推挽式开关电源变压器参数的计算【最新版】

推挽式开关电源变压器参数的计算【最新版】
推挽式开关电源变压器参数的计算【最新版】

推挽式开关电源变压器参数的计算

推挽式开关电源使用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。

1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算

由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。

推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,

这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。

推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm 变化到正的最大值+Bm。

关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。

根据(1-95)式:

(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui 为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ= Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激

输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。

1-8-1-4-2.推挽式开关电源变压器初、次级线圈匝数比的计算

A)交流输出推挽式开关电源变压器初、次级线圈匝数比的计算

推挽式开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流输出,或把交流整流成直流后再逆变成交流输出,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。

用于逆变的推挽式开关电源一般输出电压都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得推挽式开关电源变压器初、次级线圈匝数比。

根据前面分析,推挽式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。因此,根据(1-128)、(1-129)、(1-131)其中一式就可以出推挽式变压器开关电源的输出电压的半波平均值。由此求得逆变式推挽开关电源变压器初、次级线圈匝数比:

n=N3/N1 =Uo/Ui =Upa/Ui --变压比,D为0.5时(1-152)

(1-152)式就是计算逆变式推挽开关电源变压器初、次级

线圈匝数比的公式。式中,N1为开关变压器初级线圈两个绕组其中一个的匝数,N3为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。

(1-152)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-152)式的右边乘以一个略大于1的系数。

B)直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比的计算

直流输出电压非调整式推挽开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。这种直流输出电压非调整式推挽开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比可直接利用(1-152)式来计算。即:

n=N3/N1 =Uo/Ui =Upa/Ui --次/初级变压比,D为0.5时(1-152)

不过,在低电压、大电流输出时,一定要考虑整流二极管的电压降。

C)直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的计算

直流输出电压可调整式推挽开关电源的功能就要求输出电压可调,因此,推挽式变压器开关电源的两个控制开关K1、K2的占空比必须要小于0.5;因为推挽式变压器开关电源正反激两种状态都有电压输出,所以在同样输出电压(平均值)的情况下,两个控制开关K1、K2的占空比相当于要小一倍。当要求输出电压可调范围为最大时,占空比最好取值为0.25。根据(1-140)和(1-145)式可求得:

(1-153)和(1-154)式就是计算直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为变压器初级线圈N1或N2绕组的匝数,N3为变压器次级线圈的匝数,Uo直流输出电压,Ui为直流输入电压。

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

推挽式变压器设计

推挽式变压器设计 前言 推挽式变压器的设计分为AP法和KG法两种设计方法,这两种设计方法都是以几何参数进行设计,主要区别在于,KG 法是AP的基础上考虑了电压调整率,即加入电压调整率参数。下面是两种方法设计流程: 第一:计算视在功率: PT=Po(1+1/G)1.414 式中的PT 是视在功率,Po是输出功率,G是变压器的能量传递效率, 第二:计算KE: KE=0.145Kf^2Fs^2Bw^2 x 10^-4 式中Kf是波形因素,方波为4,正弦波为4.44,Fs是开关频率,Bw磁通密度。 第三:计算KG: KG=PT/2aKe 式中a 是电压调整率 磁环KG用以下公式进行计算: KG=Ae^2AwKo/MLT 式中的Ae是芯的有限面积,Aw 是芯环的有限面积,MLT

是每匝线圈的长度。 第四:根据KG值选择磁环的大小。 第五:计算AP:如果是KG法设计变压器,不用这一步。 AP=(PT x 10^4/KoKfFsBWKj)^1/1+x 式中Ko是变压器窗口使用系数。Kj是电流密度比例系数,X 是磁芯类型常数 第六:根据AP值选技磁环的大小,如果是使用KG法,不用这一步。 第七:计算原边线圈数: NP=Vs x 10^4/KfFsBWAe 式中的NP为原边线圈数,Vs是最小输入电压。 第八:计算原边峰值电流 Ip=Po/VsG 第九:计算电流密度: J=PT x 10 ^4/KoKfFsBwAp 第十:计算原边线圈的线经: Axp=Ip/J 如果是全波整流Ip需要按0.707进行折算。公式如下: Axp=0.707Ip/J 第十一:根据Axp值选择导线规格: 第十二:计算原边线圈阻值:

开关电源变压器设计

开关电源变压器设计 1. 前言 2. 变压器设计原则 3. 系统输入规格 4. 变压器设计步骤 4.1选择开关管和输出整流二极管 4.2计算变压器匝比 4.3确定最低输入电压和最大占空比 4.4反激变换器的工作过程分析 4.5计算初级临界电流均值和峰值 4.6计算变压器初级电感量 4.7选择变压器磁芯 4.8计算变压器初级匝数、次级匝数和气隙长度 4.9满载时峰值电流 4.10 最大工作磁芯密度Bmax 4.11 计算变压器初级电流、副边电流的有效值 4.12 计算原边绕组、副边绕组的线径,估算窗口占有率 4.13 计算绕组的铜损 4.14 变压器绕线结构及工艺 5. 实例设计—12WFlyback变压器设计 1. 前言 ◆反激变换器优点: 电路结构简单 成本低廉 容易得到多路输出 应用广泛,比较适合100W以下的小功率电源 ◆设计难点 变压器的工作模式随着输入电压及负载的变化而变化 低输入电压,满载条件下变压器工作在连续电流模式( CCM ) 高输入电压,轻载条件下变压器工作在非连续电流模式( DCM ) 2. 变压器设计原则 ◆温升 安规对变压器温升有严格的规定。Class A的绝对温度不超过90°C; Class B不能超过110°C。因此,温升在规定范围内,是我们设计变压器必须遵循的准则。 ◆成本

开关电源设计中,成本是主要的考虑因素,而变压器又是电源系统的重要组成部分,因此如何将变压器的价格,体积和品质最优化,是开关电源设计者努力的方向。 3. 系统输入规格 输入电压:Vacmin~ Vacmax 输入频率:f L 输出电压:V o 输出电流:I o 工作频率:f S 输出功率:P o 预估效率:η 最大温升:40℃ 4.0变压器设计步骤 4.1选择开关管和输出整流二极管 开关管MOSFET:耐压值为V mos 输出二极管:肖特基二极管 最大反向电压V D 正向导通压降为V F 4.2计算变压器匝比 考虑开关器件电压应力的余量(Typ.=20%) 开关ON:0.8·V D > V in max / N+V o 开关OFF :0.8·V MOS > N·(V o+V F) + V in max 匝比:N min < N < N max 4.3确定最低输入电压和最大占空比

变压器匝数计算怎么算

变压器初、次线匝数,与其输入输出电压及输出功率有关,功率大小又与硅钢片截面积有关。 第一种: 常用小型变压器每伏匝数计算公式为:N=10000/ 这里:N—每伏匝数,F—交流电频率(我国为50HZ),B—磁通密度,S——铁芯截面积 磁通密度一般因材料而异,常见的硅钢片取左右. 根据此公式,你量一下变压器磁芯尺寸,计算出截面积,就可推算出每伏匝数。知道每伏匝数后,即可方便计算出初、次线匝数了。 例如:量得一小型变器中间舌宽为2CM,叠厚为3CM,则基截面为:2*3=6(CM^2) 如用H23片,取B值为。则计算每伏匝数为: N=10000/*50**6=(匝/伏) 如果初线接220V电源,则初线匝数=220*=(匝)取1179即可。设次级输出电源为12V,则12*=,取64匝即可,你如果是自己维修绕制,还需根据功率和电压再计算出线经大小。 第二种: 只要知道铁芯中柱的截面积、导磁率即可以计算匝数,知道功率就能计算线径。

例题: 变压器初级电压220V,次级电压12V,功率为100W,求初、次级匝数及线径。 选择变压器铁芯横截面积: S=×根号P=×根号100=×10≈13(平方CM), EI形铁芯中间柱宽为3CM,叠厚为,即3× 求每伏匝数:N=×100000/B×S B=硅钢片导磁率,中小型变压器导磁率在6000~12000高斯间选取,现今的硅钢片的导磁率一般在10000高斯付近,取10000高斯。 公式简化:N=×100000/10000×S=45/S N=45/13≈(匝) 初、次级匝数: N1=220×=770(匝) N2=12×=42(匝) 在计算次级线圈时,考虑到变压器的漏感及线圈的铜阻,故须增加5%的余量。 N2=42×≈44(匝) 求初、次级电流: I1=P/U=100/220≈(A) I2=P/U=100/12≈(A) 求导线直径:(δ是电流密度,一般标准线规为每M

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算 作者:陶显芳发布时间:2011-07-04文章来源:华强北·电子市场价格指数浏览量:50466 下面是开关电源设计务必掌握的知识 1、开关电源占空比的选择与计算 2、开关变压器初次级线圈匝数比的计算 希望从事开关电源设计的工程师对此感兴趣 概述:占空比是脉冲宽度调制(PWM)开关电源的调制度,开关电源的稳压功能就是通过自动改变占空比来实现的,开关电源的输出电压与占空比成正比,开关电源输出电压的变化范围基本上就是占空比的变化范围。由于开关电源输出电压的变化范围受到电源开关管击穿电压的限制,因此,正确选择占空比的变化范围是决定开关电源是否可靠工作的重要因素;而占空比的选择主要与开关电源变压器初、次级线圈的匝数比有关,因此,正确选择开关电源变压器初、次级线圈的匝数比也是一个非常重要的因素。 开关电源占空比和开关电源变压器初、次级线圈的匝数比的正确选择涉及到对开关电源变压器初、次级线圈感应电动势的计算。因此,下面我们先从分析开关电源变压器初、次级线圈感应电动势开始。 1.1占空比的定义 占空比一般是指,在开关电源中,开关管导通的时间与工作周期之比,即: (1)式中:D为占空比,Ton为开关管导通的时间,Toff为开关管关断的时间,T为开关电源的工作周期。 对于一个脉冲波形也可以用占空比来表示,如图1所示。 在反激式开关电源中,开关管导通的时候,变压器次级线圈是没有功率输出的,如果把(1)中的D记为D1,(2)式中的D记为D2,则D1、D2有下面关系: 1.2开关变压器初次级线圈的输出波形

图2a是输出电压为交流的开关电源工作原理图。为了便于分析,我们假说变压器初次级线圈的变压比为1:1(即N1=N2,L1=L2),当开关K又导通转断开时,变压器初级、次 级线圈产生感应电动势为: (6)式中:为变压器初级线圈的励磁电流,由此可知,变压器初、次级线圈产生 的反电动势主要是由励磁电流产生的。我们从(5)可以看出,当变压器初、次级线圈的负载电阻R很大或者开路的情况下,变压器初、次级线圈产生的感应电动势峰值是非常高的,如果这个电压直接加到电源开关管两端,电源开关管一定会被击穿。 为了便于分析,我们引进一个半波平均值的概念,我们把Upa、Upa-分别定义为变压器初、次级线圈感应电动势正、负半周的半波平均值。半波平均值就是把反电动势等效成一 个幅度等于Upa或Upa-的方波,如图2b中的Upa-所示。

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

EE型变压器参数及高频变压器计算

我们知道,与一般的电流电压测量不同,磁场强度和磁感应强度的测量都是间接测量。磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。 在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,这是严格按照标准执行的计算方法。

第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,并可推算叠片系数Sx,这是另外一种计算方法,与标准有点差别,但计算结果与标准比较接近。 第三种情况:指定材料密度De和样品质量W,指定样品的外径A和内径B,不指定样品的高度。 不按SJ/T10281标准求磁芯常数,而是按平常的数学公式来求Le和Ae。这种计算方法与标准相差较大,只有环形样品才有这种计算方法。

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

变压器的计算公式

一、按变压器的效率最高时的负荷率βM来计算变压器容量 当建筑物的计算负荷确定后,配电变压器的总装机容量为: S=Pjs/βb×cosφ2(KVA) (1) 式中Pjs ——建筑物的有功计算负荷KW; cosφ2——补偿后的平均功率因数,不小于0.9; βb——变压器的负荷率。 因此,变压器容量的最终确定就在于选定变压器的负荷率βb。 我们知道,当变压器的负荷率为: βb=βM=Po/PKH (2) 时效率最高 式中Po——变压器的空载损耗; PKH ——变压器的短路损耗。 然而高层建筑中设备用房多设于地下层,为满足消防的要求,配电变压器一般选 用干式或环氧树脂浇注变压器,表一为国产SGL型电力变压器最佳负荷率。 表国产SGL型电力变压器最佳负荷率βm 容量(千伏安) 500 630 800 1000 1250 1600 空载损耗(瓦) 1850 2100 2400 2800 3350 3950 负载损耗(瓦) 4850 5650 7500 9200 11000 13300 损失比α2:2.62 2.69 3.13 3.20 3.28 3.37 最佳负荷率βm% 61.8 61.0 56.6 55.2 55.2 54.5 技术文章选择变压器容量的简便方法: 我们在平时选用配电变压器时,如果把变压器容量选择过大,就会形成“大马拉小车”的现象。这不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与过负荷状态,易烧毁变压器。因此,正确选择变压器容量是电网降损节能的重要措施之一,在实际应用中,我们可以根据以下的简便方法来选择变压器容量。高频变压器 变压器容量本着“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。

变压器经典计算

1. 反激式开关电源电路 2. 开关变压器功能 a. 磁能转换(能量储存) b. 绝缘 c. 电压转换 3. 工作流程 a. 根据PWM(脉宽调制法)控制,当晶体管(例功率MOSFET)打开时电流流过变压器初级绕组,这时变压器储存能量(在磁心GAP),与此同时,因为初级绕组和次级绕组极性不同,整流二极管断开时电流流过次级绕组; b. 因为次级绕组极性是不同于初级绕组,当晶体管关闭(例功率MOSFET)时存储的能量将被释放(从磁心GAP). 同时整流管也打开.所以,电流将流过开关电源变压器的次级绕组; c. 反馈绕组提供PWM工作电压(控制), 所以反馈绕组的圈数是依照PWM 的工作电压来计算;例如, UC3842B(PWM)工作电压是10-16Vdc ,你必须是依照这个电压计算反馈圈数,否则UC3842B(PWM)将不能正常工作!一般, UC3842B(PWM)损坏时,反馈电压是超过30Vdc. 4. 主要参数对整个路的影响 a. 电感:如果初级电感太低,变压器将储存的能量少,使输出电压不连续;如果次级电感也低,变压器的能量将不能完全释放,所以,输出电压将是非常低;这时PWM将不能正常工作.此时反馈绕组的电感也是过低或过高, b. 漏电感: 如果漏电感太高,它将产生一个高的尖峰电压在初级绕组. 它是非常的危险.因为高的尖峰电压可以损坏晶体管!另一方面,漏电感将影响开关电源变压器对电磁干扰的测试,它对整个电流将产生更多的噪音;所以开关变压器要求低漏电感. c. 绝缘强度:因为初级地是不同次级地;它有一个高电压在初级与次级之间,所以,它有很好的绝缘! 一。基本设计条件 1. 输入85-264V ac /输出5Vdc 2A 2. 最大工作比40% (晶体管关闭和打开的时间比率) 3. 工作频率75kHz 4. 温度等级: class B 二。基本的设计步骤 1.变压器尺寸 Ae*Ap=PB*102/2f*B*j*?*K Ae---- 有效截面积 Ap---- 磁芯绕线面积 PB ---- 输出功率 f ----- 工作频率 B ----- 有效饱和磁通 j ----- 电流密度 ? ----- 变压器效率 K ----- 骨架绕线系数 Ae*Ap=2(5.0+0.7)*102/2*75*103*0.17*2.5*0.8*0.2

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

变压器损耗的计算公式及方法

变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗, 实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1 、变压器损耗计算公式 ⑴有功损耗:△ P=PO+KT B 2PK --------- ⑴ ⑵无功损耗:△ Q=QO+K"T 2QK——(2) ⑶综合功率损耗:△ PZ=A P+KQX Q ----(3) QO IO%SN Q? UK%SN 式中:Q0 ----- 空载无功损耗(kvar) P0――空载损耗(kW) PK额定负载损耗(kW) SN变压器额定容量(kVA) 10%――变压器空载电流百分比。 UK%短路电压百分比 3 ――平均负载系数 KT――负载波动损耗系数 QK额定负载漏磁功率(kvar) KQ无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; ⑵对城市电网和工业企业电网的6kV?10kV降压变压器取系统最小负荷时,其无功当量 KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取3 =20%;对于工业企业,实行三班制,可取 3 =75%; ⑷变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK 10%、UK%见产品资料所示。 2、变压器损耗的特征 P0――空载损耗,主要是铁损,包括磁滞损耗和涡流损耗;

磁滞损耗与频率成正比; 与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 P 负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而 变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组 外的金属部分产生杂散损耗。 变压器的全损耗△ P=PO+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ △ P),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计 算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)x供电时间(小时) 配变的空载损耗(铁损),由附表查得,供电时间为变压器的实际运行时间,按以下原则确定: (1)对连续供电的用户,全月按720 小时计算。 (2)由于电网原因间断供电或限电拉路,按变电站向用户实际供电小时数计算,不得以难计算为由,仍按全月运行计算,变压器停电后,自坠熔丝管交供电站的时间,在计算铁损时应予扣除。 (3)变压器低压侧装有积时钟的用户,按积时钟累计的供电时间计算。 2、铜损电量的计算:当负载率为40%及以下时,按全月用电量(以电能表读数)的2%计收,计算公式:铜损电量(千瓦时)=月用电量(千瓦时)X 2% 因为铜损与负荷电流(电量)大小有关,当配变的月平均负载率超过40%时,铜损电量应按月用电量的3%计收。负载率为40%时的月用电量,由附表查的。负载率的计算公式为:负载率=抄见电量/ 式中:S――配变的额定容量(千伏安);T ――全月日历时间、取720小时; COSZ――功率因数,取0.80。 电力变压器的变损可分为铜损和铁损。铜损一般在0.5%。铁损一般在5~7%。干式变压器的变损比油侵式要小。合计变损:0.5+6=6.5 计算方法:1000KVA X 6.5%=65KVA 65KV/X 24 小时X 365 天=568400KWT度) 变压器上的标牌都有具体的数据。 变压器空载损耗空载损耗指变压器二次侧开路,一次侧加额率与额定电压的正弦波电压时变压器所吸取的功率。一般

推挽式开关电源的变压器参数计算

推挽式开关电源的变压器参数计算 用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。 1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算 由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。 推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。 推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。 关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。 根据(1-95)式:

(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。 1-8-1-4-2.推挽式开关电源变压器初、次级线圈匝数比的计算 A)交流输出推挽式开关电源变压器初、次级线圈匝数比的计算 推挽式开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流输出,或把交流整流成直流后再逆变成交流输出,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。 用于逆变的推挽式开关电源一般输出电压都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得推挽式开关电源变压器初、次级线圈匝数比。 根据前面分析,推挽式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。因此,根据(1-128)、(1-129)、(1-131)其中一式就可以出推挽式变压器开关电源的输出电压的半波平均值。由此求得逆变式推挽开关电源变压器初、次级线圈匝数比: n=N3/N1 =Uo/Ui =Upa/Ui ——变压比,D为0.5时(1-152) (1-152)式就是计算逆变式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为开关变压器初级线圈两个绕组其中一个的匝数,N3为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。 (1-152)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-152)式的右边乘以一个略大于1的系数。 B)直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比的计算 直流输出电压非调整式推挽开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。这种直流输出电压非调整式推挽开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比可直接利用(1-152)式来计算。即: n=N3/N1 =Uo/Ui =Upa/Ui ——次/初级变压比,D为0.5时(1-152) 不过,在低电压、大电流输出时,一定要考虑整流二极管的电压降。 C)直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的计算

变压器参数含义

变压器参数含义 1 额定容量Se:指变压器在出厂时铭牌标定的额定电压、额定电流下连续运行时能输送的容量,单位kVA。其计算公式为: 三相变压器Se= 单相变压器量Se=UeIe 。 2、额定电压Ue:指变压器长时间运行时所能承受的工作电压(铭牌上的Ue值,是指调压分接开关在中间分头时的额定电压);单位为kV。 3、额定电流Ie:在额定容量Se和允许温升条件下,允许长期通过的工作电流,单位为A。 4、短路电压Ud%:也称阻抗电压(UK%),将变压器的二次绕组短路,一次侧施加电压,至额定电流值时,原边的电压和额定电压Ue之比的百分数。即:Ud%=Ud/Ue:100% 变压器的并列运行要求Ud%值相同,当变压器二次侧短咱时,Ud%值将决定短路电流大小,所以是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。 5、空载电流I。当变压器在一次侧额定电压下,二次侧绕组空载时,在一次绕组中通过的电流,称空载电流。它起变压器的激磁作用,故又称激磁电流;一般以其占额定电流的百分数表示。空载电流的大小决定于变压器容量、磁路结构和硅钢片质量等。 6、空载损耗(铁损)ΔP0:指变压器二次侧开路,一次侧加额定电压时,变压器的损耗。它等于变压器铁芯的涡流损耗和激磁损耗,是变压器的重要性能指标。 7、短路损耗(铜损)ΔPd:变压器的铁损包括两个方面。一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。另一是涡流损耗,当变压器工作时。铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗。 8、铜损是指变压器线圈电阻所引起的损耗。当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗。由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损。 9、电压比:变压器两组线圈圈数分别为N1 和N2 ,N1 为初级,N2 为次级。在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势。当N2>N1 时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器。

变压器功率计算方法

0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推

相关文档
最新文档