交直交变频技术

交直交变频技术
交直交变频技术

交-直-交变频器的主电路包括三个组成部分:整流电路、中间电路和逆变电路。

整流电路把电源提供的交流电压变换为直流电压,电路型式分为不可控整流电路

和可控整流电路。

中间电路分为滤波电路和制动电路等不同的形式,滤波电路是对整流电路的

输出进行电压或电流滤波,经大电容滤波的直流电提供给逆变器的称为电压型逆变器,经大电感滤波的直流电提供给逆变器的称为电流型逆变器;制动电路是利用设置在直

流回路中的制动电阻或制动单元吸收电动机的再生电能实现动力制动。

逆变电路是将直流电变换为频率和幅值可调节的交流电,对逆变电路中功率

器件的开关控制一般采用SPWM控制方式。

交-直-交变频器的主电路框图如图所示。主电路包括三个组成部分:整流电路、中间

电路和逆变电路。

一、整流电路

1.1 不可控整流电路

不可控整流电路使用的元件为功率二极管,不可控整流电路按输入交流电源的相数不同分为单相整流电路、三相整流电路和多相整流电路。

三相桥式整流电路如图

三相不可控整流电路分析

三相桥式整流电路共有六只整流二极管,其中VD1、VD3、VD5三只管子的阴极连接在一起,称为共阴极组;VD4、VD6、VD2三只管子的阳极连接在一起,称为共阳极组。共阴极组三只二极管VD1、VD3、VD5在t1、t3、t5换流导通;共阳极组三只二极管VD2、VD4、VD6在t2、t4、t6换流导通。一个周期内,每只二极管导通1/3周期,即导通角为120°。通过计算可得到负载电阻R L上的平均电压为U o = 2.34U2

三相桥式电路的电压波形

1.2可控整流电路

三相桥式全控整流电路,如图所示。

三相桥式可控整流电路

可控整流电路工作原理

三相交流电源电压u R、u S、u T正半波的自然换相点为1、3、5,负半波的自

然换相点为2、4、6。当α=0°时,让触发电路先后向各自所控制的6只晶闸管的门极(对应自然换相点)送出触发脉冲,即在三相电源电压正半波的1、3、5点向共阴极组晶闸管VT1、VT3、VT5 输出触发脉冲;在三相电源电压负半波的2、4、6点向阳极组晶闸管VT2、VT4、VT6 输出触发脉冲,负载上所得到的整流输出电压u d波形如图3-5b所示的由三相电源线电压u RS、u RT、u ST、u SR、u TR和u RS的正半波所组成的包络线。

三相桥式全控电路电压波

可控整流电路控制原则

1) 三相全控桥整流电路任一时刻必须有两只晶闸管同时导通,才能形成负载电流,其中一只在共阳极组,另一只在共阴极组。

2) 整流输出电压u d波形是由电源线电压u RS、u RT、u ST、u SR、u TR和u RS的轮流输出所组成的。晶闸管的导通顺序为:(VT6和VT1)→(VT1和VT2)→(VT2和VT3)→(VT3和VT4)→(VT4和VT5)→(VT5和VT6)。

3) 六只晶闸管中每管导通120°,每间隔60°有一只晶闸管换流。

4)触发方式:可采用单宽脉冲触发,也可采用双窄脉冲触发。

二、中间电路:

变频器的中间电路有滤波电路和制动电路等不同的形式。

2.1滤波电路

虽然利用整流电路可以从电网的交流电源得到直流电压或直流电流,但是这种电压或电流含有频率为电源频率6倍的纹波,则逆变后的交流电压、电流也产生纹波。因此,必须对整流电路的输出进行滤波,以减少电压或电流的波动。这种

电路称为滤波电路。

1.电容滤波

通常用大容量电容对整流电路输出电压进行滤波。由于电容量比较大,一般采用电解电容。

二极管整流器在电源接通时,电容中将流过较大的充电电流(亦称浪涌电流),有可能烧坏二极管,必须采取相应措施。图3-7给出几种抑制浪涌电流的方式。

a)接入交流电抗b)接入直流电抗c)串联充电电阻

图-抑制浪涌电流的方式

采用大电容滤波后再送给逆变器,这样可使加于负载上的电压值不受负载变动的影响,基本保持恒定。该变频电源类似于电压源,因而称为电压型变频器。

电压型变频器的电路框图如图3-8所示。电压型变频器逆变电压波形为方波,而电流的波形经电动机负载的滤波后接近于正弦波,如图

电压型变频器的电路框图电压型变频器的电压和电流波形2.电感滤波

采用大容量电感对整流电路输出电流进行滤波,称为电感滤波。由于经电感滤波后加于逆变器的电流值稳定不变,所以输出电流基本不受负载的影响,电源外特性类似电流源,因而称为电流型变频器。图-1所示为电流型变频器的电路框图。图-2所示为电流型变频器输出电压及电流波形。

电流型变频器的电路框图电流型变频器输出电压及电流波形3.制动电路

利用设置在直流回路中的制动电阻吸收电动机的再生电能的方式称为动力制动或再生制动。图3-12为制动电路的原理图。制动电路介于整流器和逆变器之间,图中的制动单元包括晶体管V B、二极管VD B和制动电阻R B。如果回馈能量较大或要求强制动,还可以选用接于H、G两点上的外接制动电阻R EB。

图为制动电路的原理图

三、逆变电路的工作原理及基本形式

1、逆变电路的工作原理

逆变电路也简称为逆变器,图3-13a 所示为单相桥式逆变器,四个桥臂由开关构成,输入直流电压E,逆变器负载是电阻R。当将开关S1、S4闭合,S2、S3断开时,电阻上得到左正右负的电压;间隔一段时间后将开关S1、S4打开,S2、S3闭合,电阻上得到右正左负的电压。我们以频率f交替切换S1、S4和S2、S3,在电阻上就可以得到图3-13b所示的电压波形。

a) 单相桥式逆变电路

b) 工作电压波形

2 逆变电路的基本型式

1.半桥逆变电路

图a 为半桥逆变电路原理图,直流电压U d加在两个串联的足够大的电容两端,

并使得两个电容的连接点为直流电源的中点,即每个电容上的电压为U d/2。

由两个导电臂交替工作使负载得到交变电压和电流,每个导电臂由一个功率

晶体管与一个反并联二极管所组成。

a)半桥逆变电路

b)工作波形

2.全桥逆变电路

电路原理如图a所示。直流电压U d接有大电容C,电路中的四个桥臂,桥臂1、4和桥臂2、3组成两对,工作时,设t2时刻之前V1、V4导通,负载上的电压极性为左正右负,负载电流i o由左向右。t2时刻给V1、V4关断信号,给V2、V3导通信号,则V1、V4关断,但感性负载中的电流i o方向不能突变,于是VD2、VD3导通续流,负载两端电压的极性为右正左负。当t3时刻i o降至零时,VD2、VD3截止,V2、V3导通,i o开始反向。同样在t4时刻给V2、V3关断信号,给V1、V4导通信号后,V2、V3关断,i o方向不能突变,由VD1、VD4导通续流。t5时刻i o降至零时,VD1、VD4截止,V1、V4导通,i o反向,如此反复循环,两对交替各导通180°。其输出电压u O和负载电流i O见图b 所示。

a)全桥逆变电路

b) 工作波形

4 、SPWM控制技术

4.1 概述

PAM (Pulse Amplitude Modulation)脉幅调制型,是一种改变电压源的电压U d或电流源I d的幅值,进行输出控制的方式。

PWM (Pulse Width Modulation) 脉宽调制型,是靠改变脉冲宽度来控制输出电压,通过改变调制周期来控制其输出频率。

SPWM(Sinusoidal PWM)正弦波脉宽调制型,SPWM控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲,用这些脉冲来代替正弦波所需要的波形。

4.2 SPWM控制的基本原理

采样控制理论有这样一个结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积,效果基本相同是指环节的输出响应波形基本相同。例如图3-20所示的三种窄脉冲形状不同,但面积相同(假如都等于1)。当它们分别加在同一个惯性环节上时,其输出响应基本相同。且脉冲越窄,其输出差异越小。

图--冲量相等形状不同的三种窄脉冲

根据上述理论,正弦波可用一系列等幅不等宽的脉冲来代替。如图所示。

4.3 PWM逆变电路的控制方式

1. 单极性方式

单极性控制方式波形见图,载波u c在调制信号波u r的正半周为正极性的三角波,在负半周为负极性的三角波。

2.双极性控制方式

双极性控制方式波形见图3-24,在u r的半个周期内,三角波载波是在正负两个方向变化的,所得到的PWM波形也是在两个方向变化的。

双极性控制方式波

4.4 SPWM逆变器的调制方式

在SPWM逆变器中,三角波电压频率f t与调制波电压频率(即逆变器的输出频率) f r之比N=f t/f r称为载波比,也称为调制比。根据载波比的变化与否,PWM调制方式可分为同步式、异步式和分段同步式。

1. 同步调制方式

载波比N等于常数时称同步调制方式。同步调制方式在逆变器输出电压每个周期内所采用的三角波电压数目是固定的,因而所产生的SPWM脉冲数是一定的。其优点是在逆变器输出频率变化的整个范围内,皆可保持输出波形的正、负半波完全对称,只有奇次谐波存在。而且能严格保证逆变器输出三相波形之间具有120°相位移的对称关系。缺点是当逆变器输出频率很低时,每个周期内的SPWM脉冲数过少,低频谐波分量较大,使负载电动机产生转矩脉动和噪声。

(2) 异步调制方式

在逆变器的整个变频范围内,载渡比N不是一个常数。一般在改变调制波频率f r时保持三角波频率f t不变,因而提高了低频时的载波比,这样逆变器输出电压每个周期内PWM脉冲数可随输出频率的降低而增加,相应地可减少负载电动机的转矩脉动与噪声,改善了调速系统的低频工作特性。但异步调制方式在改善低频工作性能的同时,又失去了同步调制的优点。当载波比N随着输出频率的降低而连续变化时,它不可能总是3的倍数.势必使输出电压波形及其相位都发生变化,难以保持三相输出的对称性,因而引起电动机工作不平稳。

(3)分段同步调制方式

实际应用中,多采用分段同步调制方式,它集同步和异步调制方式之所长,而克服了两者的不足。在一定频率范围内采用同步调制,以保持输出波形对称的优点,在低频运行时,使载波比有级地增大,以采纳异步调制的长处,这就是分段同步调制方式。具体地说,把整个变频范围划分为若干频段,在每个频段内都维持N恒定,而对不同的频段取不同的N值,频率低时,N值取大些。采用分段同步调制方式,需要增加调制脉

冲切换电路,从而增加控制电路的复杂性。

4.5 SPWM波形成的方法

1. 自然采样法

自然采样法即计算正弦信号波和三角载波的交点,从而求出相应的脉宽和间歇时间,生成SPWM波形。图3-25表示截取一段正弦与三角波相交的实时状况。检测出交点A是发出脉冲的初始时刻,B点是脉冲结束时刻。T C为三角波的周期;t2为AB 之间的脉宽时间,t1和t3为间歇时间。显然,T C= t1+ t2+ t3。

自然采样法

2. 数字控制法数字控制法,是由微机存储预先计算好的SPWM数据表格,控制时根据指令调出,由微机的输出接口输出。

3. 采用SPWM专用集成芯片用微机产生SPWM波,其效果受到指令功能、运算速度、存储容量等限制,有时难以有很好的实时性,因此,完全依靠软件生成SPWM波实际上很难适应高频变频器的要求。随着微电子技术的发展,已开发出一批用于发生SPWM信号的集成电路芯片。目前已投入市场的SPWM芯片进口的有HEF4725、SLE4520,国产的有THP4725、ZPS--101等。有些单片机本身就带有SPWM端口,如8098、80C196MC 等。

交直交变频器详细说明书

交直交变频器 一变频器开发基础 三相交流异步电动机发明于1881年,一经问世,便以起结构简单,坚固,价格低廉二迅速的在电力拖动领域成为拖动系统中"骄子"。但正式由于其结构,在调速性能上使其失去欢颜。从异步电动机的转速公式n=60f/p(1-s) ,可知。除变频{f}调速以外,异步电机调速基本途径有:1改变极对数{p}。2改变转差率{s}。显然其调速缺点为调速范围低,工作效率下降,负载能力不一致,消耗电能多,机械特性较软,控制电路较复杂。科技的进步,社会的发展,要求生产机械对电动机进行无级调速满足工艺要求是多么的迫切。 随着20世纪60年代功率晶闸管{SCR},70年代功率晶体管{GTR},可关断晶闸管{GTO},80年代绝缘栅双极晶体管{IGBT}的相继开发,把变频器由希望,推广,发展到今天的普及阶段。 二变频器基本结构 目前应用的最广泛的是交直交变频器,其基本结构如图所示: 其工作过程是先将三相{或单相}不可调工频电源经过整流桥整流成直流电,再经过逆变桥把直流电逆变成频率任意可调的交流电,以实现无级调速。 逆变器的原理框图 三功率部分 交直交变频器的主电路如图所示,变频器调速过程中出现的许多现象都应通过主电路来进行分析,因此,熟悉主电路的结构,透彻了解各部分的原理,具有十分重要的意义。 1 交-直变换电路 ⑴图I(VD1-VD6)为交直变换全波整流电路,在中小容量变频器中,整流器件采用不可控整流二极管或二极管模块。(2)图中(CF1 CF2)为滤波电容器,由于交流电被整流出的直流电中会有交流含量,为了获取平稳的直流电而设置滤波电容。(3)因为电解电容器的电容量有较大的离散性,故电容器组CF1 和CF2的电容量常不能完全相等,这将导致各自压降不相等。为了使其压降相等,在CF1 CF2旁各并联一个阻值相等的均压电阻RC1和RC2。(4)(RH HL)为电源指示电路,除此之外HL也具有提示保护的作用,当变频器

实验四 单相交直交变频电路的性能研究

北京信息科技大学 电力电子技术实验报告 实验项目:单相交直交变频电路的性能研究 学院:自动化 专业:自动化(信息与控制系统) 姓名/学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期:2014-2015学年第一学期 实验四单相交直交变频电路的性能研究

一.实验目的 熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。 二.实验内容 1.测量SPWM 波形产生过程中的各点波形。 2.观察变频电路输出在不同的负载下的波形。 三.实验设备及仪器 1.电力电子及电气传动主控制屏。 2.NMCL-16组件。 3.电阻、电感元件(NMEL-03、700mH 电感)。 4.双踪示波器。 5.万用表。 四.实验原理 单相交直交变频电路的主电路如图2—8所示。 本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和 IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。 五.实验方法 图2—8 单相交直交变频电路

实验四-单相交直交变频电路的性能研究

实验四-单相交直交变频电路的性能研究

————————————————————————————————作者:————————————————————————————————日期:

北京信息科技大学 电力电子技术实验报告 实验项目:单相交直交变频电路的性能研究 学院:自动化 专业:自动化(信息与控制系统) 姓名/学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期:2014-2015学年第一学期 实验四单相交直交变频电路的性能研究

一.实验目的 熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。 二.实验内容 1.测量SPWM 波形产生过程中的各点波形。 2.观察变频电路输出在不同的负载下的波形。 三.实验设备及仪器 1.电力电子及电气传动主控制屏。 2.NMCL-16组件。 3.电阻、电感元件(NMEL-03、700mH 电感)。 4.双踪示波器。 5.万用表。 四.实验原理 单相交直交变频电路的主电路如图2—8所示。 本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和 IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。 五.实验方法 4 5 L1 G3VT3 3 E3 VT4 C G4 E2 图2—8 单相交直交变频电路 G11 E1 G2 2 VT1 VT2

100W单相交-直-交变频电路

辽宁工业大学电力电子技术课程设计(论文)题目:100W单相交-直-交变频实验装置 院(系):电气工程学院 专业班级:电气105班 学号:100303145 学生姓名:王林 指导教师:(签字) 起止时间:2012-12-31至2013-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 单相交-直-交变频电路在工业生产,生活娱乐,仪器运行等很多方面都有着广泛的应用,其中目前应用最广泛的应属于电网互联。单相交-直-交变频电路可分为主电路和控制电路,其主电路包括整流电路、滤波电路和逆变电路,而控制电路包括控制电路、驱动电路和保护电路。本设计对于整流部分采用不可控制整流电路;滤波部分采用LC低通滤波器,得到高频率的正弦波交流输出;逆变部分由四只IGBT管组成单相桥式逆变电路。控制电路选用以单片集成函数发生器ICL8038为核心组成,生成两路PWM信号,分别用于控制两对IGBT;驱动电路采用了具有电气隔离集成驱动芯片M57962L;保护电路采用双D触发器CD4013。 关键词:整流;滤波;逆变;PWM;IGBT

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (1) 第2章 100W单相交-直-交变频电路设计 (2) 2.1100W单相交-直-交变频电路总体设计方案 (2) 2.2具体电路设计 (3) 2.2.1 主电路设计 (3) 2.2.2 控制电路设计 (5) 2.3元器件型号选择 (9) 2.4系统调试或仿真、数据分析 (10) 第3章课程设计总结 (13) 参考文献 (14) 附录Ⅰ控制电路原理图 (15) 附录Ⅱ驱动和辅助电源原理图 (16)

单相交直交变频电路

电力电子技术 课程设计(论文) 单相交-直-交变频实验装置 院(系)名称电子与信息工程学院 专业班级 学号 学生 指导教师 起止时间:2014.12.15—2014.12.26

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:电子信息工程

摘要 随着科学技术的进步,电力电子技术取得了迅速的的发展,改变着我国工业的整体面貌,在现代化建设中发挥着越来越重要的作用。其中,单相交-直-交变频技术也得到了越来越多的重视。其在工业生产、生活娱乐和仪器应用等方面有着广泛的应用,其中目前应用最广泛的属于电网互联,将分布式发电技术发出的电变成负载可以使用的交流电或与大电网电压、频率相匹配的工频交流电。可见,研究交—直—交变频系统的基本工作原理和作用特性意义十分重大。 本次设计研究的单相交-直-交变频实验装置可分为主电路和控制电路两部分。其中,主电路包括整流电路、逆变电路和滤波电路三部分。整流电路采用不可控的二极管单相桥式整流电路;逆变电路采用IGBT组成的单相全桥逆变电路;滤波电路采用电容滤波,输出合适频率的正弦交流电。而控制电路由控制电路、驱动电路和保护电路组成。其中,控制电路以ICL8038为核心,生成两路PWM控制信号;驱动电路采用三菱公司生产的M57862L集成驱动器;用双D触发器CD4013构成保护电路。 根据以上电路组合设计,经过Multisim软件进行电路仿真,可以基本满足本次设计任务的要求,且电路比较可靠。 关键词:整流;逆变;IGBT;PWM控制

目录 第1章第1章绪论 (1) 1.1 电力电子技术发展概况 (1) 1.2 本文研究容 (1) 第2章单相交-直-交变频电路设计 (3) 2.1 单相交-直-交变频电路总体设计方案 (3) 2.1.1 方案论证与选择 (3) 2.1.2 整体方案框图 (3) 2.2 具体电路设计 (4) 2.2.1 整流电路设计 (4) 2.2.2 逆变电路设计 (6) 2.2.3 控制电路设计 (7) 2.2.4 驱动电路与保护电路设计 (10) 2.3 元器件型号选择 (11) 第3章课程设计总结 (13) 参考文献 (14) 附录 (15)

单相交直交变频电路设计

附件1: 基础强化训练 题目单相交直交变频电路性能研究 学院自动化学院 专业 班级 姓名 指导教师 2012 年7 月10 日

1 总体原理图 (4) 1.1方框图 (4) 1.2电路原理图 (4) 1.2.1 主回路电路原理图 (4) 1.2.2 整流电路 (4) 1.2.3 滤波电路 (5) 1.2.4 逆变电路 (6) 2 电路组成 (8) 2.1控制电路 (8) 2.2驱动电路 (9) 2.3主电路 (10) 3 仿真结果 (11) 3.1仿真环境 (11) 3.2仿真模型使用模块提取的路径及其单数设置 (11) 3.3具体仿真结果 (14) 3.3.1仿真电路图 (14) 3.3.2整流滤波输出电压计算与仿真 (15) 3.3.3逆变输出电压计算与仿真 (16) 4 小结心得 (18) 5 参考文献 (19)

基础强化训练任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 单相交直交变频电路性能研究 初始条件: 输入为单相交流电源,有效值220V。 要求完成的主要任务: (1)掌握单相交直交变频电路的原理; (2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真; (3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路 时间安排: 2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表 参考文献: [1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业 出版社,2011 指导教师签名:年月日 系主任(或责任教师)签名:年月日

1 总体原理图 1.1 方框图 图1 总体方框图 1.2 电路原理图 1.2.1 主回路电路原理图 图2 主回路原理图 如图所示,交直流变换电路为不可控整流电路,输入的交流电通过变压器和桥式整流电路转化为直流电,滤波电路用电感和电容滤波,逆变部分采用四只IGBT 管组成单项桥式逆变电路,采用双极性调制方式,输出经LC 低通滤波器滤波,滤除高次谐波,得到频率可调的交流电输出。 1.2.2 整流电路 整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块。大多数整流电路由变压器、整流主电路和滤波器等组成,主电路多用硅整流二极管和晶闸管组成,滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分,变压器设置与否视具体情况而定。 变压器的作用是实现交

电力电子课程设计交直交变频器的设计

电力电子技术课程设计 - 1 - 综述 交-直-交变频器由主要由AC-DC、DC-AC两类基本电路组成,先通过AC-DC整流电路将交流电转换为直流电,经过滤波等处理后,再通过DC-AC逆变电路,将直流电转换为交流电。整流电路采用三相全控桥整流,输出的整流电压脉动小、易于滤波;经过滤波处理后的直流电进入逆变电路,逆变电路采用PWM控制电压式逆变电路,通过PWM技术控制逆变电路中IGBT的通断时间,实现对输出交流电的控制,以更好的满足电机对供电电源的要求。 主电路的驱动与控制,主要是对各部分开关器件的控制,即对晶闸管和IGBT的驱动与控制。晶闸管是半控型器件,门极收到脉冲触发才能够导通,IGBT是全控型器件,门极电压触发导通,由芯片控制生成的PWM信号给IGBT触发信号,控制IGBT的通断,从而实现对主电路的精确控制。 交-直-交变频器的设计 - 2 - 1 主回路单元电路分析与设计 1.1 变频器概述 交-直-交变频器是由AC-DC、DC-AC两种基本变流电路组成,先将交流电整流为直流电,再将直流电逆变为交流电,因此,此类电路又称为间接交流变流电路。 交-直-交变频器与普通交-交变频器相比,最主要的优点是输出频率不再受输入电源频率的制约。国内应用的低压变频器几乎全是电压源型,中间直流是用电容平波,整流后面可加电容滤波,再经过逆变输出理想交流电压,可以做交流电机的电压源。 1.2 整流部分 整流电路AD-DC的作用是将交流电变为直流电。按组成器件可以分为不可控、半控、全控三种;按电路结构可以分为桥式电路和零式电路;按交流输入相数可以分为单相电路和三相电路。三相整流电路输出直流电压脉动较小,易于滤波处理,故采用三相整流电路。常用的三相整流电路有三相半波可控整流电路与三相桥式全控整流电路。 1.2.1 三相半波可控整流电路

单相交直交变频电路的性能研究

单相交直交变频电路的性能研究 一、交直交变频器发展概况 变频器是运动控制系统中的功率变换器。当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。交—直—交变频器的中间直流环节采用大电感作储能元件,无功功率将由大电感来缓冲,它的一个突出优点是当电动机处于制动 (发电)状态时,只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网,构成的调速系统具有四象限运行能力,可用于频繁加减速等对动态性能有要求的单机应用场合,在大容量风机、泵类节能调速中也有应用。近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义。 二、实验目的和要求 熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM逆变电路中元器件的作用、工作原理,对单相交直交变频电路在电阻负载、阻感负载时的工作情况及其波形作全面,并研究工作频率对电路工作波形的影响。 三、实验原理及波形 如下图所示,总体设计方案由整流电路、滤波、逆变电路等组成。市电经整流电路变直流电,直流电经滤波电路进行平滑滤波,再输入逆变电路,变为频率和电压均可调的交流电。 单相交直交变频电路由两部分组成,交流电源转化为直流是整流环节,选用了不可控的整流二极管电路,直流电源侧则选用电容和电感来滤波,能够获得比较平直的直流电压。这个环节结构相对简单、运行可靠,性能也符合设计的需求。直流转化为交流即是逆变部分,选用了单相桥式逆变电路,PWM控制,输出电压的大小及频率均可通过PWM控制进行调节。由于中间直流环节为电容滤波,因此选用电压型逆变电路。

单相交直交变频电路设计

附件1: 学号:0121011350327 基础强化训练 题目单相交直交变频电路性能研究 学院自动化学院 专业 班级 姓名 指导教师 2012年7月10日

1 总体原理图 (4) 1.1方框图 (4) 1.2电路原理图 (4) 1.2.1 主回路电路原理图 (4) 1.2.2 整流电路 (4) 1.2.3 滤波电路 (5) 1.2.4 逆变电路 (6) 2 电路组成 (8) 2.1控制电路 (8) 2.2驱动电路 (9) 2.3主电路 (10) 3 仿真结果 (11) 3.1仿真环境 (11) 3.2仿真模型使用模块提取的路径及其单数设置 (11) 3.3具体仿真结果 (14) 3.3.1仿真电路图 (14) 3.3.2整流滤波输出电压计算与仿真 (15) 3.3.3逆变输出电压计算与仿真 (16) 4 小结心得 (18) 5 参考文献 (19)

基础强化训练任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 单相交直交变频电路性能研究 初始条件: 输入为单相交流电源,有效值220V。 要求完成的主要任务: (1)掌握单相交直交变频电路的原理; (2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真; (3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路 时间安排: 2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表 参考文献: [1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业 出版社,2011 指导教师签名:年月日 系主任(或责任教师)签名:年月日

1 总体原理图 1.1 方框图 图1 总体方框图 1.2 电路原理图 1.2.1 主回路电路原理图 图2 主回路原理图 如图所示,交直流变换电路为不可控整流电路,输入的交流电通过变压器和桥式整流电路转化为直流电,滤波电路用电感和电容滤波,逆变部分采用四只IGBT 管组成单项桥式逆变电路,采用双极性调制方式,输出经LC 低通滤波器滤波,滤除高次谐波,得到频率可调的交流电输出。 1.2.2 整流电路 整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块。大多数整流电路由变压器、整流主电路和滤波器等组成,主电路多用硅整流二极管和晶闸管组成,滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分,变压器设置与否视具体情况而定。 变压器的作用是实现交

基于Matlab的交交变频电路仿真研究

摘要:本文首先以三相输入单相输出的交交变频电路为例介绍了交交变频电路的工作原理,接着以余弦交点法为例详细分析了交交变频电路的触发控制方法,最后用Matlab7.0 仿真软件对交交变频电路进行了建模和仿真研究。 关键词:交交变频;余弦交点法;Matlab仿真 Abstract: The principium of the AC-AC frequency converter with three phases input and one phase output is introduced in the first place.The control method of the AC-AC frequency converter is particularly analysed through discussing cosine-cross method in the second place. The AC-AC frequency converter’s simulation model is builded by the Matlab7.0 at last. Key words:AC-AC frequency converter; cosine-cross method; Matlab simulation 1、引言[1] 20世纪30年代交交变频电路就已经出现,当时采用的是水银整流器,曾经有装置用在电力机车上,由于原件性能的限制,没能得到推广。到20世纪70年代,随着晶闸管的问世交交变频电路曾经广泛应用于电机的变频调速。20世纪80年代随着全控器件的广泛应用,交交变频电路逐渐被交直交变频电路取代。近年来随着现代工业生产及社会发展的需要推动了交交变频技术的飞速发展,现代电力电子器件的发展和应用、现代控制理论和控制器件的发展和应用、微机控制技术及大规模集成电路的发展和应用为交流变频技术的发展和应用创造了新的物质和技术条件,交交变频电路又逐渐成为研究的热点。 2、交-交变频电路的工作原理[2][3] 交交变频电路的工作原理与相控整流器的工作原理基本相同,现在以三相输入单相输出的交交变频电路为例详细分析其工作原理。

实验五 单相交直交变频电路的性能研究

单相交直交变频电路的性能研究 一.实验目的 熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。 二.实验内容 1.测量SPWM 波形产生过程中的各点波形。 2.观察变频电路输出在不同的负载下的波形。 三.实验设备及仪器 1.电力电子及电气传动主控制屏。 2.NMCL-16组件。 3.电阻、电感元件(NMEL-03、700mH 电感)。 4.双踪示波器。 5.万用表。 四.实验原理 单相交直交变频电路的主电路如图2—8所示。 本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和 IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。 五.实验方法 图2—8 单相交直交变频电路

1.SPWM 波形的观察 (1)观察正弦波发生电路输出的正弦信号Ur 波形(“2”端与“地”端),改变正弦波频率调节电位器,测试其频率可调范围。 (2)观察三角形载波Uc 的波形(“1”端与“地”端),测出其频率,并观察Uc 和U 2的对应关系: (3)观察经过三角 波和正弦波比较后得到的SPWM 波形(“3”端与“地”端),并比较“3”端和“4”端的相位关系。 (4)观察对VT 1、VT 2进行控制的SPWM 信号(“5”端与“地”端)和对VT 3、VT 4进行控制的SPWM 信号(“6”端与“地”端),仔细观察“5”端信号和“6”端防号之间的互锁延迟时间。 2.驱动信号观察 在主电路不接通电源情况下,S 3扭子开关打向“OFF”,分别将“SPWM 波形发生”的G 1、E 1、G 2、E 2、G 3、E 3、G 4和“单相交直交变频电路”的对应端相连。经检查接线正确后,S3扭子开关打向“ON”,对比VTI 和VT2的驱动信号,VT3和VT4的驱动信号,仔细观察同一相上、下两管驱动信号的波形,幅值以及互锁延迟时间。 3.S 3扭子开关打向“OFF”,分别将“主电源2”的输出端“1”和“单相交直交变频电路”的“1”端相连, “主电源2”的输出端“2”和“单相交直交变频电路”的“2”端相连,将“单相交直交变频电路”的“4”、“5”端分别串联MEL-03电阻箱 (将一组900Ω/0.41A 并联,然后顺时针旋转调至阻值最大约450Ω) 和直流安培表(将量程切换到2A 挡)。将经检查无误后,S 3扭子开关打向“ON”,合上主电源(调节负载电阻阻值使输出负载电压波形达到最佳值,电阻负载阻值在90Ω~360Ω时波形最好)。 4.当负载为电阻时,观察负载电压的波形,记录其波形、幅值、频率。在正弦波Ur 的频率可调范围内,改变Ur 的频率多组,记录相应的负载电压、波形、幅值和频率。 5.当负载为电阻电感时,观察负载电压和负载电流的波形。 六.注意事项 1.“输出端”不允许开路,同时最大电流不允许超过“1A”。 2.注意电源要使用“主电源2”的“15V”电压其他同“直流斩波”电路相同。 七.实验报告 图2--9 SPWM 波形发生

单相交直交变频电路的性能研究

附件2 (实验报告的首页) 本科实验报告 课程名称:电力电子技术 实验项目:单相交直交变频电路的性能研究 实验地点:电力电子技术实验室 专业班级:学号 学生姓名: 指导教师: 2014年11 月30 日

一、实验目的和要求(必填) 熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM逆变电路中元器件的作用、工作原理,对单相交直交变频电路在电阻负载、阻感负载时的工作情况及其波形作全面,并研究工作频率对电路工作波形的影响 二、实验内容和原理(必填) 内容: 1.测量SPWM波形产生过程中的各点波形 2..观察电路输出在不同负载下的波形 原理: 1.实验原理图: 2.双极性PWM控制方式 采用双极性方式时,在调制信号u r的半个周期内,三角形载波不再是单极性的,而是有正有负的,所得的PWM波也是有正有负。在调制信号u r和载波信号u c的交点时刻控制各开关的通断。

当u r>u c时:VT1、VT4导通,VT2、VT3关断,这时i0>0则VT1、VT4导通;i0<0则VD1 、VD4导通输出电压u0=u d。 当u r0 VD3导通,输出电压u0=-u d 则VD2 、 通过对开关频率的控制,就可以得到不同频率的输出波形 三、主要仪器设备(必填) 1.电力电子及电气传动主控制屏 2.MCL-16组件 3.电阻、电感等原件 4.双踪示波器

四、操作方法与实验步骤(可选) 1.按实验原理图接线 2.调整开关频率,得到两组不同频率下的输出电压波形 3.实验结果见附录 五、实验结果与分析(必填) (一) (二)

交--交变频器与交--直--交变频器有什么区别

1交直交电压型变频器,此类变频器价格比较贵,另外技术上存在二大问题,一是存在中间整流滤波环节,故效率比较低,二是当电动机处于发电状态能量返回电网困难,通常是接通电阻回路把能量消耗掉,这样一方面增大设备的体积,另一方面能量未得到利用,是极大的浪费,为了使能量能得到利用,可增加有源逆变电路,但这又增加成本和电路的复杂性。 交交变频器其工作原理是将三相工频电源经过几组相控开关控制直接产生所需要变压变频电源,其优点是效率高,能量可以方便返回电网,其最大的缺点输出的最高频率必须小于输入电源频率1/3或1/2,否则输出波形太差,电机产生抖动,不能工作。故交交变频器至今局限低转速调速场合,因而大大限制了它的使用范围。 2交- 交变频技术 交-交变频器采用晶闸管自然换流方式,工作稳定,可靠,适合作为双馈电机转子绕组的变频器电源,交交变频的最高输出频率是电网频率的1/3-1/2,在大功率低频范围有很大的优势。交交变频没有直流环节,变频效率高,主回路简单,不含直流电路及滤波部分,与电源之间无功功率处理以及有功功率回馈容易。虽然交交变频双馈系统得到了普遍的应用,但因其功率因数低,高次谐波多,输出频率低,变化范围窄,使用元件数量多使之应用受到了一定的限制。 矩阵式变频器是一种交交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。虽然矩阵变换器有很多优点,但是在其换流过程中不允许存在两个开关同时导通的或者关断的现象,实现起来比较困难。矩阵变换器最大输出电压能力低,器件承受电压高也是此类变换器一个很大缺点。应用在风力发电中,由于矩阵变换器的输入输出不解耦,即无论是负载还是电源侧的不对称都会影响到另一侧。另外,矩阵变换器的输入端必须接滤波电容,虽然其电容的容量比交直交的中间储能电容小,但由于它们是交流电容,要承受开关频率的交流电流,其体积并不小。

单相交直交变频电路设计

附件1: 学号:012101135032 7 基础强化训练 题目单相交直交变频电路性能研究学院自动化学院 专业 班级 姓名 指导教师 2012 年7 月10 日

1 总体原理图 (4) 1.1方框图 (4) 1.2电路原理图 (4) 1.2.1 主回路电路原理图 (4) 1.2.2 整流电路 (5) 1.2.3 滤波电路 (6) 1.2.4 逆变电路 (7) 2 电路组成 (9) 2.1控制电路 (9) 2.2驱动电路 (10) 2.3主电路 (11) 3 仿真结果 (12) 3.1仿真环境 (12) 3.2仿真模型使用模块提取的路径及其单数设置 (12) 3.3具体仿真结果 (16)

3.3.1仿真电路图 (16) 3.3.2整流滤波输出电压计算与仿真 (17) 3.3.3逆变输出电压计算与仿真 (18) 4 小结心得 (20) 5 参考文献 (21) 基础强化训练任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 单相交直交变频电路性能研究 初始条件: 输入为单相交流电源,有效值220V。 要求完成的主要任务: (1)掌握单相交直交变频电路的原理; (2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真; (3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路 时间安排: 2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表

参考文献: [1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业出 版社,2011 指导教师签名:年月日 系主任(或责任教师)签名: 年 月 日 1 总体原理图 1.1 方框图 图1 总体方框图 1.2 电路原理图 1.2.1 主回路电路原理图

三相交交变频电路

三相交交变频电路 交交变频电路主要应用于大功率交流电机调速系统,这种系统使用的是三相交交变频电路。三相交交变频电路是由三组 输出电压相位各差120°的,单相交交变 频电路组成的。 1.电路接线方式 三相交交变频电路主要有两种接线方 式,即公共交流母线进线方式和输出星形联 结方式。 (1)公共交流母线进线方式 图1 是公共交流母线进线方式的三相交交变频电路简图。它由三组彼此独立的、输出电压相位相互错开120°的单相交交变频电路构成,它们的电源进线通过进线电抗器接在公共的交流母线上。因为电源进线端公用,所以三组单相交交变频电路的输出端必须隔离。为此,交流电动机的三个绕组必须拆开,共引出六根线。这种电路主要用于中等容量的交流调速系统。 (2)输出星形联结方式 图2 是输出星形联结方式的三相交交变频电路原理图。其中2 a)为简图,2 b)为详图。三组单相交交变频电路的输出端是星形联结,电动机的三个绕组也是星形联结,电动机中性点不和变频器中性点接在一起,电动机只引出三根线即可。因为三组单相交交变频电路的输出联接在一起,其电源进线就必须隔离,因此三组单相交交变频器分别用三个变压器供电。 由于变频器输出端中点不和负载中点相联接,所以在构成三相变频电路的六组桥式电路中,至少要有不同输出相的两组桥中的四个晶闸管同时导通才能构成回路,形成电流。和整流电路一样,同一组桥内的两个晶闸管靠 双触发脉冲保证同时导通。而两组桥之间则是靠各自的触发脉冲有足够的宽度,以保证同时导通。

2.输入输出特性 从电路结构和工作原理可以看出,三相交交变频电路和单相交交变频电路的输出上限频率和输出电压谐波是一致的,但输入电流和输入功率因数则有一些差别。 先来分析三相交交变频电路的输入电流。图3 是在输出电压比=0.5,负 载功率因数的情况下,交交变频电路输出电压、单相输出时的输入电流和三相输出时的输入电流的波形举例。对于单相输出时的情况,因为输出电流是正弦波,其正负半波电流极性相反,但反映到输入电流却是相同的。因此,输入电流只反映输出电流半个周期的脉动,而不反映其极性。所以如式 式 所示输入电流中含有与2倍输出频率有关的谐波分量。对于三相输出时的情况,总的输入电流是由三个单相交交变频电路的同一相(图中为U 相)输入电流合 成而得到的,有些谐波相互抵消,谐波种类有所减少,总的谐波幅值也有所降低。其谐波频率为 和

交交变频电路课程设计教学文稿

《电力电子技术》课程设计说明书 单相交交变频电路 系、部:电气与信息工程系 学生姓名: 指导教师:职称 专业:自动化 班级: 完成时间:2012年5月1日

目录 摘要 0 1 设计要求与原理分析与方案设计 (1) 1.1 要求分析 (1) 1.2 原理说明 (1) 1.2.1原理图 (1) 1.2.2整流与逆变工作状态 (2) 1.2.3输出正弦波电压的调制方法 (5) 1.3 方案设计 (6) 2 电路仿真与仿真结果分析 (7) 2.1 电路的仿真 (7) 2.2仿真结果与分析 (9) 3 心得体会 (12) 参考文献 (13)

摘要 20世纪30年代交交变频电路就已经出现,当时采用的是水银整流器,曾经有装置用在电力机车上,由于原件性能的限制,没能得到推广。到20世纪70年代,随着晶闸管的问世交交变频电路曾经广泛应用于电机的变频调速。20世纪80年代随着全控器件的广泛应用,交交变频电路逐渐被交直交变频电路取代。近年来随着现代工业生产及社会发展的需要推动了交交变频技术的飞速发展,现代电力电子器件的发展和应用、现代控制理论和控制器件的发展和应用、微机控制技术及大规模集成电路的发展和应用为交流变频技术的发展和应用创造了新的物质和技术条件,交交变频电路又逐渐成为研究的热点。 本文首先以三相输入单相输出的交交变频电路为例介绍了交交变频电路的工作原理,接着以余弦交点法为例详细分析了交交变频电路的触发控制方法,最后用Matlab仿真软件对交交变频电路进行了建模和仿真研究。 关键词:交交变频余弦交点法Matlab仿真

单相交交变频电路仿真 1 设计要求与原理分析与方案设计 1.1 要求分析 根据设计任务书要求,采用交交变频器设计,在负载电阻R 1=Ω、负载电感L 0.001H =;控制变频器输出频率为f 10Hz /25Hz =。控制信号的正弦波参数设置:幅值为1、角频率为f *2(rad /s)π,初相位为0。 首先明确交交变频电路是直接由工频交流经过晶闸管控制变为可变频的交流电压。它与交直交变频或者直流变交流有很大的区别。下面简单介绍交交变频电路的工作原理。 1.2 原理说明 交交变频电路是把电网频率的交流电直接变换成可调频率的交流电的变流电路。因为没有中间直流环节,因此属于直接变频电路。 交交变频电路广泛用于大功率交流电动机调速传动系统,实际使用的主要是三相输出交交变频电路。单相输出交交变频电路是三相输出交交变频电路的基础。因此本节介绍的是单相输出交交变频电路的构成、工作原理及控制方法。 1.2.1原理图 交变频电路的工作原理与相控整流器的工作原理基本相同,现在以三相输入单相输出的交交变频电路为例详细分析其工作原理。 图1是单相交交变频电路的原理图和输出电压波形。电路有P 组和N 组反并联的晶闸管变流电路构成。变流器P 和N 都是相控整流电路,P 组工作时,负载电流0i 为正,N 组工作时,0i 为负。让两组变流器按一定的频率交替工作,负载就得到该频

第4章 交-交变频电路汇总

4.3 可控硅相控交-交变频电路 晶闸管交交变频电路,也称周波变流器(Cycloconvertor),把电网频率的交流电变成可调频率的交流电的变流电路,属于直接变频电路。广泛用于大功率交流电动机调速传动系统,实际使用的主要是三相输出交交变频电路。 4.3.1可控硅相控单相-单相交-交变频技术 1、电路结构和基本工作原理 在共阴极双半波整流电路中,通过改变晶闸管的控制角可得到负载端上正下负大小可变的输出电压。在共阳极双半波整流电路中,通过改变晶闸管的控制角可在负载上得到极性相反的电压。 t U u A ωsin 22= (a )电路图 (b )原理波形图 图4-18 双半波整流电路及其原理波形 2、整流与逆变工作状态 两组反并联的可逆整流电路及其原理波形,如图4-18所示。正组整流器工作(反组被封锁)时,

负载端输出电压为上正下负;反组整流器工作时(正组被封锁),负载端输出电压极性相反。只要交替地以低于输入电源的频率切换正反两组整流器的工作状态(工作或封锁),在负载端就可以获得交流电压,该输出电压显然包含了大量谐波。 如果在半周期中使导通工作的晶闸管的控制角α由90?逐渐减小到零,然后再增大到90?,则该整流器的输出平均电压就从零增大到最大,然后再减小到零。因此,只要控制α角在0?~90?之间以适当地规律性变化,即可获得按正弦规律变化的平均输出电压。 在实际的交-交变频电路中,常采用“余弦波交截控制法”控制α角的变化以获得平均正弦波的输出。以控制电压U c 来控制α角的变化,如果控制电压U c 的大小总是正比于控制角α的余弦大小,即 αcos cm c U U = (4-15) U cm 为U c 峰值,则输出电压平均值U d 随U c 呈线性变化。由于 αcos dm d U U = (4-16) U dm 为α=0?时U d 最大值,所以 cm dm c d U U U U = (4-17) 故有 c cm dm d U U U U = (4-18) 在保证线性范围内,U c 最大值为U cm =U dm ,此时 c d U U = (4-19) 因此,按余弦波交截控制法控制的相控整流器,是一个具有线性电压转换特性的功率放大器。可 以想象,如果控制电压按正弦波变化,则输出平均电压也将按正弦波变化。 4.3.2 可控硅相控三相-单相交-交变频技术 1、电路构成和基本工作原理

6.2 交—交变频电路

6.2 交—交变频电路 交—交变频电路是一种可直接将某固定频率交流交换成可调频率交流的频率变换电路,无需中间直流环节。与交—直—交间接变频相比,提高了系统变换效率。又由于整个变频电路直接与电网相连接,各晶闸管元件上承受的是交流电压,故可采用电网电压自然换流,无需强迫换流装置,简化了变频器主电路结构,提高了换流能力。 交—交变频电路广泛应用于大功率低转速的交流电动机调速转动,交流励磁变速恒频发电机的励磁电源等。实际使用的交—交变频器多为三相输入—三相输出电路,但其基础是三相输入—单相输出电路,因此本节首先介绍单相输出电路的工作原理、触发控制、四象限运行特性,输入、输出特性等;然后介绍三相输出电路结构、输入、输出特性及其改善措施;最后对于一种新型的绿色变频电路——矩阵式交—交变换器作出介绍,使读者了解交—交变频技术的最新发展动向。 6.2.1 三相输入—单相输出交—交变频电路 1.基本工作原理 三相输入—单相输出交—交变频器原理如图6-13所示,它是由两组反并联的三相晶闸管可控整流桥和单相负载组成。其中图(a)接入了足够大的输入滤波电感,输入电流近似矩形波,称电流型电路;图(b)则为电压型电路,其输出电压可为矩形波、亦可通过控制成为正弦波。图(c)为图(b)电路输出的矩形波电压,用以说明交—交变频电路的工作原 理。当正组变流器工作在整流状态时、反组封锁,以实现无环流控制,负载Z上电压为 上(+)、下(-);反之当反组变流器处于整流状态而正组封锁时,负载电压为上(-)、下(+),负载电压交变。若以一定频率控制正、反两组变流器交替工作(切换),则向负 载输出交流电压的频率就等于两组变流器的切换频率,而输出电压大小则决定于晶闸管的触发角。 图6-13 三相输入—单相输出交—交变频器原理图

交直交变频调速.

电力电子技术课程设计 设计内容与设计要求 一.设计内容: 1.电路功能: 1)将恒频恒压的交流电经过交直交变频电路变成电压和频率可调的交流电,用于实现电机的变频调速。 2)电路由主电路与控制电路组成,主电路主要环节:整流电路、逆变电路。控制电路主要环节:速度控制电路、电压电流检测单元、驱动电路。 3)功率变换电路中的高频开关器件采用IGBT或MOSFET。 4)系统具有完善的保护 2. 系统总体方案确定 3. 主电路设计与分析 1)确定主电路方案 2)主电路元器件的选择 3)主电路保护环节设计 4. 控制电路设计与分析 1)检测电路设计 2)功能单元电路设计 3)触发电路设计 二.设计要求: 1.要求输出交流电电压频率可调。 2.用芯片(MC3PHAC、SA868、SLE4520、HEEF4752)产生PWM脉冲。3.设计思路清晰,给出整体设计框图; 4.单元电路设计,给出具体设计思路和电路; 5.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。

马潇然:交-直-交变频器的设计6.绘制总电路图 7.写出设计报告; 主要设计条件 1.设计依据主要参数 1)输入输出电压:输入(AC)+380V、220V(AC)2)输出电流:2A 3)效率:≥0.8 4)电机型号: 2. 可提供仿真条件 说明书格式 1.课程设计封面; 2.任务书; 3.说明书目录; 4.设计总体思路,基本原理和框图(总电路图);5.单元电路设计(各单元电路图); 6.故障分析与电路改进、实验及仿真等。 7.总结与体会; 8.附录(完整的总电路图); 9.参考文献; 10.课程设计成绩评分表

交直交变频调速系统

河南机电高等专科学校课程设计报告书 课程名称:电力电子应用技术 课题名称:交直交变频调速系统 系部名称:自动控制系 专业班级:电气自动化技术093 姓名: 学号:

目录 一、电路原理图及波形图 二、系统的工作原理 三、观察现象并分析 四、心得体会 五、参考文献

一电路原理图 主电路 控制电路 SPWM正弦脉宽调制控制电路 波形图 用示波器测三角发生器处的波形

X Y U/V 4 4 0--2.850μs 80μs wt 可看出三角波并不是规则的波形,周期是80μs,而上下的幅值却是不一样的。 用示波器测2、3、4处的波形如下: 5010015020050100150200 10ms 20ms 30ms 40ms 1830--------183--X Y U 可以看出,2,3,4处的波形是幅值电压183V ,周期20ms ,相差120度正弦波形。 用示波器测6,7,8处的波形如下:

60120U/V Y X 40Hz 20Hz Wt 可以看出,6,7,8处得波形是幅值为120V ,周期40Hz ,等幅不等宽的脉冲波形。 二 系统的工作原理 1.主电路工作原理 由主电路原理图可知,交直交变频调速系统一般分为整流电路,滤波电路,控制电路,逆变电路。●整流电路 整流电路的功能是把交流电源转换成直流电源。整流电路一般都是单独的一块整流模块●滤波电路 在交流电源转换直流电源后,电路会有电压波动,为抑制电压的波动,采用简单的电容滤波。●逆变电路 逆变电路同整流电路相反,逆变电路是将直流电压装换为所要频率的交流电压。 2.控制电路的工作原理 脉宽调制技术简称PWM ,PWM 控制技术就是控制半导体开关元件的导通和关断时间比,即调节脉冲宽度或周期来控制输出电压的一种控制技术。PWM 常用于电压型逆变器,它可以消除或减小低次谐波,滤波器的体积可减小,有利于小型化和降低成本,这个控制电路采用的是常用的正弦波脉宽调制技术(SPWM )。正弦波脉宽调制分单极性和双极性脉宽调制,它使每一个输出 矩形波的面积与对应的正弦波电压的面积呈正比,获得等幅不等宽的正负脉冲列,这样的逆变器输出的电压波形就与正弦基波电压接近。 正弦基波电压作为调制电压,对它要进行调制的三角波称为载波电压,当正弦基波与三角波相交时通过比较两者之间的电压大小来控制逆变器开关的通断,从而得到一系列等幅不等宽正比于正弦基波电压的矩形波,这就是正弦脉宽调制方法(SPWM )。 当操作指令发出后,电压矢量发生器和V/f 函数电路同时工作发出波形,两者经过幅值控制电路后,变成幅值可以调制的正弦波形,正弦波形在与三角波发生器发出的三角波相交后,经过调制电路,输出的电压波形为等幅不等宽的脉冲列,其特点是中间脉冲宽,两边的脉冲窄,这样的脉冲列信号比较弱,经

相关文档
最新文档