电力电缆选型手册

电力电缆选型手册
电力电缆选型手册

目录

一. 概述 (2)

二. 范围……………………………………………………………………………2-3

三. 参考标准及参数取值依据 (3)

四. 符号说明………………………………………………………………………3-4

五. IEC 287-3-2/1995标准电力电缆截面经济最佳化计算方法的应用………4-11

六. 电力电缆经济截面最佳化数据查找的使用方法……………………………11-12

七. 电缆经济截面与发热截面总费用比较及投资回收年计算…………………12-15

八. 经济截面的校验条件..................................................................16-17 附录1 铜芯电力电缆综合造价统计表................................................18-19 附录2 电缆造价类别的平均A值 (20)

附录3 电缆型号与电缆造价类别对照表 (20)

附录4-1 铜芯电力电缆经济电流范围(I-A类别)………………………………21-23

附录4-2 铜芯电力电缆经济电流范围(II-A类别)……………………………… 24-26

附录4-3 铜芯电力电缆经济电流范围(III-A类别)………………………………27-29

附录4-4 铜芯电力电缆经济电流范围(IV-A类别)………………………………30-32

附录4-5 铜芯电力电缆经济电流范围(V-A类别)……………………………… 33-35

附录5 铜芯电力电缆经济电流密度计算数据及图表(不同电价)...............36-40 附录6 电缆导体交流电阻及感抗......................................................41-42 附录7 铜芯电力电缆允许载流量表 (42)

附录8 损耗费用辅助量F─Tmax─P关系的统计值 (43)

附录9 最大负载利用小时Tmax与最大负载损耗小时τ和cosΦ的关系 (43)

附录10 不同行业的年最大负载利用小时Tmax,(h) (44)

九. 参考资料 (44)

电力电缆经济选型实用手册

一.概述

导体的经济电流密度是选择导体的必要条件之一。当选择导体的诸多技术条件(如发热温升、机械强度及电压降要求等)得到控制或改善时,往往是经济电流密度起着支配作用。实践证明,经济电流密度对于选择导体进而节省能源,改善环境,提高电力运行可靠性有着重要的技术经济意义。过去,在计划经济的条件下,工程设计往往偏重技术、轻视经济;重视初投资,忽视长期运行的经济性。工程建设也因此付出过沉重代价。当前,我国已经进入到社会主义市场经济的发展时期,工程投资方和经营方都越来越注重投资效益和运营效益。追求工程建设整体的、长远的合理性,倡导基建优化设计。而导体的经济电流密度正是这种优化设计的内容之一。传统的设计方法按载流量选择导体截面时只计算初始投资,导体的截面选择过小,将增加电能的损耗;选择的过大,则增加初始投资。研究和确定导体电流密度的目的,就是在已知负荷的情况下,选择最佳的导体截面;或是在已选定导体截面的情况下,确定经济的负荷范围,以寻求投资的最优方案,取得最理想的经济效益。

本实用手册应用IEC 287-3-2/1995《电力电缆尺寸的经济最佳化》标准和方法,采用我国常用的铜芯聚氯乙稀绝缘聚氯乙稀护套(PVC绝缘)和交联聚乙稀绝缘聚氯乙稀护套(XLPE绝缘)中低压电力电缆数据,统计和汇集了为计算电缆系列截面的经济电流范围、经济截面和电缆经济电流密度所需资料,可供电气设计人员和运行人员选择电缆导体经济截面参考。

二. 范围

1.本实用手册适用于电压为6/6kV, 10kV及中低压等级铜芯电力电缆的经济选择。电缆类型为铜芯聚氯乙烯绝缘聚氯乙烯护套电力电缆(VV型),铜芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆(VV22型),以及交联铜芯聚氯乙烯绝缘聚氯乙烯护套电力电缆(YJV型),交联铜芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆(YJV22型)。

电缆芯数包括:根据产品目录有等截面的三芯、四芯及五芯,非等截面的四芯及五芯。

2.按照IEC 287-3-2/1995国际标准,导体截面经济选择只计及发热损耗,不考虑电压有关的损耗, 也不包括诸如维修等因素。

三.参考标准及参数取值依据

国际电工委员会标准IEC 287-3-2/1995《电力电缆截面的经济最佳化》。

国家标准GB/ 等效于IEC 60364-5-523:1999《建筑物电气装置电气设备的选择和安装布线系统载流量》以及GB 50217-94《电力工程电缆设计规范》。

金融贴现率,电价年增长率等按照近年来国家电力公司经济研究中心提供的数据。低压电力电缆出厂价格根据《北京工程造价信息》2001年第2期。中压电力电缆价格及中低压电缆敷设综合费用根据西北电力设计院1981年及东北电力设计院2001年的专题报告《导体的经济电流密度》资料。

四.符号说明

本手册使用的符号及其量值说明如下:

A 与导体截面有关的单位长度成本的可变部分

(造价费用斜率) 元/

B 邻近效应、集肤效应的综合系数—

C 与敷设条件等有关的单位长度成本的不变部分元/m

CT 电缆系统总成本(总费用) 元

Imax 最大负载电流 A

L 电缆截面某段长度 m

CJ 年期间内电缆导体发热损耗费用的现值元

N 电缆使用的经济寿命期年

Np 每回路相导体数目 --

Nc 传输同型号电缆和负载值的回路数目--

P 电价,电度电费元/kWh

D 每年最大需量电费元/kW·年

F 由公式(6)定义的辅助量(线损辅助量) 元/W

Q 由公式(4)定义的辅助量--

r 由公式(5)定义的辅助量--

a Imax的年增长率%

b 电价P的年增长率,不计及通货膨胀 %

i 计算现值用贴现率 %

CI 拟确定某段长度的标准截面规格的初始费用元

CI1 最接近某段长度较小标准截面规格的初始费用元

CI2 最接近某段长度较大标准截面规格的初始费用元

R 拟确定电缆截面规格的单位长度交流电阻Ω/km

R1 最接近较小标准截面规格的单位长度交流电阻Ω/km

R2 最接近较大标准截面规格的单位长度交流电阻Ω/km

Tmax 最大负载利用小时 h

τ最大负载损耗小时 h

S 电缆导体截面 mm2

Sec 电缆导体的经济截面mm2

ρ20 导体20℃下的电阻率Ω.m

α20 导体20℃下的电阻温度系数1/℃

θm 导体平均运行温度℃

K 温度及B系数的综合系数--

T 投资回收年年

五.IEC 287-3-2/1995标准电力电缆截面经济最佳化计算方法的应用

1.电缆的总费用。总拥有费用法(TOC ,Total Owning Cost)是全面评价电气装置能效费用的

方法,包含:初始投资(采购及安装费用)及其寿命期运行费用的两个部分。其表达式如下:总费用CT=CI +CJ------------------------------------------------(1)

式中:CI 所安装的电缆造价(初始投资), 包括电缆购置费及敷设安装费用,(元) CJ 等效于电缆购买时的线路损耗费用,即电缆N年经济寿命期发热损耗费用现值,(元)。

电缆初始投资CI

包括电缆出厂价及敷设费用(附录1),敷设费用以综合造价系数来折算,综合造价系数计及电缆的运输,敷设安装及电缆构筑物等费用,综合造价系数随电缆截面增大而降低。以下用单位长度和截面有关系的投资费用斜率A来表示,又叫做投资费用的可变部分A值。各种类型电缆的A值因价格不同而异,为求得各类型电缆截面与投资的线性关系,其斜率A(以下简称A值)按下式计算:

A=(截面S2电缆的初始投资-截面S1电缆的初始投资)/(截面S2-S1),

(元/ -----------------------------------------------------------------(2)

对于每一种型号电缆,都存在各自变化幅度不大的系列截面斜率A。本手册共统计28种型号电缆的A值,将其之间误差小于10%的A合并为同一类平均A值, 平均A值由小到大分成五组以I-A, II-A, III-A, IV-A, V-A类别标志,见附录2。电缆造价类别与电缆型号对照表见附录3。

五个组的平均A值代表型号数量不等的电缆单位造价,它们之间的偏差为18~125%。为了使电缆导体截面范围建立较好的线性关系,以平均A值对相应型号电缆的初始造价做线性调整。采用平均A值比用自身A值计算经济截面和经济电流密度所得结果只有小于3%很小的误差。

电缆在N寿命年期间发热损耗现值CJ

这是计算电缆造价以外的运行费用,它与负载大小、年运行时间、电价、电缆截面、使用寿命期及资金贴现率等因素有关。

(1) 电缆在N经济寿命年运行的电能损耗费,折算到电缆购买日的现值:

CJ=(I2max×R×L×Np×Nc /1000) ×(τ×P+D)×[Q /(1+ i/100)],

(元)------------------------------------------------------------------- (3)

式中:Q为计及N年负载增长、电价增长和贴现率的系数,

Q=(1-rN)/ (1-r) ---------------------------------------------------------(4)

其中r=[(1+a/100)2×(1+b/100)] / (1+ i/100) ----------------------------(5)

(2) 为方便于以后对不同截面损耗费用的一系列计算,将(3)式中除导体电流和电阻以外的所有参数以线损辅助量F来表示。

令F=Np×Nc×( τ×P+D) ×[Q / (1+ i %)]/1000,(元/W)---------------(6)

F总括了回路相数Np和Nc、电价P、D、最大负载损耗小时τ和现值系数[Q / (1+ i %)]。

此处采用我国常用的最大负载损耗小时(τ)法来计算线损。因此最大负载损耗小时τ需由已知的年最大负载利用小时Tmax和功率因数cosφ关系表中查出,见附录9。功率因数cos φ对经济电流范围和经济截面的计算结果影响很小,本手册采用该关系表的中间值cosφ=,在Tmax=1000h至8500h范围取下τ值作为计算用数。按公式(6)便可算得Tmax /τ范围内的线损辅助量F(见附录8),它在经济电流范围和经

济电流密度计算过程是经常使用的中间量值。在绘制经济电流密度j曲线中习惯用Tmax而不用τ来表示。不同行业的Tmax可从现成统计资

料查出(见附录10)。公式(6)的线损辅助量F算式中现值系数[Q / (1+ i %)]的参数:a, b, i, 和N 均系根据国家电力公司经济研究中心近年提供的数据,即a=0, b=2%, i=10%, N=30年, 按公式(5)算出r=,进而算得Q和现值系数[Q / (1+ i %)]=。这样,总费用的计算式简化为:

CT= CI + I2max×R×F,(元)-----------------------------------------------(7)

2.系列标准截面中每一导体经济电流范围的算法

原理:电缆系列截面的经济电流范围是在总费用相等和敷设条件相同的条件下取得。

计算公式可以有两种表达方式:一种是按总费用计算式通过输入电缆初始投资和电缆线路电阻等参数来计算电流范围(IEC表达方式),另一种是通过输入单位造价平均A值,电缆截面S和导体电阻率等参数替代第一种公式原形计算。

第一种计算的表达式:每一线芯截面都有一个经济电流范围, 按电缆相邻线芯截面总费用相等为条件,其低限值和高限值分别由下列公式给出:

Imax(低限值) =[(CI - CI1)/(F ×L ×(R1-R))](8)

Imax(高限值) =[(CI2 - CI)/(F ×L ×(R-R2))](9)

式中:

CI 拟确定某段长度电缆截面规格的初始费用,(元)

R 拟确定电缆截面规格的单位长度交流电阻,(Ω/km)

CI1 最接近某段长度较小标准截面规格的初始费用,(元)

R1 最接近较小标准截面规格的单位长度交流电阻,(Ω/km)

CI2 最接近某段长度较大标准截面规格的初始费用,(元)

R2 最接近较大标准截面规格的单位长度交流电阻,(Ω/km)

L 确定电缆截面规格某段长度,(km)

第二种表达式:为便于对每一线芯截面经济电流范围的计算,原理不变,将电缆造价平均A值替代CI以及电阻率除以截面替代电阻R来表达。

因交流电阻R =ρ20×B×[1+α20(θm-20)] ×106 / S,(Ω/m)

令K=B[1+α20(θm-20)],于是交流电阻R =ρ20×K ×106 / S,(Ω/m)

式中:

ρ20 为铜导体直流电阻率,ρ20=×10-9, (Ω.m)

B为综合邻近效应、集肤效应的系数,取VV型和YJV型电缆的B平均值=。

α20为铜线20℃的电阻温度系数等于,(/℃)

θm为导体温度,在经济电流运行时导体温度可降低,θm=40℃。(IEC推荐)

代入相关参数,取得K =。将A、S和ρ20替换(8)(9)式中的CI与R。公式经整理后,可得经济电流范围高低限值的另一表达式:

Imax(低限值)=[ A(S1 ×S)/ F×] ---------------------(10)

Imax(高限值)=[ A(S2 ×S)/ F×] ---------------------(11)

3.给定负载电流下经济截面的算法

原理:计算以给定负载电流下电缆总费用为最小时的截面,公式演算如下。

电缆总费用按公式(7)可写成以导体截面S为函数的表达式:

CT(S)=CI(S) + I2max×R(S) ×L×F,(元)-----------------------(12)

CI(S)以上述不同电缆类型初始投资推导为线性模型的A值表示:

CI(S)= L(A×S+C)

式中:A---成本的可变部分(元/,各型电缆可取平均A值;S---导体截面(mm2);

C---成本的不变部分(元/m);

L---电缆长度(m)。

交流电阻以导体截面S的函数式表示:

R(S) =ρ20×B×[1+α20(θm-20)] ×106 / S,(Ω/m)

总费用为最小时的经济截面Sec可通过以总费用公式(12)对截面

S求导,并令其为零取得:

Sec = { I2max×F×ρ20×B×[1+α20(θm-20)] ×106 / A} ,

(mm2)-------------------------------------------------------------------(13)

式中:

ρ20、α20、θm 、B和K的取值与上节相同,代入公式(13)整理后可得经济截面:Sec= [ I2max×F×A],(mm2) -----------------------------------(14)

4.电缆导体经济电流密度的算法

电力电缆经济电流密度的计算方法很多,例如年费用最小法,计算费用法,返本期法和财务表报法等,但因出发点不同,各个国家的各部门都采用不同的计算方法。以上IEC 287-3-2标准的两种计算方法实际上已表述了电缆经济电流密度的内容,因为经济电流密度就是流过经济截面中电流的密度。

经济电流密度的算式:j= Imax / Sec(A/mm2)

将公式(13)的Sec代入上式, 得: j=Imax / { I2max×F×ρ20×B×[1+α20(θm-20)] ×106 / A}

或公式(14)的Sec代入上式,得: j={ A / [F×]}(A/mm2)----(15)

为求电缆的经济电流密度,只需代入电缆造价平均A值与Tmax小时下的F值(设定不同的电价P条件), 便可求得Tmax与j的关系数据和曲线。本手册收集28种常用的中低压电力电缆造价(附录1)合并为5种类别的平均A数值(见附录2)。由公式(15)计算不同电价(设P=~元/kWh)5种类别28种常用的中低压电缆的经济电流密度数据及曲线

(见附录5)。

各参数对经济电流密度j的影响

由经济电流密度j的算式(15)可见,经济电流密度j与A值开方成正比,A的增加表明电缆投资增加,j便应该增大,即要求采用较小截面

是经济的(为要求投资回收年不因此而增长)。j与F值开方成反比,F是Tmax和P的中间辅助量值,F增大相当于运行时间加长或电价增加,

j应该减小,j减小就是要使截面加大使损耗费用减小才经济。

不可能对每一种型号电缆都分别给出它们的经济电流密度,只能按不同类型电缆A的大小分组合成的平均A值来设置,虽存在一定误差,在Tmax不变的情况下平均A值开方的差值控制j之间的差值范围, 而平均A值与其组内各型电缆本身A值的误差范围从~8%不等,影响j的误差小于3%是允许的。

考虑我国地区电价差别较大, 电价P对j的影响偏差宽度不等,低电价影响j的宽度比高电价大,可以控制j之间的差值10~15%来确定P值, 附录5列出的经济电流密度Tmax-j曲线是以电价整数P=、、、、、元/kWh范围,在两电价数值间的实际电价可在曲线间按

插入法就近取值,由于高电价中的误差所影响最终经济截面的选择很小,

可不于计较。必要时(例如电价超出所列范围很大)仍可按计算公式修改线损辅助量F值来补充新电价条件下的j值。

5.电力电缆截面经济最佳化计算方法举例

以上电力电缆截面经济最佳化的三种计算方法,简单易行,只要代入相关参数(大多已汇集在附录中)就可取得所需结果。举例如下:

题1: 计算VV-1型3×50 mm2电缆导体的经济电流高低限值范围。

假设条件:Tmax=5000h,电度电价P=元/kWh,L= 1km,电缆为明设。

已知:由附录1查得VV-1型电缆数据:3×35mm2,3×50mm2,3×70mm2初始投资CI每公里分别为55418元,74993元,101093元, 导体交流电阻R由附录6查得每公里分别为Ω, Ω, Ω。由附录8查得线损辅助量系数F=元/W。

解:(1) 3×50mm2电缆导体的经济电流高低限值范围由上列参数代入公式(8),(9)计算:Imax(低限值)=[(74993-55418)/×1×

Imax(高限值)=[()/×1×

50mm2截面的经济电流低限是35mm2截面经济电流的高限, 50mm2截

面的经济电流高限是70mm2截面经济电流的低限。

(2)同上,用(10),(11)公式计算,由附录2、3查VV-1型电缆为I-A类别,其A=元/,计算结果与(1)相同。

Imax(低限值)=[×(50×35) / ×]= A

Imax(高限值)=[×(50×70) / ×]= A

(3)查附录4的电力电缆经济电流范围数据表,可直接得到Imax范围为42~59A与(1)或(2)相同数值。

题2:计算一路VV-1型电缆负载电流Imax=100A的经济截面,电缆长度为1km(假设不计较电压损失)。假设条件:Tmax=5000h,电度电价=元/kWh。

解:由附录2、3查VV-1型电缆属I-A造价类别,其平均A值= (元/,附录8查F=(元/W)。将相关数据代入公式(14),电缆经济截面为:

Sec= [1002××/ ] =

因为由计算公式得出的截面数不可能正好等于一个标准截面, 一般宜选用小于计算值的标准截面95 mm2。如需要精确计算,也可由公式(7)计算总费用大小来确定。此时还需查电缆的单位长度造价(附录1)和截面的交流电阻(附录6)。

CT95=133718+1002××=270822元

CT120=166343+1002××=275239元

比较总费用的计算结果,最经济的截面应是95 mm2。

题3:题同例,用经济电流密度选择电缆截面。

解:由经济电流密度数据表或曲线(附录5)查:当Tmax=5000h, 电

缆为I-A类别,A=元/, 得j=mm2, 对于Imax=100A, 经济截面S=100/=100 mm2, 同样仍按题选小的原则,选用95 mm2。

题4:如何修改经济电流密度。当要求电价P=元/kWh, Tmax=6500h, 采用的电缆为YJV-10kV, 求经济电流密度。

解: (1)查附录9,设cosф=,当Tmax=6500h,得τ=5100h,

(2)代入公式(6):F=Np×Nc×(τ×P+D)×[Q / (1+ i %)]/1000,

(元/W),假设公式(6)的其他条件不变,即Np=3, Nc=1, D=252元/kW,现值系数[Q / (1+ i %)]=,

(3)新的F=3×(5100×+252)×1000 =元/W,

(4)查附录2、3,YJV-10kV属电缆造价II-A类别,其平均A值= 元/,

(5)修改新的经济电流密度, 代入F与A于公式(15),当Tmax=6500h,

j={ A / [F×]}={ / [×]}=mm2

6. 总结经济截面最佳化的计算方法

综上所述,电力电缆经济电流范围、经济截面和经济电流密度的计算公式是很简捷的,从这些计算公式可见,只要输入以下必要的参数进行计算就可获得所需数据:

(1)不同型号电缆的平均A值(由附录3先查出电缆造价类别,由附录2即得平均A值)。

例如VV-1-(3×S)型电缆的造价类别为I-A,其平均A值等于元/。

(2)电缆线损辅助量F,是计算过程的中间值,由不同的年运行最大负载利用小时Tmax(计算过程用负载损耗小时τ)和不同的电费价格P

计算确定。在计算经济电流范围和截面的公式都用着它,为计算操作方便,附录8列出了损耗费用辅助量F─Tmax─P关系的统计值。

(3)当单独计算线路损耗费用或总拥有费用时,需要输入实际使用的最大负载电流Imax和电缆导体交流电阻(附录6)以及电缆线损辅助量F值。

六.电力电缆经济截面最佳化数据查找的使用方法

应用IEC的计算方法所取得电力电缆截面经济最佳化的计算数据,为便于在实际工作中查找使用,大多已汇集在附录之中,其方法与步骤

都比较简单易行。不论求取各种型号电缆和不同运行条件的经济电流范围、负载电流的经济截面和经济电流密度,只要按步查找附录中的相关参数和自定条件(如已知电价或最大负载利用小时)即可取得。

1.已知电缆型号,负载电流Imax和运行小时Tmax,求经济截面。

(1)从附录3类别对照表查出给定电缆型号的造价类别。例如YJV-10型,造价类别为II-A。

(2)已知项目电缆所在电网的最大负载利用小时Tmax,和电价P。例

如Tmax=7000h, P=元/kWh。从附录4中,找到对应电缆造价类别为II-A的经济电流范围表,找出给定电价P的经济电流范围小表,选定最大负载利用小时Tmax一列,确认负载电流在高低限电流范围的一行,其左端对应的截面就是所求的经济截面。例如在附录4-2电缆造价类别为II-A的经济电流范围表中,找到P=元/kWh的小表,查Tmax=7000h一列,找到经济电流范围中Imax=150A正包括在145-183A一行,左端对应的截面一列185mm2就是它的经济截面。2.已知电缆型号和截面,求经济电流范围。

(1)从附录3查出给定电缆型号的造价类别。例如VV-1-(3×70)型,造价类别为I-A。

(2)已知项目电缆所在电网的最大负载利用小时Tmax,和电价P。例如Tmax=7000h, P=元/kWh。从附录4中,找到对应电缆造价类别为I-A的经济电流范围表,找出给定电价P的经济电流范围小表,选定最大

负载利用小时Tmax一列,从已知截面一行便可查到未知的电缆经济电流范围。例如从已知截面为70mm2的一行, 它与已知Tmax=7000h一列的交点处便是该截面的经济电流范围52-71A。

3.已知电缆型号,求经济电流密度。

(1)从附录3查出给定电缆型号的造价类别。例如VV-1-(5×S),查类别为IV-A。

(2)已知项目电缆所在电网的最大负载利用小时Tmax和电价P。例如Tmax=7000h, P=元/kWh。

(3)从附录5查电缆造价类别的经济电流密度数据表和曲线。例如类别为IV-A,按数据表查Tmax=7000h一列与P=元/kWh一行的交点便是经济电流密度j=mm2。若需要按曲线查, 在IV-A类别经济电流密度曲线图, P=的曲线与纵坐标Tmax=7000h水平交点处取得对应的经济电流密度j为mm2。

七.电缆经济截面与发热截面总费用比较及投资回收年计算

以上是按IEC总费用最小的方法来求取经济电流和经济截面。比较发热截面与经济截面的TOC总费用,以电缆寿命为30年和年运行小时为三班制来算,下面的例子可见发热截面的总费用明显大于经济截面。但是如果电缆负载电流不大,使用年限不长,年运行小时为一班工作制,两种截面方案的经济效益总费用就有比较的可能。以下比较两种截面的总费用情况。

1.给定负载电流下发热截面与经济截面的总费用比较

当已知给定负载电流下的发热截面与经济截面,比较其中三个班制年运行小时的TOC总费用。应用公式(1), 分别计算两种截面的初始投资和年运行费用现值,相加后可得出总费用。由于电缆使用年的不同,它

们年运行费用现值及总费用也不相同。IEC标准例中使用年的取值一般

都是取经济寿命年N=30年。当人们只需要按几年的使用期,所得结果是否也会比按允许载流量选择的截面经济,需要计算或绘制两者TOC-N曲线比较来说明问题。

从以上总费用和线损的公式可见,总费用是随线损辅助量F式的现值系数大小变化,又公式(4)(5)中,当r值不变(与年负载增长率a、年电价增长率b以及贴现率i的系数不变),因现值系数=[Q/(1+i/100)]式中Q=(1-rN)/(1-r),故现值系数= [(1-rN)/(1-r)/(1+i/100)]。

于是,现值系数将随N=0~30年变化的数值范围为0~,年数越大现值系数越大,总费用也跟着大,便可绘制出以下三个班制的TOC-N关系曲线。

举例:一条100米长VV-1kV型3芯电力电缆线路,负载电流Imax=80A,

比较三个班制工作的发热截面与经济截面TOC总费用, 电价P=元/

kWh。绘制三个班制电缆使用期(N=0~30年)TOC总费用年增长曲线。

解:(1)查电缆允许载流量表(附录7), 空气中敷设,发热截面按允许载流量表选3×25 mm2。

(2)经济截面按三个班制的年Tmax小时数:假设为3000h, 5000h, 7000h。

(3) 确定三个班制的经济截面: 查VV-1三芯电缆为I-A类别,其平均A=元/,由电缆的经济电流密度曲线, 分别得:

一班制Tmax=3000h, j= mm2, S=80/=, 选3×50 mm2,

两班制Tmax=5000h, j= mm2, S=80/=80mm2, 选3×70 mm2,

三班制Tmax=7000h, j= mm2, S=80/=101mm2, 选3×95 mm2,

(4)每个班制的TOC总费用= 电缆初始投资+{现值系数×年线路损耗费}

= 电缆初始投资+{[Q/(1+i/100)]×(I2max×R×F/}。

(5)确定年线损辅助量F值。F值与Tmax有关,查附录8,对应三个班制Tmax和电价下的F值分别为:一班制F=,两班制F=,

三班制F=。

因附录8的年线路损耗费算式中的F值系N=30年的数值,当需要计算小于30年的线损时,需改变F式中的现值系数:如上式中的F需除以以清除30年的现值系数再乘以N为变量年的现值系数。因现值系数

=[(1-rN)/(1-r)/(1+i/100)],代入i=10%, r=,得到N与现值系数关系,便可绘出N=0~30逐年的TOC 费用曲线,见图1、2、3,从中求出30年以下任意年的费用。

(6)从图1、2、3(三个班制)可见,N=0的TOC总费用为电缆安装年的投资费,两曲线交点是两截面总费用相等处,对应年份为经济截面多支付投资的回收年。

(7)经济截面大于发热截面投资的回收年限计算法:

a)简单算法,回收年,T=电缆初始投资差值/ 年线路损耗费差值

一班制,T= / (802×××=年

两班制,T= / (802×××=年

三班制,T= / (802×××=年

b)计时间价值的回收年,n=log (1-T×(1-r)) / log r

一班制,n=log) / =年

两班制,n=log) / =年

三班制,n=log) / =年

三个班制发热允许截面与经济截面投资、TOC总费用及回收年对比汇总如下:

两种截面选择方案的结果:负载下的TOC费用与使用年N的关系曲线分别见图1、2、3。一班制的电缆采用经济截面,电缆截面虽大于发热截面2个标准级,但多出的投资要在稍长的年才可回收。所以如果工厂使用寿命年为4年,年负荷运行小时又很不长,电缆就可不必按经济截面来选。二班和三班制的电缆采用经济截面,截面大于发热截面3和4个标准级,初始投资虽要大些,但年用电时间长,年损耗费用差值比较大,两年多很快可回收, 发热截面与经济截面TOC费用差值在其曲线交叉点后的随着使用年数增加愈来愈大,故采用经济截面比较合算。

八.经济截面的校验条件

校验条件的详细计算应参见有关电气设计手册。

1.短路电流热稳定计算电缆最小截面

Smin=IZ×(t) /C

式中I Z 短路电流周期分量有效值,A

t 短路切除时间,s

C 热稳定系数,对于铜芯PVC绝缘电缆C=114,铜芯交联聚

乙稀绝缘电缆C=137

2. 电缆线路电压损失公式:以线路电压损失百分数表示

ΔU%=×I×L×(RcosΦ+ XsinΦ) / 10×UL

式中I负荷计算电流, A

L 线路长度,km

UL 线路标称电压,kV

R、X 三相线路单位长度的电阻和感抗,Ω/km(R,X值见附录6)

CosΦ功率因数

配电线路正常和非正常的电压降,一般需根据线路所在系统的具体情况,由负载对电压的不同要求确定,配电线路一般要求是ΔU%不大于6-8%,对于电动机直接起动的电压损失限值取决于用户按技术条件要求,一般为5%,偶然起动15%。

3. 接地故障电流灵敏度校验

按照《低压配电设计规范》不同的接地型式要求做。如TN系统需计算线路负载端单相短路电流,以校验线路电源处安装的断路器切断该单相短路电流的灵敏度。

4. 按发热允许电流选择电缆截面时,考虑多根电缆成束敷设时载流量计入降低系数后的截面。降低系数值另查标准或手册。

5.校验举例以工厂低压异步电动机配电为例,一台给水泵电动机功率37kW,额定电流71.4A, 起动电流469A,低压馈线断路器整定电流85A,速断动作电流850A。已知年最大负载利用小时Tmax=6000h。电源电缆由变电所低压屏直接配电,采用VV-1-(3+1)型电缆架空桥架明设,线路长度为150米,环境温度30℃,变电所低压屏母线短路电流有效值为26kA, 低压屏母线单相接地(相保)电流23kA。

按允许发热条件选择截面:Ie=71.4A 查载流量标准可选截面S=3×16+1×10mm2。

电动机直接起动电压损失校验:起动时功率因数按考虑,查附录6交流电阻和感抗,计算电压降:ΔU%=×469×××+×/10×=%。因电压降过大,试选用70 mm2,电压降可减小到ΔU%=×469×××+×/(10×=%。可满足要求。

按经济电流密度选截面,查电缆造价I-A类别,经济电流密度曲线Tmax=6000h, P=元/kWh, j=0.88A/mm2, 经济截面选择应考虑电机长时间运行的负载率,例如负荷系数为, 则经济截面S=×/ =69mm2,可选电缆3×70+1×35 mm2。

当电力电缆与其它电缆多根并列在电缆桥架封闭式敷设, 例如电缆载流量可能达到降低系数。本例已按其它条件(短路热稳定)选择较大截面,不受降低系数影响。

校验电缆短路热稳定最小截面:设短路切断时间t=秒,S=26000×102 mm,95 mm2接近102 mm2,可采用95 mm2。

低压TN系统的接地故障保护灵敏度校验,断路器速断整定动作电流Iz=850A,距断路器150米处故障:

1)当电缆截面为3×16+1×10时单相接地故障电流Id=338A,断路器速断不动。

2)试改用电缆截面为3×70+1×35时单相接地故障电流Id=1190A,可满足断路器动作灵敏度要求(1190/850=。

用TOC总费用来说明电缆截面选择的不同经济效益:(F值为元/W)

TOC70={101093+[×2××]}×=元

TOC95={133718+[×2××]}×= 元

可见70 mm2是最经济的,95 mm2满足短路热稳定,电缆截面最后还是按技术条件选择大的截面95 mm2。

附录2 电缆造价类别的平均A(造价费用斜率)表(A的单位:元/

附录3 电缆型号与电缆造价类别对照表

附录4-1 铜芯电力电缆经济电流范围(I-A类别)(1)

1.应用范围:电缆类别I-A,A=元/, 对应电缆型号见附录2、3的A对照汇总表。

2.电缆经济电流范围计算式见手册说明: Imax(低限值)=[ A(S1×S)/ F×] ,

Imax(高限值)=[ A(S2×S)/ F×]

附录4-2 铜芯电力电缆经济电流范围(II-A类别)(1)

1.应用范围:电缆类别II-A,A=元/, 对应电缆型号见附录2、3的A对照汇总表。

2.电缆经济电流范围计算式见手册说明: Imax(低限值)=[ A(S1×S)/ F×] ,

Imax(高限值)=[ A(S2×S)/ F×]

附录4-2 铜芯电力电缆经济电流范围(II-A类别)(2)

附录4-2 铜芯电力电缆经济电流范围(II-A类别)(3)

高压电缆选型

按照以下情况而定: 1?根据电缆敷设的电压等级、使用地点及使用环境,选择电缆的绝缘方式(如聚氯乙烯、交链聚乙、橡胶绝缘烯等); 2?根据电缆的敷设环境,选择电缆外壳保护方式(如钢带铠装、钢丝铠装等); 3?根据电缆使用的电压等级,选择电缆的额定电压; 4?根据电缆回路额定电流,选择电缆的截面。 5?所谓10KV电缆选型不考虑载流量,是指该供电系统的短路电流热稳定值比较高,按此热稳定值选择的电缆最小截面已经很大(如180或240平方毫米截面),在此截面的载流量范围内,无论负荷电流的大小,都是按热稳定最小截面选择电缆。但是如果负荷容量额定电流大于热稳定电流确定的最小电缆截面的额定载流量,当然还是需要考虑载流量的。 10kv高压电缆载流量表如下: 向左转|向右转 导线截面积与载流量的计算 一、一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。<关键点> 一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。如:2.5 mm2 BVV铜导线安全载流量的推荐值2.5×8A/mm2=20A 4 mm2 BVV铜导线安全载流量的推荐值4×8A/mm2=32A 二、计算铜导线截面积利用铜导线的安全载流量的推荐值5~8A/mm2,计算出所选取铜导线截面积S的上下范围:S=< I /(5~8)>=0.125 I ~0.2 I(mm2)S-----铜导线截面积(mm2)I-----负载电流(A) 三、功率计算一般负载(也可以成为用电器,如点灯、冰箱等等)分为两种,一种式电阻性负载,一种是电感性负载。对于电阻性负载的计算公式:P=UI 对于日光灯负载的计算公式:P=UIcosф,其中日光灯负载的功率因数cosф=0.5。不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取0.8。也就是说如果一个家庭所有用电器加上总功率为6000瓦,则最大电流是 I=P/Ucosф=6000/220*0.8=34(A) 但是,一般情况下,家里的电器不可能同时使用,所以加上一个公用系数,公用系数一般0.5。所以,上面的计算应该改写成I=P*公用系数/Ucosф=6000*0.5/220*0.8=17(A) 也就是说,这个家庭总的电流值为17A。则总闸空气开关不能使用16A,应该用大于17A的。 估算口诀: 二点五下乘以九,往上减一顺号走。

高压电缆截面选择计算书

技术资料 电缆截面选择计算 计算:黄永青 2005年7月28日 1.计算条件 A.环境温度:40℃。 B.敷设方式: ●穿金属管敷设; ●金属桥架敷设; ●地沟敷设; ●穿塑料管敷设。 C.使用导线:铜导体电力电缆 ●6~10kV高压:XLPE(交联聚乙烯绝缘)电力电缆。 ●380V低压:PVC(聚氯乙烯绝缘)或XLPE电力电缆。 2.导线截面选择原则 2.1导线的载流量 1)载流量的校正 A.温度校正

K1=√(θn-θa)/(θn-θc) 式中:θn:导线线芯允许最高工作温度,℃; XLPE绝缘电缆为90℃,PVC绝缘电缆为70℃。 θa:敷设处的环境温度,℃; θc:已知载流量数据的对应温度,℃。 2)敷设方式的校正 国标《电力工程电缆设计规范》GB50217-94中给出了不同敷设方式的校正系数。综合常用的几种敷设方式的校正系数,并考虑到以往工程的经验及经济性,取敷设方式校正系数K2=0.7 3)载流量的校正系数 K=K1×K2 2.2电力电缆载流量表 表1 6~10kV XLPE绝缘铜芯电力电缆载流量表

表2 0.6/1kV PVC绝缘电力电缆载流量表 表3 0.6/1kV XLPE绝缘电力电缆载流量表

2.3短路保护协调 1)6~10kV回路电力电缆短路保护协调 S≥I×√t×102/C 式中:S:电缆截面,mm2; I:短路电流周期分量有效值,A; t:短路切除时间,秒。 C:电动机馈线C=15320;其他馈线C=13666 2)380V低压回路电力电缆短路保护协调 ●配电线路的短路保护协调 S≥I×√t/K 式中:S:电缆截面,mm2; I:短路电流有效值(均方根值),A; t:短路电流持续作用时间,秒。 K:PVC绝缘电缆K=115;XLPE绝缘电缆K=143 ●380V电动机回路短路保护协调 电缆的允许电流大于线路短路保护熔断器熔体额定电流的40%。

电缆选型手册范本

目录 一. 概述 (2) 二. 围……………………………………………………………………………2-3 三. 参考标准及参数取值依据 (3) 四. 符号说明………………………………………………………………………3-4 五. IEC 287-3-2/1995标准电力电缆截面经济最佳化计算方法的应用………4-11 六. 电力电缆经济截面最佳化数据查找的使用方法……………………………11-12 七. 电缆经济截面与发热截面总费用比较及投资回收年计算…………………12-15 八. 经济截面的校验条件..................................................................16-17 附录1 铜芯电力电缆综合造价统计表................................................18-19 附录2 电缆造价类别的平均A值 (20) 附录3 电缆型号与电缆造价类别对照表 (20) 附录4-1 铜芯电力电缆经济电流围(I-A类别)………………………………21-23 附录4-2 铜芯电力电缆经济电流围(II-A类别)………………………………24-26 附录4-3 铜芯电力电缆经济电流围(III-A类别)………………………………27-29 附录4-4 铜芯电力电缆经济电流围(IV-A类别)………………………………30-32 附录4-5 铜芯电力电缆经济电流围(V-A类别)……………………………… 33-35 附录5 铜芯电力电缆经济电流密度计算数据及图表(不同电价)...............36-40 附录6 电缆导体交流电阻及感抗......................................................41-42 附录 7 铜芯电力电缆允许载流量表 (42) 附录8 损耗费用辅助量F─Tmax─P关系的统计值 (43) 附录9 最大负载利用小时Tmax与最大负载损耗小时τ和cosΦ的关系 (43) 附录10 不同行业的年最大负载利用小时Tmax,(h) (44) 九. 参考资料 (44)

工程电线电缆种类及选型计算

工程电线电缆种类及选型计算 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线; 2.绕组线; 3.电力电缆; 4.通信电缆和通信光缆; 5.电气装备用电线电缆。 电线电缆的基本结构:

1.导体:传导电流的物体,电线电缆的规格都以导体的截面表示。 2.绝缘:外层绝缘材料按其耐受电压程度。 电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ) P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A)。 三相 I=P÷(U×1.732×cosΦ) P-功率(W);U-电压(380V);cosΦ-功率因素(0.8);I-相线电流(A)。 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。 在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电

路中,每1KW功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。 电缆允许的安全工作电流口诀: 十下五(十以下乘以五)。 百上二(百以上乘以二)。 二五三五四三界(二五乘以四,三五乘以三)。 七零九五两倍半(七零和九五线都乘以二点五)。 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九)。 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算)。 裸线加一半(在原已算好的安全电流数基础上再加一半)。 电线电缆规格型号说明:

控制电缆选型手册

聚氯乙烯绝缘和护套控制电缆 Control Cable with PVC Insulation & Sheath 交联聚乙烯绝缘聚氯乙烯护套控制电缆 Control Cable with XLPE Insulation and PVC Sheath 本产品适用于额定电压600/1000V及以下的配电装置,作电器仪表的连接线。 一、 执行标准: GB/T 9330‐2008、GB/T 12706‐2008 二、 额定电压: 450/750V 三、 额定温度: 电缆导体采用优质圆形实心无氧铜,其性能和外观应符合GB/T 3956的规定, 聚氯乙烯绝缘70℃, 交联聚乙烯绝缘90℃。 四、 使用条件: 1、敷设温度、最小弯曲半径:电缆的敷设温度在不低于0℃条件下敷设时,无需预先加温;电缆的敷设不 受落差限制,敷设时的最小弯曲半径规定如下: a.无铠装层的电缆,应不小于电缆外径的6倍; b.有铠装层的电缆或铜带屏蔽结构的电缆,应不小于电缆外径的12倍; c.有屏蔽结构的软电缆,应不小于电缆外径的10倍。 2、电缆导体的长期允许工作温度: 聚氯乙烯绝缘为70℃; 交联聚乙烯绝缘为90℃. 3、短路时,电缆导体的最高温度不超过250℃,持续时间不超过5S。 五、型号说明: 1)阻烯型电缆号在普通型前加ZR‐ 阻燃型的主要特点是电缆不易着火或着火时延燃仅局限在一定范围内,适用于对阻燃性能要求较高的场合。 2)耐火型电缆型号在普通型前加NH‐ 耐火型电缆的主要特点是电缆除了能在正常的工作条件下传输电力外,电缆在着火燃烧时仍能保持一定时间的正常运行,适用于对耐火性有要求的场合。 电缆符合IEC60332‐2004《电缆在着火条件下的试验》。 3) 低烟无卤阻燃型 电缆型号在普通型前加WDZ‐ 低烟无卤阻燃型电缆的特点是电缆不仅具备阻燃性能,而且具有较低的发烟性、低毒性,适用于那些对电缆燃烧的烟浓度及酸毒气体释出量有较高要求的场合。电缆符合IEC60332‐2004《电缆在着火条件下的试验》、IEC60754‐1994《电缆燃烧放出的气体的试验》、GB/T 19666‐2005《阻燃和耐火电线电缆通则》,根据客户需求设计成不同阻燃等级。

常用电缆种类及选型计算方法

电缆种类及选型计算 电缆种类及选型计算 一、电缆的定义及分类 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线 2.绕组线 3.电力电缆 4.通信电缆和通信光缆 5.电气装备用电线电缆 电线电缆的基本结构: 1.导体传导电流的物体,电线电缆的规格都以导体的截面表示 2.绝缘外层绝缘材料按其耐受电压程度 二、工作电流及计算 电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ)

P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A) 三相 I=P÷(U×1.732×cosΦ) P-功率(W);U-电压(380V);cosΦ-功率因素(0.8);I-相线电流(A) 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。 在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW 功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。 电缆允许的安全工作电流口诀: 十下五(十以下乘以五) 百上二(百以上乘以二) 二五三五四三界(二五乘以四,三五乘以三) 七零九五两倍半(七零和九五线都乘以二点五) 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九) 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,

电力电缆设计选型

聚氯乙烯绝缘电力电缆 型号产品名称电压芯数截面主要使用范围 VV VLV 铜芯、铝芯聚氯乙烯绝缘聚氯 乙烯护套电力电缆 0.6/1 (3.6/6) 1, 2, 3, 4, 3+1, 5, 4+1, 3+2, (1,3) 1-240 50-240(T) 敷设在室内、隧道、及沟 管中,不能承受机械外力 的作用 VV22 VLV22铜芯、铝芯聚氯乙烯绝缘钢带 铠装聚氯乙烯护套电力电 4-240 50-240(T) 同VV型,能直埋在土壤 中可承受机械外力,不能 承受大的拉力 ZVV ZVLV 铜芯、铝芯聚氯乙烯绝缘聚氯 乙烯护套阻燃电力电缆 1-240 50-240(T) 同VV型,适用于有阻燃 要求的场 ZVV22 ZVLV22铜芯、铝芯聚氯乙烯绝缘钢带 铠装聚氯乙烯护套阻燃电力 电缆 4-240 50-240(T) 同VV22型,适用于有阻 燃要求的场合 NHVV-A NHVV-B 铜芯聚氯乙烯绝缘聚氯乙烯 护套耐火电力电缆 4-240 50-240(T) 同VV型,适用于有耐火 要求的场合 NHVV22-A NHVV22-B 铜芯聚氯乙烯绝缘钢带铠装 聚氯乙烯护套耐火电力电缆 10-240 50-240(T) 敷设在室内、电缆沟、管 道等要求阻燃的固定场 合 聚氯乙烯绝缘控制电缆 型号产品名称电压芯数截面主要使用范围 KVV铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆450/7504-370.75-10敷设在室内、电缆 沟、管道等固定场 合 KVV22铜芯氯乙烯绝缘聚氯乙烯护套铠装控制电缆450/7504-370.75-10敷设在室内、电缆 沟、管道直埋等能 承受较大机械外力 的固定场合 KVVP铜芯聚氯乙烯绝缘聚氯乙烯护套编织屏蔽控制电缆450/7504-370.75-10敷设在室内、电缆 沟、管道等能要求 屏蔽的固定场合 KVVR铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆软电缆450/7504-370.75-10敷设在室内,有移 动要求的场合 KVVRP铜芯聚氯乙烯绝缘聚氯乙烯护套编织屏蔽控制软电缆450/7504-370.75-10敷设在室内,有移 动屏蔽要求的场合 ZKVV阻燃铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆450/7504-370.75-10敷设在室内、电缆 沟、管道等要求阻 燃的固定场合

电线电缆种类及选型计算

电线电缆种类及选型计算! 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线; 2.绕组线; 3.电力电缆; 4.通信电缆和通信光缆; 5.电气装备用电线电缆。 电线电缆的基本结构: 1.导体:传导电流的物体,电线电缆的规格都以导体的截面表示。 2.绝缘:外层绝缘材料按其耐受电压程度。

电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ) P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A)。 三相 I=P÷(U×1.732×cosΦ) P-功率(W); U-电压(380V); cosΦ-功率因素(0.8); I-相线电流(A)。 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。

电缆允许的安全工作电流口诀: 十下五(十以下乘以五)。 百上二(百以上乘以二)。 二五三五四三界(二五乘以四,三五乘以三)。 七零九五两倍半(七零和九五线都乘以二点五)。 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九)。 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算)。 裸线加一半(在原已算好的安全电流数基础上再加一半)。

电力电缆选型手册

电力电缆选型手册.doc 目录一. 概述 2 二. 范围2-3 三. 参考标准及参数取值依据3 四. 符号说明3-4 五. IEC 287-3-2/1995标准电力电缆截面经济最佳化计算方法的应用4-11 六. 电力电缆经济截面最佳化数据查找的使用方法11-12 七. 电缆经济截面与发热截面总费用比较及投资回收年计算12-15 八. 经济截面的校验条件16-17 附录1 铜芯电力电缆综合造价统计表18-19 附录 2 电缆造价类别的平均 A 值20 附录3 电缆型号与电缆造价类别对照表20 附录4-1 铜芯电力电缆经济电流范围I-A 类别21-23 附录4-2 铜芯电力电缆经济电流范围II-A 类别24-26 附录4-3 铜芯电力电缆经济电流范围III-A 类别27-29 附录4-4 铜芯电力电缆经济电流范围IV-A 类别30-32 附录4-5 铜芯电力电缆经济电流范围V-A 类别33-35 附录5 铜芯电力电缆经济电流密度计算数据及图表不同电价36-40 附录6 电缆导体交流电阻及感抗41-42 附录7 铜芯电力电缆允许载流量表42 附录8 损耗费用辅助量F─Tmax─P 关系的统计值43 附录9 最大负载利用小时Tmax 与最大负载损耗小时τ 和cosΦ 的关系43 附录10 不同行业的年最大负载利用小时Tmax,h 44 九. 参考资料44电力电缆经济选型实用手册一.概述导体的经济电流密度是选择导体的必要条件之一。 当选择导体的诸多技术条件如发热温升、机械强度及电压降要求等得到控制或改善时,往往是经济电流密度起着支配作用。 实践证明,经济电流密度对于选择导体进而节省能源,改善环

电缆选型计算

电缆选择计算(参考土木工程施工手册) 箱式变压器至1号竖井1级配电箱电缆选择计算. 查负荷机具表使用设备容量如下: 空压机二台:P a =180KW 轴流式通风机两台:P b =56KW 抓斗一台:P c =26KW 砼搅拌机400L :P d =5.5KW 砼喷射机: P e =8KW 施工机械风镐: P f =74KW 浆液搅拌设备: P g =30KW 污水泵: P h =33KW 直流电焊机:P i =104KW 交流电焊机:P g =115.8KW 维修设备: P i =30KW 隧道照明: P 4=15KA 根据施工现场用电划分: ??? ? ??+++=∑∑∑∑44332211P K P K P K cos P K 05.1P ? KW P P P P P P P P h g f e d c b a 452P 1=+++++++=∑ KW P P i 8.219P g 2=+=∑ KW 5341508.2196.075.04526.005.1P P K P K P K cos P K 05.1P 44332211=?? ? ??++?+?=???? ??+++=∑∑∑∑?

变电箱体选型为P=800KVA 按照允许电流选择,按公式计算: A 1081732 .175.038.0534 3cos =??= = ? U P I A 1620732 .175.038.0800 3cos =??== ? U P I 总 电缆按有可能出现的最大负荷为4掌子面同期施工,选择电缆。所以必须考虑有一定的余量,根据上述负荷计算电流和施工中期负荷增加的可能。查电缆载流表得知应选择: 现场从变电箱体引出5台1级配电箱将电缆载流均分324A 橡皮绝缘电力电缆选择95 21853?+?:载流370A 电压降计算: 根据公式:s C M S ?=∑ 式中 S-配电线路电压损失的百分数; M-导线长乘有功功率(KW*m ) S-导线截面(mm 2) C-常熟:三相四线时,铜线77 根据实际测量,箱式变压器至各1级配电箱最远电气最远距离50米。 将各字母数值代入公式:% 8.1185 7750534s C M S =??= ?=∑ 根据计算得知:计算结果小于8%(混合电路)符合规范要求。

电线电缆规格型号表

电线电缆规格型号表 一、电线电缆选用的一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性;例如, 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电压损失,经济电流密度,机械强度等选择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。一般电线电缆规格的选用参见下表:

电线电缆规格选用参考表

说明:1.同一规格铝芯导线载流量约为铜芯的0.7倍,选用铝芯导线可比铜芯导线大一个规格,交联聚乙烯绝缘可选用小一档规格,耐火电线电缆则应选较大规格。 2.本表计算容量是以三相380V、Cosφ=0.85为基准,若单相220V、Cosφ=0.85,容量则应×1/3。 3.当环境温度较高或采用明敷方式等,其安全载流量都会下降,此时应选用较大规格;当用于頻繁起动电机时,应选用大2~3个规格。 4.本表聚氯乙烯绝缘电线按单根架空敷设方式计算,若为穿管或多根敷设,则应选用大2~3个规格。 5 以上数据仅供参考,最终设计和确定电缆的型号和规格应参照有关专业资料或电工手册。

电缆选型计算

电缆选型计算.电力工程电缆设计 电缆导体材质1.

7.8.6 ,DL/T5222,7.8.5控制电缆应采用铜导体。,3.1.1 GB50217 电力电缆芯数2. 注意电压范围,3.2.4GB50217 3.2.3 电缆绝缘水平3.

主回路电缆绝缘电压选择3.3.2条Z,1 GB50217不应低于控制电缆额定电压的选择,3.3.5 该回路工作电压,应2 220kV 及以上高压配电装置敷设的控制电缆,选用450/750V。;外除上述情况外,控制电缆宜选用 450/750V3 部电气干扰影响很小时,可选用较低的额 定电压。 DL5136中电力电缆导体截面选择4. 4.1电缆敷设方式 )、(土壤中:壕沟直埋 空气中:、电缆构筑物:常用电缆构筑物有 电缆隧道、电缆1沟、排管、吊架及桥架等,此外还有主控、集控室下面电缆夹层及垂 直敷设电缆的竖井等。、电缆桥架2 梯架、大电缆托盘、小动力 槽式、控制,通讯电缆电力电缆截面选择4.2 硬导体软导体电缆 1按回路持续1按回路持续1按回路持续工 导体工作电流选择作电流选择工作电流

选择 22按经济电流2按经济电流密按经济电流截面 密度选密度选度选按短路热的定选 按电晕电压按电压损按电晕条导校校按短路热按电晕对无截电干扰校定校按短路动的定校按机械共条件校电缆截面应满足持续允许电流、短路热稳定、允许电压降等要求,当最大负荷利用小时T>5000h 且长度超过20m时,还应按经济电流密度选取。动力回路铝芯电2缆截面不宜小于6mm 。(一)

按持续允许电流选择(二)按短路热稳定选择(三)按电压损失校验以下分别描述(一)按持续允许电流选择 1.敷设在空气中和土壤中的电缆允许载流量按下式计算:Klru≥I (K为综合校正系数,见下表) I-计算工作电流( A ) Iru-电缆在标准敷设条件下的额定载流量(A) , 2.电缆载流量的修正: GB5222 持%100及以下常用电缆按10kV 3.7.2 中GB50217. 续工作电流确定电缆导体允许最小截面,宜符合本规范的规定,其载流量按照下列使用条件差C和附录D附录异影响计入校正系数后的实际允许值应大于回路的工作电流。 1、环境温度差异。 2、直埋敷设时土壤热阻系数差异。

电线电缆选型样本

CONTENTS
POWER CABLES
35kV XLPE Insulation Power Cable of 35kV or lower..................................................................................6 0.6/1kV 0.6/1kV PVC Insulation Power Cable.................................................................................................21 10kV Rated Voltage 10kV or Lower Aerial Insulation Cable.......................................................................26 A.A.C.& A.C.S.R.................................................................................................................................31 Ship Power Cable With PVC lnsulation & Sheath..............................................................................34 Power Cable with Silica Rubber Insulation & Sheath.........................................................................35
ELECTRIC EQUIPMENTS INSTALLATION WIRES CABLES
( ) PVC Insulation Cable(Wire)...............................................................................................................38 General-purpose Soft Rubber Sheath Cable.....................................................................................40 PVC Insulation & Sheath Control Cable.............................................................................................42 Ship Control Cable with PVC Insulation & Sheath.............................................................................52
SPECIAL CABLES
0.6/1kV 0.6/1kV Soft Power Cable with PVC Insulation..................................................................................54 Metallic Shielded Power Cable..........................................................................................................56 Cable for Nuclear Power Station........................................................................................................60 Power Cable with PVC Insulation & Nylon Sheath.............................................................................65

浅谈电线电缆的选型和安装敷设

浅谈电线电缆的选型和安装敷设 一、电线电缆选用的一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性; 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电压损

失,经济电流密度,机械强度等选择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。 二、电线电缆的安装与施工 电线电缆敷设安装的设计和施工应按GB50217-94《电力工程电缆设计规范》等有关规定进行,并采用必要的电缆附件(终端和接头)。供电系统运行质量、安全性和可靠性不仅与电线电缆本身质量有关,还与电缆附件和线路的施工质量有关。 通过对线路故障统计分析,由于施工、安装和接续等因素造成的故障往往要比电线电缆本体缺陷造成的故障可能性大得多。因此要正确地选用电线电缆及配套附件,除按规范要求进行设计和施工外,还应注意如下几个方面的问题:

⒈电缆敷设安装应由有资格的专业单位或专业人员进行,不符合有关规范规定要求的施工和安装,有可能导致电缆系统不能正常运行。 ⒉人力敷设电缆时,应统一指挥控制节奏,每隔1.5~3米有一人肩扛电缆,边放边拉,慢慢施放。 ⒊机械施放电缆时,一般采用专用电缆敷设机并配备必要牵引工具,牵引力大小适当、控制均匀,以免损坏电缆。 ⒋施放电缆前,要检查电缆外观及封头是否完好无损,施放时注意电缆盘的旋转方向,不要压扁或刮伤电缆外护套,在冬季低温时切勿以摔打方式来校直电缆,以免绝缘、护套开裂。 ⒌敷设时电缆的弯曲半径要大于规定值。在电缆敷设安装前、后用1000V兆欧表测量电缆各导体之间绝缘电阻是否正常,并根据电缆型号规格、长度及环境温度的不同对测量结果作适当地修正,小规格(10mm2以下实芯导体)电缆还应测量导体是否通断。 ⒍电缆如直埋敷设,要注意土壤条件,一般建筑物下电缆的埋设深度不小于0.3米,较松软的或周边环境较复杂的,如耕地、建筑施工工地或道路等,要有一定的埋设深度(0.7~1米),以防直埋电缆受到意外

电线及电缆截面的选择及计算要点

低压导线截面的选择,有关的文件只规定了最小截面,有的以变压器容量为依据,有的选择几种导线列表说明,在供电半径上则规定不超过0.5km。本文介绍一种简单公式作为导线选择和供电半径确定的依据,供电参考。 1低压导线截面的选择 1.1选择低压导线可用下式简单计算: S=PL/CΔU%(1) 式中P——有功功率,kW; L——输送距离,m; C——电压损失系数。 系数C可选择:三相四线制供电且各相负荷均匀时,铜导线为85,铝导线为50;单相220V供电时,铜导线为14,铝导线为8.3。 (1)确定ΔU%的建议。根据《供电营业规则》(以下简称《规则》)中关于电压质量标准的要求来求取。即:10kV及以下三相供电的用户受电端供电电压允许偏差为额定电压的±7%;对于380V则为407~354V;220V单相供电,为额定电压的+5%,-10%,即231~198V。就是说只要末端电压不低于354V和198V就符合《规则》要求,而有的介绍ΔU%采用7%,笔者建议应予以纠正。 因此,在计算导线截面时,不应采用7%的电压损失系数,而应通过计算保证电压偏差不低于-7%(380V线路)和-10%(220V线路),从而就可满足用户要求。 (2)确定ΔU%的计算公式。根据电压偏差计算公式,Δδ%=(U2

-U n)/U n×100,可改写为:Δδ=(U1-ΔU-U n)/U n,整理后得: ΔU=U1-U n-Δδ.U n (2) 对于三相四线制用(2)式:ΔU=400-380-(-0.07×380)=46.6V,所以ΔU%=ΔU/U1×100=46.6/400×100=11.65;对于单相220V,ΔU=230-220-(-0.1×220)=32V,所以ΔU% =ΔU/U1×100=32/230×100=13.91。 1.2低压导线截面计算公式 1.2.1三相四线制:导线为铜线时, S st=PL/85×11.65=1.01PL×10-3mm2(3) 导线为铝线时, S sl=PL/50×11.65=1.72PL×10-3mm2(4) 1.2.2对于单相220V:导线为铜线时, S dt=PL/14×13.91=5.14PL×10-3mm2(5) 导线为铝线时, S dl=PL/8.3×13.91=8.66PL×10-3mm2(6) 式中下角标s、d、t、l分别表示三相、单相、铜、铝。所以只要知道了用电负荷kW和供电距离m,就可以方便地运用(3)~(6)式求出导线截面了。如果L用km,则去掉10-3。 1.5需说明的几点 1.5.1用公式计算出的截面是保证电压偏差要求的最小截面,实际选用一般是就近偏大一级。再者负荷是按集中考虑的,如果负荷分散,所求截面就留有了一定裕度。

电线电缆选型计算

电缆种类及选型计算 一、电缆的定义及分类 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线 2.绕组线 3.电力电缆 4.通信电缆和通信光缆 5.电气装备用电线电缆 电线电缆的基本结构: 1.导体 ? 传导电流的物体,电线电缆的规格都以导体的截面表示 2.绝缘 ? 外层绝缘材料按其耐受电压程度 二、工作电流及计算 电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ)? P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A) 三相 I=P÷(U×1.732×cosΦ) P-功率(W);U-电压(380V);cosΦ-功率因素(0.8);I-相线电流(A) 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。 在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW 功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。 电缆允许的安全工作电流口诀: 十下五(十以下乘以五)? 百上二(百以上乘以二)? 二五三五四三界(二五乘以四,三五乘以三)? 七零九五两倍半(七零和九五线都乘以二点五) 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九) 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算) 裸线加一半(在原已算好的安全电流数基础上再加一半) 首先说明一点,这个口诀是以铝芯绝缘线、明敷在环境温度25℃的条件为准。 "十下5" 是指截面从10以下,截流量都是截面数的五倍,如2.5的线其允许电流估算为5A*2.5=12.5A; “百上2”是指截面100以上,载流量都是截面数的二倍,如150的线其允许电流估算为

电力电缆选型

电力电缆选型分析 电力电缆的分类 电力电缆按其绝缘层的结构不同可以分为油浸绝缘统包电缆、铅包电缆、自容式充油电缆、橡皮绝缘电缆、聚氯乙烯绝缘电缆和交联聚乙烯绝缘电缆等几种类型;根据额定电压不同又可分为低压电缆和高压电缆;根据用途不同又可分为:高压电力电缆、控制电缆、架空绝缘电缆、矿用电缆,分支电缆等。以下对不同的电缆绝缘层结构的电缆进行介绍。信息来自:输配电设备网 (1)油浸纸绝缘统包电缆该类电缆是将电缆线芯先分相包缠上油浸绝缘纸,在线芯之间的空隙内填充油浸麻绳或纸带,然后再用油浸绝缘纸将几个线芯统包起来。统包纸不但满足了线芯与外防护层的绝缘要求,而且还起到缠紧各个线芯的作用。电缆线芯统包后,外部再包上防腐蚀和防外力损伤的护套层。信息来自:https://www.360docs.net/doc/d810982483.html, (2)分相铅包电缆该类电缆又称为单芯电缆。在线芯的外部包缠有两层半导体纸,用以消除线芯表面平整而引起的电场畸变。半导体层外部包缠绝缘纸,绝缘纸外部缠一层半导体纸,然后包上铅包护套和防腐层。 信息请登陆:输配电设备网 (3)自容式充油电缆该类电缆在导线芯的中心留有一个油道,油道与外部的供油箱相连接。当电缆温度升高时,内部的浸渍剂受热胀,多余的浸渍剂通过油道流到供油箱内;当电缆温度下降时,浸渍剂收缩,供油箱内的油回流到电缆芯油道,保持电缆线芯内部始终无间隙,不会发生游离现象使绝缘层遭到破坏,同时也避免了电缆温度上升发生热膨胀时使内部压力增大,损伤绝缘层和外护套。 (4)橡皮电缆该类电缆是在导线线芯外挤压一层橡皮作为绝缘层,用麻作填料,在线芯外部包缠橡胶布带或玻璃纤维带以防止线芯松散。再挤压一层铅包层,最外层包上防腐用的钢带作为外护套。橡皮电缆也可以采用聚氯乙烯或氯丁橡皮作为密封层。 (5)聚氯乙烯电缆该类电缆构造与油浸绝缘纸电缆基本相同,它的绝缘层是采用聚氯乙烯材料,此种电缆的外护套有三种形式:无铠装、内钢带或内钢丝铠装、裸钢丝铠装。聚氯乙烯电缆具有良好的电气性能,且化学性能稳定,安装维护方便。 信息来源:https://www.360docs.net/doc/d810982483.html, (6)交联聚乙烯电缆该类电缆的结构与聚乙烯电缆基本相同,它是在电缆线芯上先挤包一层lmm厚的半导体交联聚乙烯,在绝缘层外面也要包一层半导体丁基橡胶或挤包一层半导体层,半导体层外再包一层0.11mm厚的钢带。成缆时线间的空隙也用填料填充使其成圆形,再缠内衬层将三芯固定,最后再挤压外护套进行铠装。 信息请登陆:输配电设备网 交联聚乙烯电缆耐热性能和绝缘性能好,载流量大,但其价格较高。 电缆选型注意事项信息来源:https://www.360docs.net/doc/d810982483.html, 近年来随着经济的发展,大城市交通问题日趋严重。为了缓解交通压力,很多城市先后投入大量资金,进行地铁建设。相应的地铁系统中牵引机车进行供电的1500V及低于1500V 的低压直流电力电缆的选选型是否恰当,直接关系到城市供电系统设计的合理性。我国目前建成或者在设计中的地铁、轻轨,均处于人员密集场所。供电电缆的绝缘层、外护套通常含

电线及电缆截面的选择及计算

1 低压导线截面的选择 选择低压导线可用下式简单计算: S=PL/CΔU%(1) 式中P——有功功率,kW; L——输送距离,m; C——电压损失系数。 系数C可选择:三相四线制供电且各相负荷均匀时,铜导线为85,铝导线为50;单相220V 供电时,铜导线为14,铝导线为。 (1)确定ΔU%的建议。根据《供电营业规则》(以下简称《规则》)中关于电压质量标准的要求来求取。即:10kV及以下三相供电的用户受电端供电电压允许偏差为额定电压的±7%;对于380V则为407~354V;220V单相供电,为额定电压的+5%,-10%,即231~198V。就是说只要末端电压不低于354V和198V就符合《规则》要求,而有的介绍ΔU%采用7%,笔者建议应予以纠正。 因此,在计算导线截面时,不应采用7%的电压损失系数,而应通过计算保证电压偏差不低于-7%(380V线路)和-10%(220V线路),从而就可满足用户要求。 (2)确定ΔU%的计算公式。根据电压偏差计算公式,Δδ%=(U2-U n)/U n×100,可改写为:Δδ=(U1-ΔU-U n)/U n,整理后得: ΔU=U1-U n-Δδ.U n(2) 对于三相四线制用(2)式:ΔU=400-380-(-×380)=,所以ΔU% =ΔU/U1×100=400×100=;对于单相220V,ΔU=230-220-(-×220)=32V,所以ΔU% =ΔU/U1×100=32/230×100=。 低压导线截面计算公式 三相四线制:导线为铜线时, S st=PL/85×=×10-3mm2(3) 导线为铝线时, S sl=PL/50×=×10-3mm2(4) 对于单相220V:导线为铜线时,

电流计算公式+电缆选型

关于电缆电流的大小 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界, 70、95,两倍半。 穿管、温度,八、九折。 裸线加一半。 铜线升级算。 说明:口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。为此将我国常用导线标称截面(平方毫米)排列如下:1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、185…… (1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来如下: 1~10 16、25 35、50 70、95 120以上五倍、四倍、三倍、二倍半、二倍。 现在再和口诀对照就更清楚了,口诀“10下五”是指截面在10以下,载流量都是截面数值的五倍。“100上二”(读百上二)是指截面100以上的

载流量是截面数值的二倍。截面为25与35是四倍和三倍的分界处。这就是口诀“25、35,四三界”。而截面70、95则为二点五倍。从上面的排列可以看出:除10以下及100以上之外,中间的导线截面是每两种规格属同一种倍数。 例如铝芯绝缘线,环境温度为不大于25℃时的载流量的计算: 当截面为6平方毫米时,算得载流量为30安; 当截面为150平方毫米时,算得载流量为300安; 当截面为70平方毫米时,算得载流量为175安; 从上面的排列还可以看出:倍数随截面的增大而减小,在倍数转变的交界处,误差稍大些。比如截面25与35是四倍与三倍的分界处,25属四倍的范围,它按口诀算为100安,但按手册为97安;而35则相反,按口诀算为105安,但查表为117安。不过这对使用的影响并不大。当然,若能“胸中有数”,在选择导线截面时,25的不让它满到100安,35的则可略为超过105安便更准确了。同样,2.5平方毫米的导线位置在五倍的始端,实际便不止五倍(最大可达到20安以上),不过为了减少导线内的电能损耗,通常电流都不用到这么大,手册中一般只标12安。 (2)后面三句口诀便是对条件改变的处理。“穿管、温度,八、九折”是指:若是穿管敷设(包括槽板等敷设、即导线加有保护套层,不明露的),计算后,再打八折;若环境温度超过25℃,计算后再打九折,若既穿管敷设,温度又超过25℃,则打八折后再打九折,或简单按一次打七折计算。关于环境温度,按规定是指夏天最热月的平均最高温度。实际上,温度是变动的,一般情况下,它影响导线载流并不很大。因此,只对某些温车间或较热地区超过25℃较多时,才考虑打折扣。 例如对铝心绝缘线在不同条件下载流量的计算:

相关文档
最新文档