系统、电机控制系统、动力总成控制系统)、电池系统(电芯、电池组)、电机系统(驱动电机)、充电配套设备(充电桩、充电机)、仪表仪器、橡胶轮胎、变速箱系统、配件内饰等。 下游:乘用车、客车 后服务:销售、维修保养、金融、保险、二手车、充电设施、电池回收、汽车租赁、车联网、增值应用。 (二)产业链上游是资源类公司,主要为新能源汽车提供原始材料有色资源:天齐锂业、赣峰锂业、吉思镍业、贵研铂业、包钢稀土、厦门钨业 负极材料:杉杉股份、中国宝安 电解液:新亩邦、天赐材料、多氟多 隔膜:沧州明珠、南洋科技、云天化 正极材料:中信国安、杉杉股份、中国宝安、恒店东磁、当升科技 钢铁:宝钢股份、鞍钢股份、武钢股份、马钢股份、方大股份 (三)产业链中游的三大核心技术:电池+电机+电控,其中电池厂商可以成为东软的潜在合作伙伴新能源汽车=插电式混合动力+纯电动 核心技术: 1、镍氢电池:科力远、春兰股份、中炬高新、凯恩股份、北方稀土 2、锂电池: (1)电芯:比亚迪、成飞集团、万向集团、东莞ATL、佛山照明 (2)BMS:比亚迪、德赛电池、欣旺达、凹凸科技 3、电机+电控:大洋电机、江特电机、宁波韵升、方正电机、湘电股份、信质电机、宗升

人民币汇率文献综述

人民币汇率问题——文献综述 摘要: 本文依次探讨了人民币汇率研究的不同领域问题,对近几年来有关人民币汇率的部分文献进行了综述,目的在于通过本文的介绍,大致的描述出近几年的学术界对于人民币汇率问题的相关方面的研究,并得出一些结论。本文首先对人民币汇率的当前形势进行了大致的勾勒;然后本文介绍了人民币汇率所面对的问题和相关影响的分析,其中也包括了对人民币汇率变动因素的分析。 关键词:人民币汇率人民币汇率升值国际贸易 一、引言 改革开放以来,我国在经济方面与世界的联系变得日益紧密起来,而在之后,我国加入了WTO,随着每年贸易额稳定增长的同时,汇率也开始成为影响我国国际竞争力的一个重要方面。我国国际地位的提升以及近年来我国经济的快速崛起,让我国经济已经成为世界经济舞台上的重要成员,人民币汇率的每一次变更都牵动着国际经济的神经。 从1994年汇率并轨以来,我国开始实行“有管理的浮动汇率制”,但是在运行中仍然表现出明显的单一盯住美元的固定汇率制度的特点。自从1997年以来,人民币兑美元的固定汇率制度一直保持在1美元兑换8.20元左右,并且外汇资产以美元计价。在2005年7月中国人民银行做出了重归“有管理的浮动”的改革,它对汇率及其形成机制进行了部分的改革,由盯住单一美元改为盯住一篮子货币。 以上简单的阐述了人民币汇率的当前情况和我国目前现行的汇率制度。而该制度下实施的人民币汇率在面对世界货币干扰波动的影响下也开始出现了许许多多的问题。下文就开始对人民币汇率的问题进行详细的探讨,对近几年人民币汇率研究方面的文献进行综述,由此得出一些结论。 二、人民币汇率所面临的问题 自2002年开始,西方社会经济领域就一度的要求人民币升值,学术界都是一致的认为人民币汇率是低估了的。而在2005年前后,各个国家都开始要求中国改革汇率制度,或是直接要求人民币升值,或是基于国内经济压力,或是迫于国内政治的压力。2008年,金融危机席卷全球,世界的主要经济大国都将逐注意力转向了如何摆脱危机,而人民币则在这两年中稳稳的度过。 2010年之后,世界经济开始渐渐复苏,似乎也已走出了危机的阴影中,他们又将注意力移向了人民币升值的问题,稳定了两年的人民币汇率开始松动了,人民币又面临了新的一轮升值压力当中。 对于人民币升值的原因,学术界的研究也是层层递进,深入探析。张永国(2011)将人民币汇率升值的原因大致化成了四个方面: 1.中外利率差异情况,利率的相对高低会影响资本流动的方向,从而影响国际贸易规模,使利率差异对汇率走势的影响力不断地提高; 2.货币供应量状况,由于改革开放的深入,外商投资大幅度增加,再加上紧缩性货币政策,人民币资金相当紧张,外资进入又过多,所以出现了明显的外汇供大于求,促使人民币

基于有限元分析的发动机缸体压铸模具设计【毕业论文(含任务书、外文翻译)】

BI YE SHE JI (20 届) 基于有限元分析的发动机缸体压铸模具设计 所在学院 专业班级材料成型与控制工程 学生姓名学号 指导教师职称 完成日期年月

任务下达日期:2016年3月1日 毕业设计日期:2016年3月1日至2016年6月12日 毕业设计题目:基于有限元分析的发动机缸体压铸模具设计 毕业设计主要内容和要求: 内容: 1、查阅30篇中文文献及10篇左右的英文文献,充分了解设计内容。 2、利用NX10.0建立缸体三维模型,使用Anycasting完成缸体压铸过程模拟分析。 3、参考设计手册和模拟结果完成压铸模具设计,并绘制模具工程图。 4、要求翻译一篇近三年的英文文献,汉字内容应不少于3000字。 要求: 1、努力学习、勤于实践、勇于创新,保质保量地完成毕业设计任务。 2、遵守纪律,保证出勤。因事、因病离岗,应事先向指导老师请假。否则作为缺席处理。 3、独立完成规定的工作内容。不弄虚作假,不抄袭和拷贝别人的工作内容。 4、毕业设计必须符合中国矿业大学毕业论文规范化规定,否则不得参加毕业答辩。 院长签字:指导教师签字:

本文以某汽车的发动机铝合金缸体压铸件为研究对象,对该缸体压铸件可能铸造缺陷进行分析及预测。首先利用NX10.0设计该缸体的三维模型,并参照设计手册完成浇注系统和排溢系统的设计。然后利用铸造模拟软件anycasting v4.0对压铸模具型腔、浇注系统和排溢系统整体进行充填和凝固过程进行模拟研究。分析目前的工艺和设计的浇注系统、排溢系统的是否存在问题,对重要的压铸工艺参数进行优化,并优化压铸模具浇注系统和排溢系统。根据以上模拟结果和设计手册,利用NX10.0、AUTOCAD完成其余结构的设计。使用anycasting v4.0主要完成充型分析,充型过程热分析和热凝固分析,其中重要的工艺参数是冲头快压射速度、浇注温度、冲头高低速转换点和模具预热温度,最后得到一个缺陷比较少的模拟结果。对一般充型缺陷,可以通过优化设计浇注系统、排气系统改进,对凝固缺陷可以通过修改冷却系统的位置进行改进。模具设计部分包括模具型芯部分设计、模架设计、侧抽芯系统设计、顶出系统设计、模具厚度核算、动模座板行程校核、最小合模距离与最大开模距离校核和模具最大外形轮廓校核。最后依据模拟分析结果和模具结构设计,利用NX10.0三维造型软件完成缸体铸件的压铸模具设计。 关键词:铝合金缸体、数值模拟、压铸、模具设计

低速电动车市场分析报告资料

低速电动车市场分析资料 一、行业定义及分类 二、行业概况及现状 三、政策及环境 四、竞争分析 五、产业布局 六、技术特点 七、市场分析 八、发展趋势 九、投资分析 十、行业资讯 一、低速电动车行业定义如何?低速电动四轮车并非以传统轿车为原型,而是多以高尔夫球车等为原型发展而来。 低速电动车行业定义及分类 1.低速电动车行业定义 2016年中国低速电动车产业研究报告显示,低速电动车广泛的定义可以涵盖电动自行车、电动摩托车、电动三轮车、低速电动汽车等。低速电动汽车是指速度低于70km/h的简易四轮纯电动汽车。一般最高速度为70km/h,而外形、结构、性能与燃油汽车类似。 2.低速电动车行业分类 由于目前国内还没有出台这类车型的标准,因此国内生产厂家们

大都参考欧盟、日本等国的标准设计,即同时满足车身尺寸小、车身重量轻、最高时速低等条件。 四轮低速电动车可分为以下几类: ①高尔夫车及改装车:用于高尔夫球场、公司仓库搬运货物、建筑工地、家庭使用。 l 观光车、老爷车。譬如用于车速20~30km 旅游观光、住宅小区保安巡逻等场所使用。全国以玛西尔电动车为首约有200多家企业生产,年产约1万辆。 ②打猎车、越野车:由于电动车具有低速大扭矩的特点,爬坡能力比内燃机汽车更强。年产1万辆左右。 ③特种车:如高空作业车、城市扫地车、垃圾车等。年产l万辆,国内已经开始使用。 ④警用巡逻车:年产l万辆。车速在40km/h,6~20个座位,产量不多,主要集中在山东省小城镇. ⑤微型电动轿车:多数为私人购买,用于出租、客运、私家车等。车速在50~60km/h,2009国内销售8000多辆,出口2000多辆,市场增长率极高。 2016年中国低速电动车产业研究报告显示,就市场销售来说,山东省低速电动车从2010年的1.82万辆迅速增长到2014年的18.74万辆,五年即增长了近10倍,且自2010年起,累计向海外市场出口3.2万辆。2014年,山东省共生产低速电动车18.75万辆,同比增长50.46%,主要品牌有时风、雷丁、力驰、宝雅,共生产低速电动车14.36万辆。

外文翻译---汽车车身总布置的方法

附录 Modern car’s design always stresses people-oriented, so safety, comfort, Environmental protection and energy saving have been the design theme And target in car design. Ergonomics layout design is not only relate to the effective use of internal space and improve car’s comfort and safety Performance, but it will also impact internal and external modeling results, and further affects the vehicle's overall performance and marketability.Soergonomics’application and research during car design and development process occupy an important position.After more than 50 years of construction and development, China’s Automobile industry has become the leading power of automobile production and consumption in the world. In particular, with the rise and rapid de velopment of independent brand’s vehicles, we pay more attention To the development processes and the technical requirements of hard Points’ layout. Through the three typical processes such as modern vehicle developing Process, body development process and using ergonomic to progress Inner auto-body layout, describe ergonomic layoationship between design, Aunt design in which stage of the process of vehicle development, the red The importance of working steps. The automobile body total arrangement is the automobile design most initial is also the most essential step, is other design stage premise and the foundation, to a great extent is deciding the body design success or failure. Picks generally in the actual design process With by forward and reverse two design method (1) to design (from inside to outside law) to design method namely "humanist", is coming based on the human body arrangement tool to define the pilot and the crew member gradually rides the space and the vehicle comes to pay tribute each article the arrangement, take satisfies the human body to ride with the driving comfortableness as the premise, said simply is determined first satisfies the human body to ride under the comfortable premise, carries on the indoor arrangement first, then carries on the complete bikes external styling design again. The concrete method and the step are as follows: ①Determine 5% and 95% manikin H position and the chair by the SAE recommendation's enjoyable line or the region law adjustment traveling schedule, seat

电动汽车市场分析报告

新能源汽车行业 概述: ●十二五规划中明确要求,重点发展新兴产业,新能源汽车要着重发展插电式混 合动力汽车、纯电动汽车、燃料电池汽车等安全、节能的汽车。 ●即将出台的《节能与新能源汽车产业发展规划》(2011 年~2020 年),为我国新能源汽车的发展指明了方向。 ●在油价和政策的双重影响,节能和新能源汽车将更受关注。油价上涨在一定程 度上影响到消费者利益的同时,也在发挥着它的积极作用,促使一些消费者改变消费习惯。可以预见的是,随着燃油成本上升和消费者对燃油经济性的关注,再加上“节能产品惠民工程”的惠及面不断扩大,小排量、经济型轿车和新能与汽车的市场前景要乐观一些。 ●新能源汽车必将取代传统内燃机汽车。在石油资源枯竭和环境污染严重的双重 压力下,传统汽车产业已经走到了穷途末路,人类再次站在了交通能源动力系统变革的十字路口,以纯电动汽车为代表的新能源汽车将最终取代传统内燃机汽车。 ●新能源汽车有望成为“再次改变世界的机器”。汽车曾被誉为“改变世界的机 器”,在给我们带来快捷交通方式的同时,也产生了能源安全、环境污染和全球气候变暖等一系列问题。目前节能减排已成为全球汽车产业的首要任务,发展新能源汽车产业已成为我国汽车工业的战略方向。 ●中国发展新能源汽车产业的优势。巨大的市场容量,明确的增长预期;政策的

大力扶持;较好的技术储备;众多企业和科研机构的联合攻关;能源状况、自然资源对发展新能源汽车产业比较有利。预计到2015年中国新能源汽车将达到100万辆左右,年均复合增长率在216%左右。 ●初步建立了“三纵三横”的研发布局和技术体系,技术路线基本明确。混合动 力汽车具有较好的节能减排效果,技术上易实现,是近期产业化重点,但其过渡性特征明显;纯电动汽车是中长期发展方向;燃料电池是未来汽车工业发展战略方向。预计“三纵”各类产品将各领风骚数十年。与此同时,多能源动力总成控制、驱动电机和动力蓄电池”三横”技术得到很大提升。 ●产业政策加快新能源汽车技术进步的步伐。国家对私人购买新能源汽车补贴政 策意义重大,政策效果将远大于政府补贴对公交领域新能源汽车的影响。预计国家近期将出台全面、系统的新能源汽车发展规划,为新能源汽车产业发展增添新动力,同时也将成为新能源汽车类股票表现的催化剂。 ●新能源汽车的产业带动作用强。将带动上游矿产资源开采、电池材料制造和充 电设备需求的大幅增长,此外还将产生电池租赁等新的商业模式。整车领域则看好传统汽车基础扎实、具有一定新能源产业链技术、较强整合匹配能力和产业化能力的公司。 ●驱动电机系统是新能源车三大核心部件之一。电机驱动控制系统是新能源汽车 车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。电机驱动系统主要由电动机、功率转换器、控制器、各种检测传感器以及电源等部分构成。 ●动力电池是新能源汽车的绿色心脏。动力电池是电动汽车的动力之源,是能量

转型经济体汇率传递过渡经济体外文文献翻译中英文2020

外文文献翻译原文及译文 标题:转型经济体汇率传递过渡经济体外文翻译2020 文献出处:Nidhaleddine Ben Cheikh, Younes Ben Zaied. [J]Journal of International Money and Finance, Volume 100, February 2020,1-16 译文字数:4000 多字

英文 Revisiting the pass-through of exchange rate in the transition economies: New evidence from new EU member states Nidhaleddine Cheikh,Younes Zaied Abstract This paper revisits the exchange rate pass-through (ERPT) for a set of transition economies, namely for 10 new EU Member States (NMS), over the period 1996–2015. As the transition process has entailed a deep transformation in their economies and institutions, the extent of pass- through is expected to be regime-dependent on this changing macroeconomic environment. We propose to implement a nonlinear panel smooth transition regression (PSTR) approach, where transitional factors related to EU accession are captured properly from the data. Our empirical results suggest that the inflation regime is the main macroeconomic driver of the extent of ERPT. When inflation levels exceed the threshold of 4.56%, i.e., within a high-inflation environment, the degree of pass-through is higher and reaches a full ERPT. However, with the shift towards a stable and low-inflation regime, i.e., when inflation levels are below a threshold of 4.56%, the extent of pass-through significantly declines in the NMS group. Our findings shed further light on how the credibility gained through the commitment to euro area membership is beneficial and would ensure better control of inflation.

有限元分析系统的发展现状与展望外文翻译

Finite element analysis system development present situation and forecast Along with modern science and technology development, the people unceasingly are making the faster transportation vehicle, the large-scale building, the greater span bridge, the high efficiency power set and the preciser mechanical device. All these request engineer to be able precisely to forecast in the design stage the product and the project technical performance, needs to be static, technical parameter and so on dynamic strength to the structure as well as temperature field, flow field, electromagnetic field and transfusion carries on the analysis computation. For example analysis computation high-rise construction and great span bridge when earthquake receives the influence, has a look whether can have the destructive accident; The analysis calculates the nuclear reactor the temperature field, the determination heat transfer and the cooling system are whether reasonable; Analyzes in the new leaf blade the hydrodynamics parameter, enhances its operating efficiency. The sell may sum up as the solution physics question control partial differential equations often is not impossible. In recent years the finite element analysis which develops in the computer technology and under the numerical analysis method support(FEA, Finite Element Analysis) the side principle for solves these complex project analysis estimation problems to provide the effective way. Our country in " 95 " Plan period vigorously promotes the CAD technology, mechanical profession large and middle scalene terries CAD popular rate from " 85 " End 20% enhances that present 70%.With enterprise application of CAD, engineering and technical personnel has gradually get rid drawing board, and will join the main energy how to optimize the design, engineering and improving the quality of products, computer-aided engineering analysis (CAE. Computer Aided Engineering) method and software will be the key technical elements . ln engineering practice, finite element analysis software and CAD system integration design standards should be a qualitative leap, mainly in the following aspects : The increase design function, reduces the design cost; Reduces design and the analysis cycle period; Increase product and project reliability; Uses the optimized design, reduces the material the consumption or the cost;

外文文献翻译:汽车的发展

The development of automobile As the world energy crisis and the war and the energy consumption of oil -- and are full of energy in one day someday it will disappear without a trace. Oil is not inresources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society people invented the electric car. Electric cars will become the most ideal of transportation. In the development of world each aspect is fruitful especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications the application of the electronic device cars and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance but also improve the automobile fuel economy performance reliability and emission spurification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices air control and emission control and fault diagnosis to the body auxiliary devices are generally used in electronic control technology auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system electronic control ignition system electronic control automatic transmission electronic control ABS/ASR control system electronic control suspension system electronic control power steering system vehicle dynamic control system the airbag systems active belt system electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response the use function of quick car high reliability guarantees of engine power and reduce fuel consumption and emission regulations meet standards. The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example automatic transmission in road can not on the clutch can achieve automatic shift and engine flameout not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter gear transmission pump hydraulic control system electronic control system and oil cooling system etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going and stability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height low set to gas or oil cylinder filling or oil. If is opposite gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car car motions of state and optimum control performance and increased automobile adhesion controlling and stability. Besides these appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passengers safety and greatly reduce automobile in collision of drivers and passengers in the buffer to protect the safety of life. Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities

电动车市场调研报告

竭诚为您提供优质文档/双击可除电动车市场调研报告 篇一:雅迪电动车市场调研报告 调研承担:德州学院委托调研:完成日期: 11级市场营 销第四组 雅迪科技有限公司(市 场部) 20XX年12月调研项目:雅迪电动车市场调研 目录 经理揽要 -------------------------------------------------------------------------3引言 -------------------------------------------------------------------------------5方法 -------------------------------------------------------------------------------9调查结果 ---------------------------------------------------

----------------------12局限 -------------------------------------------------------------------------------15结论和建议 ----------------------------------------------------------------------16参考文献 -------------------------------------------------------------------------17附件 -------------------------------------------------------------------------------18 附件1、调查问卷 ----------------------------------------------------------------------------18 尊敬的市场部经理先生: 您好! 首先感谢您对我团队的信任。在过去的1个月里,我团队经过充分的市场调查和研究分析,现就本次调查的相关情况向您做一个简单的汇报。正如您多期望的,我们本次调研的主要目的是通过对德州市雅迪电动车消费市场的调研,初步了解到德州市雅迪电动车消费偏好及特征,为贵公司的经营决策提供参考意见。在调查中,我们根据具体实际情况,选取了人流量较多的步行街雅迪电动车消费者组成的对象 进行了调研。通过对以上对象实施关于雅迪电动车的优势、

相关文档
最新文档