精算习题

精算习题
精算习题

※<第一章>

1.寿险精算与精算的关系

答:保险精算包括寿险精算和非寿险精算两大类,而保险精算是精算学中的一个重要分支。 2.什么是精算学?

答:精算学是以现代数学和概率数理统计学为基础,从数量方面研究保险业经营管理的各个环节的规律和发展,更好地反映保险机制实质的随机模型。为保险公司进行科学的决策及提高管理水平提供依据和工具的专门学科。

※<第二章>

1.试确定二年期内的常数实际利率,使之等价于第一年5%,第二年6%的实际贴现率。 (5.82%)

2.如果20.04(1)t t δ-=+,那么1000元在第20年末的终值是多少? (1038.8301元)

3.试比较δ ,()m i ,i 的大小。

(m>1时,()m i i δ>> ;m=1时,()m i i δ=> ;m<1时,()m i i δ>> )

※<第三章>

1.如果实际贴现率为10%,那么8a

为多少?

(5.695327)

2.一台新电视机的现金价格为10000元。某顾客想以月计息一次18%的年利率分期付款购买该台电视,若他在4年内每月月末付款250元,问现付款需要多少? (1489.3615元)

3.王强从银行贷款100000元,计划从第七个月开始每月末等额还款,若银行规定在借款后三年还清本息,设年利率为16%,求每月需还款额。 (4323.9456元)

※<第四章>

1.已知()1100

x

S x =-,0100x ≤≤ ,求 201010q 。

(0.125)

2.证明:在Balducci 假设下,

1(1)x x t

x

q t q μ+=

-- ,01t ≤≤ 3.若 407746l =,417681l = ,计算下列假设下的1404

μ

的值。

(1)UDD 假设 (2)Balducci 假设 (0.0084091,0.0084446)

※<第五章>

1.证明:

11(1)x x x p a

i a --?=+ 2.已知死力 0.04μ=,息力 0.06δ=,求 x a 。

(10)

3.在上题假设下,求概率值()T x P a a > 的大小。 (0.542883523)

※<第六章>

1.假设15.5x a =,0.25x A =,求利率i 的值。 (0.050847456)

2.50岁的人投保10000元的终身保险,设年利息力为常数0.06,死亡服从

1(100)x x

μωω==-。求保额在保单生效时的精算现值。

(3167.376439元)

3.设300.25A =,500.40A = ,30:200.55A = ,求130:20

A 和 130:20A 。

(0.05,0.50)

※<第七章>

1.证明: 11::(),()h

h x h n h x n

x h

p p p A n h --=>

2.王五30岁时投保了三十年定期寿险,若投保前10年死亡给付20000元,从40岁起死亡给付逐年增加5000元,假设i=0.06,死亡年末给付保险金,试求限期二十年缴费的年缴均衡纯保费。 (371.76)

※<第八章>

1.某40岁的被保险人投保了20年两全保险,保险金额200000元,要求按年缴一次均衡方式,在10年内限期缴清。试用替换函数分别表示:(1)投保第5年末的责任准备金;(2)投保第15年末的责任准备金;(3)投保第20年末的责任准备金。

答案:(1)4560604060604550

45405045

200000()M M D M M D N N D N N D -+-+--?- ;

(2)556060

55

200000M M D D -+

(3)200000。

2.设死亡服从均匀分布,证明:():::()

m t t x n

x n x n n m n t x

t x

x

V

V A V

V

A -=

-

3.已知保额为3,死亡年末给付的三年期两全保险。年均衡纯保险费为0.94,i =0.20。第1,2,3个保单年度末的纯保险费制责任准备金分别为0.66,1.56和3.00,求x q 和1x q + 。

答案: 0.2x

q = 10.25x q +=

※<第九章>

1.某种10年期两全保单,被保险人的签单年龄为35岁,保险金额为15000元,于死亡年末给付。设按年均缴费一次的方式购买,其费用在每保单年初发生,其大小如下:

试求保单的均衡毛保费(用保险和年金精算现值函数表示)

答案:35:1035:1035:1015000(1)35590%16%

da

a a -+--

2.某寿险公司向30岁的被保险人发行一种保额10000元到60岁为止的两

全保险,保险费按年均衡交付。假定:佣金为第1年附加保险费的30%;第2年到第10个保单年度续保险费佣金为附加保险费的5%;第1年维持费用为第1000元保额15元,以后年度每1000元保额5元。保额于死亡后立刻提供。试用精算符号表示附加保险费的计算公式。

答案:

30:3030:3030:10100505%25%a

e a

a +=--

3.用10年限期缴费方式在40岁购买终身死亡保险,保额于死亡年末给付。除提供50000元保额外,还将返还不计息的毛保险费。毛保险费按G=(P+C)(1+K) 方式求解,其中C =3,K =0.05。试用替换函数表达计算保单毛保险费的公式。

答案:

4040

1040

40:10105000 3.15()1.05()A I A P a I A +=- 1.05(3)G P =+

※<第十章>

1.证明:

40:101030:20

31:191F

a V

a

=-

( F V 表示一年定期修正法责任准备金)

2.证明:初年定期修正法下,11

:1:1n F

n t t x m

x m V

V --+-=

※<第十一章>

验证如下有关资产份额关系式的等价性:

()()()

11(1)[(1)](1)d w k x k k k k x k x k k AS p AS G c e i q q CV

τ+++++?=+--+--?0,1,2...k =

()()

1111(2)[(1)](1)(1)()

d w k k k k x k k x k k k AS AS G c

e i q AS q CV AS ++++++=+--+----()()111(3)[(1)](1)d w k x k x k k k k x k x k k AS l l AS G c e i d d CV +++++++?=+--+--?

其中

()()()

1d w x k x k x k p q q τ+++=--

※<第十二章>

1.试用单生命或多状态年金函数,表达最后生存者(20)和(25),和最后生存者(30)和(35)共同生存的期间内,提供年给付额为1000元的期末年金的精算现值?

答案: 10001000()a a a a =+-

=

20:3025:3020:25:3020:3525:3520:25:3520:30:3525:30:3520:25:30:351000()

a a a a a a a a a +-++---+2.求(x)与(y)中至少有一个在第n+1年死亡的概率。这个概率是否就是

n

xy

q

?请解释。

答案:

|||n

n x n y n xy xy q q q q =+-

※<第十三章>

1.试证如下两式的等价性:

(1)n x x n

n a E a ++?

|(2)n x x x n x n a a

A V a a +?-?+

2.在35岁签单的某种保单,如果被保险人在二十年末生存,那么保单将提

供20000元的给付额;若被保险人在签单后的二十年内死亡,保单在死亡发生季末开始提供第一次给付100元,直到二十年届满。签单二十年后保单不再提供任何给付。试写出购买该保单的限期二十年缴费贩均衡纯保险费公式。进一步,如果该保单首年佣金为毛保险费的15%,续年为5%;每年税金为毛保险费的3%;每保单每年固定费用20元,试求限期二十年缴费的均衡毛保费公式。

答案:

1

20

79

135

35:8035:20

|

044

35:20

2000010020

0.920.1

k

k k j

k

A q a v a

a

-

=

?+??+?

-

寿险精算习题及答案

习题 第一章人寿保险 一、n 年定期寿险 【例4.1】设有100个40岁的人投保了1000元5年期定期寿险,死亡赔付在死亡年年末,利率为3%。 I 、如果各年预计死亡人数分别为1、2、3、4、5人,计算赔付支出; II 、根据93男女混合表,计算赔付支出。 解:I 表4–1 死亡赔付现值计算表 年份 年内死亡人数 赔付支出 折现因子 赔付支出现值 (1) (2) (3)=1000*(2) (4) (5)=(3)*(4) 1 1 1000 103.1- 970.87 2 2 2000 203.1- 1885.19 3 3 3000 303.1- 2745.43 4 4 4000 403.1- 3553.9 5 5 5 5000 503.1- 4313.04 合计 --- 15000 --- 13468.48 根据上表可知100张保单未来赔付支出现值为: 48.13468)03.1503.1403.1303.1203.11(100054321=?+?+?+?+??-----(元) 则每张保单未来赔付的精算现值为134.68元,同时也是投保人应缴的趸缴纯保费。 解:II 表4–2 死亡赔付现值计算表 年份 年内死亡人数 赔付支出 折现因子 赔付支出现值 (1) (2) (3)=1000*(2) (4) (5)=(3)*(4) 1 1000*40q =1.650 1650 103.1- 1601.94 2 1000*40|1q =1.809 1809 203.1- 1705.16 3 1000*40|2q =1.986 1986 303.1- 1817.47 4 1000*40 | 3q =2.181 2181 403.1- 1937.79

保险精算习题及答案

保险精算习题及答案 第一章:利息的基本概念 练习题 21(已知,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,atatb,,,, 在时刻8的积累值。 2((1)假设A(t)=100+10t, 试确定。 iii,,135 n(2)假设,试确定。 An,,1001.1iii,,,,,,135 3(已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4(已知某笔投资在3年后的积累值为1000元,第1年的利率为,第2年的利率为,i,10%i,8%12第3年的利率为,求该笔投资的原始金额。 i,6%3 5(确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 2226(设m,1,按从大到小的次序排列与δ。 vbqep,,,xx 7(如果,求10 000元在第12年年末的积累值。 ,,0.01tt 8(已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 t9(基金A以每月计息一次的年名义利率12%积累,基金B以利息强度积累,在时刻t (t=0),两笔,,t6 基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X中的投资以利息强度(0?t?20), 基金Y中的投资以年实际利率积累;现分别,,,0.010.1tit 投资1元,则基金X和基金Y在第20年年末的积累值相等,求第3年年末基 金Y的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 nmvviaa,,,1(证明。,,mn 1 2(某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首 期付款额A。 3. 已知 , , , 计算。 a,5.153a,7.036a,9.180i71118 4(某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其 每年生活费用。 5(年金A的给付情况是:1,10年,每年年末给付1000元;11,20年,每年年末 给付2000元;21,30年,每年年末给付1000元。年金B在1,10年,每年给付额为K元;11,20年给付额为0;21,30年,每年

保险精算试题

共 4 页 第 1 页 保险精算复习自测题(90分钟) 选择题(20分) 1.(20)购买了一种终身生存年金,该年金规定第一年初给付500元,以后只要生存每年初增加100元,该生存年金的精算现值为( )。 A... .. 2020400100()a I a + B.2020400100()a I a + C... .. 2020500100()a I a + D.2020500100()a I a + 2. UDD 假设 若q 50=0.004,在UDD 假设下0.5p 50等于( )。 3. 每次期初支付10000元,一年支付m 次,共支付n 年的生存年金的精算现值表示为( )。 A.() ..:10000m x n m a B.() :10000m x n ma C.() ..:10000m x n nm a D.() :10000m x n nm a 4.关于(x )的一份2年定期保险,有如下条件:(1)0.02(1)x k q k +=+ 0,1k =(2)0.06i =(3)在死亡年末支付额如下: k 1k b + b1 1 b2 若 z 是死亡给付现值的随机变量则()E Z 等于( )。

共 4 页 第 2 页 填空题(20分) 1.按缴费方式和保险金的给付方式,把寿险分为 、 、 。 2.若一个人在x 岁时死亡,此时随机变量T (30)= ,K(50)= 。 3. = ,35:]1000n n V 。 4.日本采用的计算最低现金价值的方法是 。 5.专业英语:Nominal interest 中文意思是 。 6.生存年金精算现值的计算方法 和 。 7.假设i=5%,现向银行存入1万元,在以后的每年末可取出 元。 8.假设40l =A ,50l =B ,则1040q = 。 9.责任准备金的两种计算方法为 、 。 1 20:] 1000t t V

精算数学第二章习题

精算数学第二章习题 1. 30岁的人购买两年期定期保险,保险金在被保险人死亡的年末给付,保单年度t 的保额为bt ,已知条件为:q30=0.1,b2=10-b1,q31=0.6,i=0,Z 表示给付现值随机变量,求使得V ar(Z)最小的b1的值。 2. 已知:lx=100-x ,0≤x ≤100,i=0.06,则求 的值。 3. 4. 小张为现年60岁的母亲购买了一份终身寿险保单,保单利益为:若被保险人在保险期第一年内死亡,则在年末给付保险金7000元;若在第二年内死亡,则在年末给付保险金7100元,即在以后,死亡时间每推迟一年,保险金额增加100元。已知i=2%, M60=184.857509,D60=274.336777,R60=3538.387666。求这种寿险的保费。 5. 现年30岁的王先生购买了保额为1的20年期的连续型定期寿险,已知生存函数为:s(x)=1-x/100(0≤x ≤100),设年利率为i=0.10。求此保险给付数额在签单时的现值Z 的方差V ar(Z)。 30:10A 1 10:10:100.240.350.5x x x x A A A A +=== = 已知:,,。则()。

6. 7. 有一份按年递增的期初付终生生存年金,第一年金额为100元,第二年为200元,以后每过一年给付金额增加100元,i=0.06,其生存模型为: 求该年金的精算现值。 8. 对于连续型终身生存年金,已知lx=100000(100-x),0≤x ≤100, i=6%,则 k 1 2 3 4 k a 1.00 1.93 2.80 3.62 k -1q x 0.33 0.24 0.16 0.11 ()x a = :4 根据以下条件计算。 x 90 91 92 93 l x 100 72 39 35a = ( )。

最新保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100 (5)300180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

精算师考试数学基础考点大纲

一)准精算师部分 准精算师部分由八门专业课程及一门职业道德教育课程组成。 具体课程名称和主要内容如下: 课程名称 考试内容 A1 数学 1)概率论(30%); 2)数理统计(20%); 3)随机过程(20%); 4)应用统计(20%); 5)随机微积分(10%)。 A2 金融数学 1)复利数学(40%); 2)利率期限结构和随机利率模型(20%); 3)未定权益基本分析和风险中性评估(20%); 4)投资组合理论基础(20%)。 A3 精算模型 1)基本模型:生存模型和多状态模型、财产责任保险常见风险标的模型、个体模型和聚合模型;(40%)2)统计建模初步:参数估计和校验:频率和索赔额模型、信度理论;(20%) 3)统计模型的进一步分析:修匀原理和方法(10%)

4)破产模型;(20%) 5)情景及敏感性测试:随机模拟(10%) A4 经济学 宏观经济学(30%)、微观经济学(50%)、金融学(20%)A5 寿险精算 1)寿险精算数学(60%) 2)寿险精算实务(40%) A6 非寿险精算 1)非寿险精算数学(60%) 2)非寿险精算实务(40%) A7 会计与财务 1)会计基本原理(25%); 2)会计准则(25%); 3)各种经营实体介绍(20%); 4)企业会计的基本结构(15%); 5)企业会计的解释能力和局限性(15%)。 A8 精算管理 1)企业运营的一般环境(10%); 2)风险评估、风险类型和风险度量(15%);

3)产品(或服务)的设计和开发(10%); 4)产品和服务的定价及定价假设(10%); 5)准备金和负债评估(15%); 6)风险管理基本方法(15%); 7)资产负债管理基础(10%); 8)经验监测(10%); 9)偿付能力、盈利能力和资本管理(5%)。 (注:1、课程A1-A8均为3小时笔试。2、考生在通过了A1-A8全部课程后,还需参加为期一天的中国准精算师《A9职业道德教育》课程的培训,方可获得中国准精算师资格。) 一)科目名称:数学基础I 1、科目代码:01中国精算师资格考试 2、考试时间:3小时中国精算师资格考试 3、考试形式:标准化试题中国精算师资格考试 4、考试内容:中国精算师资格考试 (1)微积分(分数比例:60%)中国精算师资格考试 ①函数、极限、连续中国精算师资格考试 函数的概念及性质反函数复合函数隐函数分段函数基本初等函数的性质初等函数数列极限与函数极限的概念函数的左、右极限无穷小和无穷大的概念及其关系无穷小的比较极限的四则运算中国精算师资格考试 函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质中国精算师资格考试 ②一元函数微积分中国精算师资格考试 导数的概念函数可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、反函数和隐函数的导数高阶导数微分的概念和运算法则微分在近似计算中的应用中值定理及其应用洛必达(L’Hospital)法则函数的单调性函数的极值函数图形的凹凸性、拐点及渐近线函数的最大值和最小值中国精算师资格考试 原函数与不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理变上限定积分及导数不定积分和定积分的换元积分法和分部积分法广义积分的概念及计算定积分的应用中国精算师资格考试 ③多元函数微积分中国精算师资格考试 多元函数的概念二元函数的极限与连续性有界闭区间上二元连续函数的性质偏导数的概念与计算多元复合函数及隐函数的求导法高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算***区域上的简单二重积分的计算曲线的切线方程和法线方程中国精算师资格考试 ④级数中国精算师资格考试 常数项级数收敛与发散的概念级数的基本性质与收敛的必要条件几何级数与p级数的收敛性正项级数收敛性的判断任意项级数的绝对收敛与条件收敛交错级数莱布尼茨定理幂级数的概念收敛半

保险精算李秀芳1-5章习题答案

第一章 生命表 1.给出生存函数()22500 x s x e -=,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 ()()()10502050(5060)50(60) 50(60) (50) (70)(70) 70(50) P X s s s s q s P X s s p s <<=--= >== 2.已知生存函数S(x)=1000-x 3/2 ,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。 ()() ()5|605606565(66)650.1895,0.92094(60)(60)65(66) 0.2058 (65) s s s q p s s s s q s -= ===-∴= = 4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60) =0.70740/0.86786=0.81511

5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 808081 8080800.07d l l q l l -= == 808081 808080 0.07d l l q l l -= == 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .

保险精算第二版习题及答案

保险精算第二版习题及 答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。、

8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6 t t δ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。 10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. D. 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 225 213 C.7 136 987 第二章:年金 练习题 1.证明()n m m n v v i a a -=-。

保险精算第1章习题答案

第1章 习题答案 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 解: 100)0(100)0(.k )0(2=+?==b a a A 或者由1)0(=a 得1=b 180)15(100)5(100)5(2=+?=?=a a A 得032.0=a 以第5期为初始期,则第8期相当于第三期,则对应的积累值为: 4.386)13032.0(300)3(2=+??=A 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 解:(1)A(0)=100;A(1)=100+10×1=110;A(2)=120;A(3)=130;A(4)=140;A(5)=150 ; ; 。 (2)A(0)=100;;;;; 。 ; ; 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 解:单利条件下: 得; 则投资800元在5年后的积累值:; 在复利条件下: 得 则投资800元在5年后的积累值:。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率

为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 解: 得元。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 解:(1) 元 (2) 得 10000元在第3年年末的积累值为: 元 6.设m >1,按从大到小的次序排列,,,与。 解:,所以,。 ,在的条件下可得。 ,在的条件下可得 。 对其求一阶导数得得 对其求一阶导数,同理得。 由于,所以,同理可得。 综上得: 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。 解:元 8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 解:注意利用如下关系:则 则根据上述关系可得:

精算数学读书笔记

精算数学读书笔记 ————数学班 王秋阳 09080124 摘要:利用生命函数,以预定利率和预定死亡率为基础计算定期寿险、终身寿险、延期寿险、生存保险、两全保险的精算现值。 关键字:生命函数、剩余寿命、生命表、精算现值、定期寿险、终身寿险、延期寿险、生存保险、两全保险 一、生命函数 1、初生婴儿未来寿命X 的分布函数()()Pr F x X x =≤ 0x ≥ 生存函数()()Pr S x X x =≥ 初生婴儿在x 至z 之间死亡的概率()()()Pr x X z S x S z <≤=- 3、剩余寿命F (x ):分布函数Pr(())()()()() t x q T X t pr x X x t X x s x s x t s x =≤=<≤+>-+= 生存函数 Pr(())Pr()() () t x p T x t X x t X t s x t s x =>=>+>+= :x 岁的人至少能活到x+1岁的概率 :x 岁的人将在1年内去世的概率 :x 岁的人将在x+t 岁至x+t+u 岁之间去世的概率 整值剩余寿命T(x):(), ()1,0,1,K X k k T x k k =≤<+= 概率函数 ()()()()1 1Pr(())Pr(()1) Pr 1Pr k x k x k x k x k x x k x k K X k k T x k T x k T x k q q p p p q q +++==≤<+=≤+-≤= -=-=?= 死力()() ln[()]()() x s x f x s x s x s x μ''=- ==- 死力与生存函数的关系 0()exp{} exp{} x s x t t x s x s x ds p ds μμ+=-=-?? 死力与密度函数的关系()()}0 exp x x x s f x s x ds μμμ?=?=?-??? x p x q x t u q

保险精算试卷及答案

保险精算试卷 1. A.104 B.105 C.106 D.107 E.108 2. (A) 77,100 (B) 80,700 (C) 82,700 (D) 85,900 (E) 88,000 3.Lucky Tom finds coins on his way to work at a Poisson rate of 0.5 coins per minute. The denominations are randomly distributed: (i) 60% of the coins are worth 1; (ii) 20% of the coins are worth 5; (iii) 20% of the coins are worth 10. Calculate the variance of the value of the coins Tom finds during his one-hour walk to work. (A) 379 (B) 487 (C) 566 (D) 670 (E) 768 game. If 4.A coach can give two ty pes of training, “ light” or “heavy,” to his sports team before a the team wins the prior game, the next training is equally likely to be light or heavy. But, if the team loses the prior game, the next training is always heavy. The probability that the team will win the game is 0.4 after light training and 0.8 after heavy training. Calculate the long run proportion of time that the coach will give heavy training to the team.

保险精算习题及答案

第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 800元在28%i =,第3为 t (t=0),i 积累; 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 1.证明() n m m n v v i a a -=-。

2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。 4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。 5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10 1 2 v = ,计算K 。 6. 化简() 1020101a v v ++ ,并解释该式意义。 5 。 n 年每年,那么v=( 2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。 3. 已知800.07q =,803129d =,求81l 。 4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 5. 如果221100x x x μ= ++-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。 A.2073.92 B.2081.61 C.2356.74 D.2107.56

保险精算练习题

1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。(2)在年利率8%的复利下,求1994年5月1日的存款额。解:(1)5000×(1+4×10%)=7000(元) (2)5000×(1+10%)4.33=7556.8(元) 2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。 解:5000(1+8%)5×(1+11%)5=12385(元) 3.李美1994年1月1日在银行帐户上有10000元存款。(1)求在复利11%下1990年1月1日的现值。(2)在11%的折现率下计算1990年1月1日的现值。 解:(1)10000×(1+11%)-4=5934.51(元) (2)10000×(1-11%)4=6274.22(元) 4.假设1000元在半年后成为1200元,求 ⑴)2(i,⑵ i, ⑶)3(d。 解:⑴ 1200 ) 2 1( 1000 )2( = + ? i ;所以4.0 )2(== i ⑵ 2 )2( ) 2 1( 1 i i+ = +;所以44.0=i ⑶ n n m m n d d i m i - -- = - = + = +) 1( ) 1( 1 ) 1( ) ( 1 ) ( ; 所以, 1 3 )3( ) 1( ) 3 1(- + = -i d ; 34335 .0 )3(= d

5.当1>n 时,证明:i i d d n n <<<<) () (δ。 证明:①) (n d d < 因 为 , Λ +?-?+?-?=-=-3) (3 2)(2)(10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d -> 所以得到,) (n d d <; ② δ<)(n d )1() (m n e m d δ- -=;m m C m C m C m e n n n m δ δ δ δ δ δ - >-?+?-?+- =- 1)()()(14 43 32 2 Λ 所以,δ δ =- -<)]1(1[) (m m d n ③) (n i <δ i n i n n +=+1]1[)(, 即,δ =+=+?)1ln()1ln() (i n i n n 所以, )1()(-?=n n e n i δ m m C m C m C m e n n n n δ δ δ δ δ δ +>+?+?+?++ =1)()()(14 43 32 2 Λ δ δ =-+>]1)1[() (n n i n ④ i i n <) ( i n i n n +=+1]1[) (,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+?+?+?=+Λ

保险精算李秀芳章习题答案

第一章生命表 1.给出生存函数() 2 2500 x s x e- =,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 2.已知生存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr[5<T(60)≤6]=0.1895,Pr[T(60)>5]=0.92094,求q 65 。 4.已知Pr[T(30)>40]=0.70740,Pr[T(30)≤30]=0.13214,求 10p 60 Pr[T(30)>40]=40P30=S(70)/S(30)=0.7074 S(70)=0.70740×S(30) Pr[T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴ 10p 60= S(70)/S(60)=0.70740/0.86786=0.81511 5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q . 612 P =(1-q 61)(1-q 62)=0.96334 60|2q =612P .q 62=0.01937 10. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 13.设01000l =,1990l =,2980l =,…,9910l =,1000l =,求:1)人在70岁至80岁之间死亡的概率;2)30岁的人在70岁至80岁之间死亡的概率;3)30岁的人的取整平均余命。 18. 19.

精算数学课程教学内容与教学方法的

摘要精算数学是保险精算学的基础,结合课程教学中的实践与体会,以精算师考试科目为基础的教学内容提取,以“实际问题→教学内容→实际问题”的循环教学模式,探讨了精算数学课程的教学内容与教学方法的改革及实践。 关键词精算数学教学内容教学模式 Exploration of the Content and Method of the Actuarial Mathematics Class Teaching//Huang Shunlin Abstract Actuarial mathematics is the basis of actuarial sci-https://www.360docs.net/doc/d83633609.html,bining with the practice and experience of teaching, we explore the reform and practice of the content and teaching methods of the actuarial mathematics courses.We extract the contents from actuary examination subjects,and take the cycle teaching mode of"practical problems-teaching content-prac-tical problems". Key words actuarial mathematics;teaching content;teaching mode Author's address School of Applied Mathematics,Nanjing U-niversity of Finance and Economics,210023,Nanjing,Jiangsu, China 1引言 精算是以概率论和数理统计为基础,估计和分析未来不确定事件产生的影响,特别是对于财务的影响。精算数学作为精算教育和精算师资格考试的一门非常重要的基础课程,能为学生在理论学习方面以及应用精算知识解决实践问题方面打下良好的基础,也能进一步培养学生的逻辑思维能力和提高实际解决问题的能力。 随着课程体系的改革和深化,作为与经济领域相结合的应用型数学系学生来说,精算数学课程传统的教学内容及教学方法已不能适应现代教育的要求。目前精算数学教学中存在的问题大体在两个方面。首先,以前课程只对保险精算学的某一具体内容进行讲解,但保险精算学的很多内容都涉及到数学知识,如利息理论、寿险精算数学、非寿险精算数学、生命表等。其次,传统的精算数学通常用数学的方式表示,一般从概率统计的基本原理出发,研究风险事件各方面的概率统计性质,在此基础上研究保费和准备金的计算及其数学意义。但从实践上看,精算数学是一门非常实用的学科,它直接运用于寿险和非寿险产品的开发、定价、负债评估、资产负债管理、偿付能力评估、利润分析等各个方面。因此,只有把精算学的基础理论与实践紧密结合起来,才能真正把握精算学的实质内容,否则,精算数学仅仅成为抽象的数学,很难理解其数学背后的实践意义,也就很难运用与实践,解决实际中的问题。 基于以上教学中出现的现象,在培养学生“宽口径、厚基础”的思想指导下,本文把精算数学的数学理论和保险实践结合起来,既包括精算数学的基础理论,又包括在精算实务中的具体运用和特殊处理。并且以中国精算师考试指定的相关科目教材为基础,对各精算科目涉及到的精算数学内容做恰当的提取,并重新组织安排教授给学生,以使学生能了解以及掌握精算数学在这些方向上的基本应用,并让参加中国精算师考试的学生对精算考试体系有直接的了解。 2精算数学课程教学内容的安排 由于精算学的很多方面都涉及到数学知识,所以课程以中国精算师考试指定的相关科目教材为基础,具体包括:徐景峰的《金融数学》、肖争艳的《精算模型》、张连增的《寿险精算》、韩天雄的《非寿险精算》等,然后根据应用数学系学生的数学基础扎实的特点,对各精算科目涉及到的精算数学内容做恰当的提取,并重新组织安排讲授给学生,以使学生能了解以及掌握精算数学在这些方向上的基本应用,并让参加中国精算师考试的学生对精算考试体系有直接的了解。 其中,金融数学部分,主要介绍利息理论的初步知识,如:利息的基本概念、利息的度量、贴现率、年金的概念、年金的种类、各类等额年金的初值和积累值的计算、简单变额年金的相关计算等。精算模型部分,主要介绍生命表理论的基本函数、死力的概念及常见的死力参数模型、生命表的构造原理、常用符号、生命表的种类等,并且介绍效用理论与保险定价、短期个别风险模型、短期聚合风险模型、长期聚合风险模型及破产概率。寿险精算数学部分,主要介绍寿险产品种类、净保费厘定原理、主要险种趸缴净保费的厘定方法、主要险种年缴均衡净保费的厘定、生存年金净保费的确定等。非寿险精算部分,主要介绍无赔款优待模型及其应用。 把教学中总结整合的教学内容贯穿到教授模式和脉络中,特别是结合近几年国际国内精算师考试的内容,融入不断更新的知识和有代表性的实证分析案例,希望让参加精算师考试的学生对精算考试体系有直接的了解,并能帮助学生提高学习研究能力及考试成绩。 中图分类号:O29-42文献标识码:A文章编号:1672-7894(2012)30-0088-02 (下转第95页)88

保险精算练习题

保险精算练习题

————————————————————————————————作者: ————————————————————————————————日期:

4.假设1000元在半年后成为1200元,求 ⑴ )2(i ,⑵ i, ⑶ )3(d 。 解:⑴ 1200)2 1(1000) 2(=+?i ;所以4.0)2(==i ⑵2 )2()2 1(1i i +=+;所以44.0=i ⑶n n m m n d d i m i ---=-=+=+)1()1(1)1() (1)(; 所以, 13)3()1()3 1(-+=-i d ;34335.0)3(=d 5.当1>n 时,证明: i i d d n n <<<<) () (δ。 证明:①) (n d d < 因为, +?-?+?-?=-=-3)(3 2)(2) (10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d ->所以得 到,) (n d d <; ② δ<)(n d )1() (m n e m d δ - -=;m m C m C m C m e n n n m δ δ δ δ δ δ - >-?+?-?+- =- 1)()()(14 43 32 2 所以, δ δ =- -<)]1(1[) (m m d n ③ )(n i <δ i n i n n +=+1]1[)(, 即,δ=+=+?)1ln()1ln()(i n i n n 所以, )1()(-?=n n e n i δ m m C m C m C m e n n n n δ δ δ δ δ δ + >+?+?+?++ =1)( )( )( 144 33 22 δ δ =-+>]1)1[()(n n i n ④ i i n <)( i n i n n +=+1]1[) (,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+?+?+?=+

相关文档
最新文档