高电压技术复习资料1

高电压技术复习资料1
高电压技术复习资料1

1.气体放电的汤森德机理与流注机理的主要区别及各自的适用范围?

答:汤森德机理认为电子的碰撞电离和正离子撞击引领科技早就成的表面的电离对自持放电起主要作用;流注机理认为电子的撞击电离和空间光电离是自持放电的主要因素。

汤森德理论只适用于均匀电场和鸭s<0.26的情况,流注理论适用于鸭s>0.26的情况。2、帕邢定律:在均匀电场中,击穿电压Ub与气体相对密度、极间距离S并不具有单独的函数关系,而是仅与它们的积有关系,只要?S的乘积不变,Ub也就不变。帕邢定律和汤森德理论相互支持。

3、汤森德理论的不足:汤森德放电理论是在气压较低,S值较小的条件下,进行放电试验的基础上建立起来的,只在一定的S范围内反映实际情况,在空气中,当S>0.26cm时,放电理论就不能用该理论来说明了。原因是:①汤森德理论没有考虑电离出来的空间电荷会使电场畸变,从而对放电过程产生影响。②汤森德理论没有考虑光子在放电过程中的作用。

4、气体中电晕放电的几种效应:①声,光,热等效应②在尖端或电极某些突出处形成电风

③产生对无线电有干扰的高次谐波④产生某些化学反应⑤产生人可以听到的噪声⑥产生能量损耗

5、滑闪放电现象:在分界面气隙场强法线分量较强的情况下,当电压升高到超过某临界值时,放电的性质发生变化,其中某些细线的长度迅速增长,并转变为较明亮的浅紫色的树枝状火花。这种树枝状火花具有较强的不稳定性,不断地改变放电通道的路径,并有轻的爆裂声。

6、大气条件对气隙击穿电压的影响:气隙的击穿电压随着大气密度或大气中湿度的增加而升高,大气条件对外绝缘的沿面闪络电压也有类似的影响。

7、提高气隙击穿电压的方法及原理?

答:①改善电场分布。原理:气隙电场分布越均匀,气隙的击穿电压就越高,适当的改进电极形状,增大电极的曲率半径,改善电场分布,就能提高气隙的击穿电压和预放电电压。②采用高度真空。原理:采用高度真空,削弱气隙中撞击电离过程,提高气隙的击穿电压。③增高气压。原理:增高气体的压强可以减小电子的平均自由程,阻碍撞击电离的发展,提高气隙的击穿电压。④采用高耐电强度气体。原理:SF6,CCL2F2,CCL4等气体耐电强度比空气高得多,采用这类气体或在其他气体总混入一定比例的这类气体,可以大大提高气隙的击穿电压。

8、SF6为何可以作为高压绝缘气体?

答:从SF6的物理化学特性知,SF6稳定性高,要使SF6分子电离,不仅要供给电离能,而且还要供给离解能,绝缘性好。SF6气体密度大,电子在其中的自由程小,不易从电场积累足够的动能,减小了电子撞击电离的概率。从而在SF6气体中,单个电子崩中带电粒子的分布与在空气中有很大不同,不利于流注的发展,从而使击穿场强提高。

9.为什么绝缘子采用附加金具?设计时应考虑哪些问题?

答:采用附加金具可以有效的调整该结点附近的电场,改善该结点附近气隙放电和沿面放电的性能。设计保护金具时应考虑本身的几何形状,结构尺寸,各部件在联接点与绝缘子链,分裂导线,链端接金具相互位置配合等问题。

10、固体电介质老化的原因和种类?

答:老化原因:电气设备的绝缘材料在运行过程中,由于物理因素如电、热、光、机械力、高能辐射等;化学因素如氧气、臭氧、盐雾、酸、碱、潮湿等;生物因素如微生物、霉菌等,会发生一系列不可逆的变化,从而导致其物理,化学,电和机械等性能的劣化。

种类:①固体介质的环境老化②固体介质的电老化:电离性老化,电导性老化,电解性老化

③固体介质的热老化。

11、输电线路的防雷措施?

答:①架设避雷线②降低杆塔接地电阻③架设耦合地线④采用不平衡接线方式⑤装设自动重合闸⑥采用消弧线圈接地方式⑦装设管型避雷器⑧加强绝缘

12、局部放电对固体介质老化的影响?

答:高压电气装置的某些部分,常会存在不同程度的电晕或局部放电,这里附近大气中的臭氧含量就可能较多。臭氧与某些绝缘物相互作用,会生成氧化物或过氧化物,导致主键的断裂,造成老化。

13、液体电介质的老化机理?

答:新油在与空气接触的过程中逐渐吸收氧气,初期吸收的氧气将与油中的不饱和碳氢化合物起化学反风,形成饱和的化合物,这段时期称为A期此后油再吸收氧气,就生成稳定的油的氧化物和低分子量的有机酸这段时期称为B期此后油再进进一步氧化,油中酸性产物的浓度达一定程度时,便产生加聚和缩聚作用,生成中性的高分子树脂质及沥青质,使油呈混浊的胶凝状态,最后成为固体的油泥沉淀。在此加聚和绵聚过程中,同时析出水分,这段时期称为C期。象:1)色逐渐深暗,从淡黄色变为棕褐色,从透明变为混油。2)粘度增大;闪燃点增高;灰分和水分增多.3)酸价增加,4)绝缘性能变坏,表现在电阻率下降,介质损耗角增大,击穿电压降低5出现沉淀物。

14、绝缘电阻测量的吸收比,极化指数?

答:令t=15s和t=60s瞬间的两个电流值I15和I60所对应的绝缘电阻分别为R15和R60则比值K=R60/R15即为吸收比,极化指数取绝缘体在加压后t=10min和t=1min时的绝缘电阻值K=R10/R1,如绝缘良好,则比值不小于某一定值(1.5-2.0)。

15、泄露电阻测量与绝缘电阻测量的不同特点?

答:1,泄漏电流和绝缘电阻的测量原理一致。2,加在试品上的直流高压比兆欧表的工作电压高得多,能发现兆欧表不能发现的某些缺陷3,由于施加在试品上的直流高压是逐渐增大的,所以可以在升压过程中监视泄漏电流的增长动向。4,兆欧表刻度的非线性度很强,尤其是在接近高量程段,刻度甚密,难以精确分辨。微安表的刻度则基本上是现行的。能够精确读取。

16、西林电桥的原理和接线

17、工频高压实验的方法,特点

答:1、测量球隙,2、静电电压表:测量有效值3,3、分压器配用低压仪表4、高压电容器配用整流装置

特点:1)一般都是单相的;需要三相时,常将3个单相变压器接成三相应用。(2)绝缘裕度很小,平时工作电压一般不允许超过其额定电压。(3)通常均为间歇工作方式,无须冷却系统。对应于不同的运行时间有不同的允许电压和电流值。(4)、一、二次绕组的电压变化高,其高压绕组由于电压高,需要较厚的绝缘层和较宽的油间隙,两绕组间的绝缘间距较大,故其漏抗较大。(5)、要求有较好的输出电压波形,为此应采用优质的铁心和较低的磁通密度。(6)、为了减少对局部放电试验的干扰,要求试验变压器自身的局部放电电压应足够高

18、行波折反射规律:A在结点A处要发生行波的折射与反射,反射电压波U1f自结点A沿线路z1返回传播,折射电压波则自结点A沿线路z2继续向前传播。B折射电压波就是线路z2上的前行电压波。C折射值永远为正,说明折射电压波U2q总是与入射电压波u1q同极性,当z2=0时,αu=0;当z2=+∞时,αu→2,因此,0≤αu≤2。D折射系数可正可负,当z2=0时,βu=-1;当z2=+∞时,βu→1,因此,-1≤βu≤1。E折射系数与反射系数存在以下关系:α=1+β。彼得孙法则:适用范围:要满足先决条件是线路Z2中没有反行波或Z2中的反行波尚未达到结点A。

19、单相变压器绕组波过程的影响?

答:①绕组中的初始电压分布不均匀,大部分电位降落在绕组首端附近,绕组首端的电位梯度最大。对于纠结式绕组其入口电容比标准值要大许多②绕组中稳态电压分布最大电位梯度出现在绕组首端,随着振荡过程的发展,最大电位梯度的出现点将向绕组深处传播,以致绕组各点将在不同时刻出现最大电位梯度,对绕组纵绝缘的保护和设计是个很重要的问题。同时在运行中,变压器绕组还可能受到截断波的作用。③改善绕组中的电位分布的方法,①采用补偿对地电容C0dx的影响的方法②采用增大纵电容K0/dxde 办法使绕组对地电容C0dx的影响相对减小。

20、保护间隙与管型避雷器的优缺点?

答:保护间隙:a优点:当雷电波入侵时,间隙先击穿,工作母线接地,避免了被保护设备上的电压升高,从而保护了设备。b缺点:过电压消失后,间隙中仍有由工作电压所产生的工频电弧电流,此电流时间隙安装处的短路电流,由于间隙的熄弧能力较差,往往不能自行熄灭,将引起断路器跳闸。

管型避雷器:a优点:具有较高熄弧能力的保护间隙。b缺点:伏秒特性较陡,且放电分散性较大;动作后工作母线之快捷接地形成截波,对变压器纵绝缘不利。

21、阀型避雷器

答:阀型避雷器分为普通型和磁吹型,其中磁吹型利用磁吹电弧来强迫熄弧,其单个间隙的熄弧能力较高,能在较高的恢复电压下切断较大的工频续流,故串联的间隙和阀片的数目都较少,保护性好;而普通型的熄弧能力完全靠间隙的自然熄弧能力,其阀片热容量有限,不能承受较长时间的内过电压冲击电流的作用,故此类避雷器不容许在内过电压下动作。

22、感应雷过电压机理?

答:当雷击线路附近大地时,由于电磁感应,在线路的导线上会产生感应过电压。在雷云放电的起始阶段,存在着向大地发展的先导放电过程,线路处于雷云与先导通道的电场中,由于静电感应,沿导线方向的电场强度分量Ex将导线两端与雷云异号的正电荷吸引到靠近先导通道的一段导线上来成为束缚电荷,导线上的负电荷则由于Ex的排斥作用而使其向两端运动,经线路的泄露电导和系统的中性点而流入到大地。因为先导通道发展的速度不大,所以导线上电荷的运动速度也很缓慢,由此而引起的导线上的电流也很小,同时由于导线对地的泄露电导的存在,导线电位将与远离雷云处的导线电位相同。当雷云对线路附近的地面放电时,先导通道中的负电荷被迅速中和,先导通道所产生的电场迅速降低,使导线上的束缚正电荷得到释放,沿导线向两侧运动形成感应雷过电压。

23、提高线路耐雷水平的方法?

答:a降低杆塔接地电阻Rch,b提高耦合系数k

措施:将单避雷线改为双避雷线,或在导线下方增设架空地线,作用主要是增强导地线间的耦合作用,同时也增加了地线的分流。

24、变电所进线保护的原因,原理,方法?

答:原因:a输电线路的绝缘水平与变电所的绝缘水平是不同的,输电线路的绝缘陡度高。定义:靠近变电站1---2Km的一段进线即为进线段。靠近变电站1---2Km的一段进线的防雷保护,即进线段保护。

作用:变电站进线段保护的作用有两个:其一限制雷电侵入波电压作用下流过避雷器的电流;其二是降低最终进入变电站雷电侵入波的波头陡度。

原理:对35~110kv无避雷线的线路在靠近变电所的一段进线上必须架设避雷线以保证雷电波只在此进线段外出现,进线段内出现雷电波的概率将大大减小。在进线段以外落雷时,由于进线段导线本身阻抗的作用使流经避雷器的雷电流受到限制,同时由于在进线段内导线上冲击电晕的影响将使入侵波陡度和幅值下降,这样就可以保证进线段以外落雷时变电所不会

发生事故。

方法:对35kv的小容量变电所,可根据变电所的重要性和雷电活动强度等情况采取简化的进线保护,为限制流入变电所阀型避雷器的雷电流,在进线首端装设一组管型避雷器或保护间隙。对35~110kv变电所,如进线段装设避雷器有困难或进线段杆塔接地电阻难于下降,可在进线段的终端杆上安装一组1000uH左右的电抗线圈来代替进线段,此电抗线圈既能限制过电流避雷器的雷电流又能限制入侵波陡度。

25、避雷器的保护距离变压器距避雷器的最大允许电气距离与哪些因素有关?

答:避雷器与变电站之间的最大允许距离lm=(Uj-U5)/(2a/v)=(Uj-U5)/2a’。因此可见避雷器与变电站之间的最大允许距离与来波陡度a/(a/=a/v)和变压器的冲击耐压强度Uj与避雷器的残压U5有关。

1、电解质极化:A电子位移极化:当无外电场时,电子云的中心与原子核重合,感应电矩为0.当外加电场时,电场力使正电荷原子核向电场方向位移,负电荷的电子云中心向电场反方向位移,但原子核对电子云的引力又使两者倾于重合,当这两种作用力达到平衡时,感应电矩也达到稳定,这个过程称为电子位移极化。特点:它是弹性的,不引起能量损耗;完成极化所需时间极短;单元粒子的电子位移极化电矩与温度无关,温度的变化只改变介质的电子位移极化率。B离子位移极化:在无外电场时,各正负离子对构成的偶极矩彼此相消,合成电矩为0。加上外电场后,正离子向电场方向位移,负离子向电场反方向位移,正负离子对构成的偶极矩不再完全消失,介质呈极化,称为离子位移极化。特点:极化过程极短;有微量的能量损耗;电介质的离子极化率随温度的升高而略有增大。C转向极化:在极性介质中,即使没有外加电场,由于分子正负电荷的作用中心不重合,具有偶极矩。由于分子的不规则运动,使各分子偶极矩方向的排列顺序无序,因此,宏观上对外不呈现合成电矩。当有外电场时,固有偶极矩就有转向电场方向的趋势,顺电场方向作定向排列,但由于受分子热运动的干扰,这种转向定向的排列不能完成,对外呈宏观电矩。特点:转向极化的建立需要较长时间;伴有能量损耗;温度对其影响很大。D空间电荷极化:在大多数绝缘结构中,电介质往往呈层式结构,可能存在某种晶格缺陷。在电场作用系,带电质点在电介质中移动时,可能被晶格缺陷捕获,或在两层介质的界面上堆积,造成电荷在介质空间的新分布,从而产生电矩。特点:极化过程缓慢,这种性质的极化只有在低频时才有意义;伴有能量损耗。

2、电介质的等效电路;因为测量绝缘电阻时,电阻中的介质电导与损耗、温度、频率等因素有关。为了保证测量的结果准确性,应按标准规范的时间下录取,并同时记录温度,保证这些变量的一致性。

3、某些容量较大的设备经直流高电压试验后,其接地放电时间要长达5!10分钟:经直流高压试验后的设备外壳会存储负荷,若其电容量较大,则存储电荷量也较多。同时在大地表面感应出负电荷,从而形成强电场,易击穿空气,造成损失。所以要将设备接地放电,将其上电荷放走,从而场强变弱至消失。

第二章

4、气体放电的机理:纯净的中性状态的气体是不导电的,只有在气体中出现了带电质点后,才可能导电,并在电场的作用下,发展成各种形式的气体放电现象。气体中带电质点的来源、形式及消失:气体分子本身发生电离;气体中的固体或液体金属发生表面电离。形式:撞击电离;光电离;热电离;表面电离;负离子的形成。消失:带电质点受电场力的作用流入电极并中和电量;带电质点的扩散;带电质点的复合。

5、帕邢、流注汤森德机理的区别及各自适用范围:帕邢定律提出在均匀电场中,击穿电压Ub与气体相对密度δ、极间距离S并不具有单独的函数关系,而是仅于它们的积有函数关

系,只要δ?S乘积不变,Ub就不变。现在,汤森德理论给这个定律以理论上的论证,他以碰撞电离和正离子撞击阴极表面为基础提出,但它没有考虑电离出来的空间电荷会使电场畸变,也没考虑光子在放电过程中的作用。而流注定理认为电子的撞击电离和空间光电离是自持放电的主要因素,并充分注意到了空间电荷对电场畸变的作用。它是对汤森德理论的补充。帕邢定律适用于均匀电场中,汤森德理论适用于气压较低(小于大气压),δS值较小的均匀电场中,流注定理使用于δS较大(δS)0.26)的均匀、不均匀电场中。

6、电晕放电是极不均匀电场所特有的一种自持放电形式,它与其他形式的放电有本质的区别。它取决于电极外气体空间的电导,即取决于外施电压的大小、电极形状、极间距离、气体的性质和密度等。

7、不均匀电场中长气隙火花放电和短气隙火花放电区别,形成先导过程的条件?为何长气隙击穿的平均场强小于短气隙?

8、正先导过程与负先导过程的区别

9、气隙的沿面放电:沿着气体与固体介质的分界面上发展的放电现象。

第三章

10、气隙的击穿时间有升压时间t0、统计时延ts、放电发展时间tf组成。

11、气隙的伏秒特性及作用:对于非持续做作用的电压来说,气隙的击穿电压就不能简单地用单一的击穿电压值来表示了,对于某一定的电压波形,必须用电压峰值和延续时间共同表示。作用:

12、如何提高气息击穿电压:改善电场分布:气隙电场分布越均匀,气隙的击穿电压就越高,故如能适当改进电极形状,增大电极的曲率半径,改善电场分布,就能提高气隙的击穿电压和预放电电压;采用高度真空:从气体放电理论可知,采用高度真空,削弱气隙中的撞击电离过程,也能提高气隙击穿电压;增高气压:增高气压可以减小电子的平均自由程,阻碍撞击电离的发展,从而提高气隙击穿电压;采用高耐电强度气体:气压较高时,容器的密封比较困难,即使做到了密封,造价也较贵,近期人们发现某些含卤族元素的气体,其耐电强度比空气高得多,使用该类气体或在其他气体中混合入一定比例该类气体可大大提高气隙的击穿电压。

13、影响气隙沿面闪络电压的因素:电场状况和电压波形的影响;气体条件的影响;介质表面状态的影响:表面粗糙度的影响,雨水的影响,污秽的影响。提高气隙沿面闪络电压的方法:屏障,使放在电场中的固体介质在电场等位面方向具有突出的棱缘称为屏障;屏蔽,改善电极形状,使沿固体介质表面的电位分布均匀化,使其最大电位梯度减小,也可以提高沿面闪络电压,该方法称为屏蔽;加电容极板,在交变电压下工作的多层式绝缘结够中,在各层间加金属极板,使在两极间形成一串联、并联电容链;消除窄气隙,将电极附近的绝缘结构设计得避免窄气隙的存在;绝缘表面的处理,很多有机绝缘物,有很强的吸水性,受潮后,他们的绝缘性大为恶化;改变局部绝缘体的表面电阻率,可使最大沿面电位梯度减小,从而提高沿面放电电压或起晕电压;强制固定绝缘沿面各点的电位;附加金具,在多个电器元件联接枢纽处,另附加某种金具,可简单有效地调整该结点附近的电场,改善该结点附近气隙放电和沿面放电的性能。

14、金具有哪些功用,设计时应考虑哪些问题?A改善沿链的电压分布和防止绝缘子、链端金具上的电晕;引离电弧。B绝缘子链、分裂导线、链端连接金具、保护金具等本身的几何形状、结构尺寸、各部件在联接点的相互位置配合等,均复杂多变,这时应靠实验和实际运行经验的积累来改进和完善;均压环或屏蔽环在其安装位置处若有可观的交变磁通穿过,则这类环状金具还应做成开口的,以防在其中产生感应环流。

第四章

15、影响固体电介质击穿电压的因素:电压作用时间的影响;温度的影响;电场均匀度和介

质厚度的影响;电压频率的影响;受潮度的影响;机械力的影响;多层性的影响;累积效应的影响。提高固体电介质击穿电压的方法:改进绝缘设计;改进制造工艺;改善运行条件。

16、固体电介质老化的形式、原因、结果:A固体介质的环境老化,包括光氧老化、臭氧老化、盐雾酸碱等污染性化学老化,其中最主要的使光氧老化,对有机绝缘物,环境老化尤为显著;太阳射到地面的部分紫外线的能量大于多数有机绝缘物中主价键的键能,因而多数有机绝缘物在紫外光的作用下会逐渐老化;高分子电介质吸收紫外光能量后,有部分分子被激励,当存在氧气或臭氧时,还会引发高分子的氧化降解反应,称为光氧化反应;臭氧与某些有机绝缘物相互作用,会生成氧化物或过氧化物,导致主键的断裂,造成老化;含有酸、碱、盐类的污秽尘埃,与雨、露、霜、雪相结合,对绝缘物的长期作用,显然会对绝缘物产生腐蚀(改善绝缘材料本身的性能)。B固体介质的点老化:电离性老化,在较强电场作用下存在电离、电晕、局部放电、沿面放电等现象,会导致局部电场畸变,带电质点撞击气泡壁,使绝缘物分解,化学腐蚀,局部温度升高;电导性老化,液态的导电物质引起,导致绝缘层的击穿;电解性老化,在直流电压长期作用下,即使所加电压远低于局部放电起始电压,由于介质内布进行着电化学过程,介质也会逐渐老化,最终导致击穿。

17、提高液体电介质击穿电压及其影响因素:A因素:液体介质本身品质的影响;电压作用时间的影响;电场情况的影响;温度的影响;压强的影响。B提高:提高并保持油的品质:压力过滤法,真空喷雾法,吸附剂法;覆盖;绝缘层;极间障。

第五章

18、电气设备绝缘试验分类:A耐压试验,模仿设备绝缘在运行中可能受到的各种电压,对绝缘施加与之等价的或更为严峻的电压,从而考验绝缘耐受这类电压的能力,称为耐压试验。这类试验最有效、最可信,可能导致绝缘的破坏,故也称破坏性试验。B检查性试验,测定绝缘某些方面的特性,并据此间接的判断绝缘的状况,称为检查性试验。一般在较低电压下进行,通常不会导致绝缘的击穿损坏,也称非破坏性试验。

19、用兆欧表测定绝缘电阻;一般电介质都可以用电介质的等效电路代表。串联支路Rp---Cp 代表电介质的吸收特性,如绝缘良好,则R1k和Rp值都较大,这不仅使最后稳定的绝缘电阻值R1k较高,而且要经过较长的时间才能达到此稳定值。反之,如绝缘受潮,或存在某些穿透性的导电通道,则不仅最后稳定的绝缘电阻值很低,而且还会很快达到稳定值。因此,可用吸收比来反映绝缘的状况,通常用时间为60s和15s的绝缘电阻值之比K=R60/R15作为相互比较的共同标准,若绝缘良好,则此值应大于某一定值。某些容量较大的电气设备,其绝缘的极化和吸收过程很长,上述的吸收比K还不能充分反映绝缘吸收过程的整体,而且,随着电气设备绝缘结构和规模的不同,这最初60s内极化过程的发展趋向与其后整体过程的发展趋向也不一定很一致,为此,对这类大中型电气设备的绝缘,制定另一指标,取绝缘体在加压后10min和1min所测的绝缘电阻值R10和R1之比极化指数:P=R10/R1 ,若绝缘良好,应小于某一定值。

20、测定泄露电流:本试验是将直流高压加到被试品上,测量流经被试绝缘的泄露电流,其实际是测绝缘电阻。特点:所加直流电压较高,能揭示兆欧表不能发现的某些绝缘缺陷;所加直流高压是逐渐升高的,在升压过程中,从所测电流与电压关系的线性度,可指示绝缘情况;兆欧表刻度的非线性度很强,尤其在接近高量程段,刻度甚密,难以精确分辨。微安表的刻度则基本上是线性的,能精确读取。

21、因影响西林电桥准确度的因素:A本试验高压电源对桥体杂散电容的影响,由于标准电容器的电容一般仅约50~100pF,被试品电容一般也仅约几十到几千pF,都很小,故这些杂散电容的存在就可能使测量结果有较大的误差;如高压引线上出现电晕,则还有电晕漏导与上述杂散电容C1’或C2’并联。B外界电场干扰,外界高压带电体通过杂散电容耦合到桥体,带来干扰电流流入桥臂,造成测量误差。C外界磁场干扰,当电桥处在交变磁场中,桥

路内将感应出一干扰电势,显然也会造成测量误差。解决:将电桥的低压部分全部用接地的金属网屏蔽起来,能基本消除上述三种误差。

第六章

22、工频高压试验:A工频高压由工频高压试验变压器获得。B该变压器与其他变压器的区别:一般都是单相的,需要三相时,常将三个单相变压器接成三相应用;不会受到大气过电压及电力系统操作过电压的侵袭,其绝缘相对其额定电压的安全裕度较小,故其平时工作电压一般不允许超过其额定电压;通常均为间歇工作方式,每次工作持续时间较短,不必采用加强的冷却系统,为此,对应于不同的电压和电流负荷,有不同的允许持续工作时间;一、二次绕组的电压变比高,其高压绕组由于电压高,需用较厚的绝缘层和较宽的油隙距,两绕组间的绝缘间距较大,故其漏抗较大;要求有较好的输出电压剥削,为此应采用优质的铁芯和较低的磁通密度。C如何测高压:测量球隙;静电电压表;分压器配用低压仪表;高压电容器配用整流装置。

23、直流高压试验:A将交流电压通过整流而得。B怎么测:棒隙或球隙;电阻分压器配合低压仪表;用高值电阻与直流电流表串联;静电电压表。C区别???

第七章

24、四个规律方程:u=uq+uf, i=iq+if, uq=z?iq, uf=-z?if;波速:v=1/√L0/C0,波阻抗:z=√L0/C0(波阻抗的物理意义及与电阻不同点:意义:电压行波与电流行波的比值,在物理含义上,电阻要消耗能量,而波阻抗并不消耗能量,当行波幅值一定时,波阻抗决定了单位时间内导线获得电磁能量的大小;波阻抗与线路长度无关,而电阻与线路长度有关。) 行波折反射规律:A在结点A处要发生行波的折射与反射,反射电压波U1f自结点A沿线路z1返回传播,折射电压波则自结点A沿线路z2继续向前传播。B折射电压波就是线路z2上的前行电压波。C折射值永远为正,说明折射电压波U2q总是与入射电压波u1q同极性,当z2=0时,αu=0;当z2=+∞时,αu→2,因此,0≤αu≤2。D折射系数可正可负,当z2=0时,βu=-1;当z2=+∞时,βu→1,因此,-1≤βu≤1。E折射系数与反射系数存在以下关系:α=1+β。彼得孙法则:适用范围:要满足先决条件是线路Z2中没有反行波或Z2中的反行波尚未达到结点A。

25、通过串联电感和并联电容对行波有何影响:A无限长直角波通过电感后改变为一指数波头的行波,串联电感起了降低来波上升速率的作用,降低行波的上升速率对电力系统的防雷保护具有重要意义。B并联电容与串联电感的作用一样,可以使入侵波的波头变平缓。26、冲击电晕对线路波过程的影响:A负极性电晕对过电压波形的衰减和变形比较小,对过电压保护不利,而雷击又大部分是负极性的,因而应着重考虑负极性电晕的影响;B由于电晕要消耗能量,消耗能量的大小又与电晕的瞬时值有关,故将使行波发生衰减的同时伴有波形的畸变;C电晕在波尾上将停止发展,并且电晕圈逐步消失,衰减后的波形与原始波形的波尾相交点可近似视为衰减后波形的波幅;D电晕后导线对地电容增大,导线波阻抗和波速将下降。

27、绕组与线路中行波过程的不同:

第八章

28、雷电参数含义:iz—流经被击物体的电流,iz=σVLz0/(z0+zj), 流经被击物体的电流iz与被击物体的阻抗zj有关,zj越大则iz越小,反之越大,当zj=0时,流经被击物体的电流被定义为“雷电流”,以iL表示。iL=σVL,实际上,被击物体的阻抗不可能为0值。

29、避雷针、避雷线的作用:避雷针(线)高于被保护的物体,其作用是吸引雷电击于自身,并将雷电流迅速泄入大地,从而使避雷针(线)附近的物体得到保护。

30、避雷器饿作用及类型:作用:限制过电压以保护电气设备。类型:保护间隙、管型避雷器、阀型避雷器和氧化锌避雷器等几种。保护间隙、管型避雷器主要用于限制大气过电压,

一般用于配电系统、线路和发、变电所近线段保护;阀型避雷器用于变电所和发电厂的保护,在220KV及以下系统主要用于限制大气过电压,在超高压系统中还用来限制内过电压或作内过电压的后备保护。

31、试比较阀型避雷器与氧化锌避雷器的性能:阀型避雷器分普通型和磁吹型,普通型的熄弧完全依靠间隙的自然熄弧能力,没有采取强迫熄弧的措施,其阀片的热容量有限,不能承受较长持续时间的内过电压冲击电流的作用。不容许在内过电压下动作,只使用于220KV 及以下系统中,作为限制大气过电压用。磁吹型:用磁吹电弧来强迫熄弧,其单个间隙的熄弧能力较高,能在较高恢复电压下切断较大的工频续流,其冲击放电电压和残压较低,保护性能较好,热容量大时允许通过电压作用下的冲击电流。氧化锌避雷器:可以做成无间隙;无续流;保护性能优越;通流容量大,体积小,重量轻,结构简单,运行维护方便,使用寿命长,是避雷器发展的主要方向,也是未来特高压系统关键的过电压保护装置。

第九章

32、提高耐雷水平?降低雷击跳闸率?A输电线路中:对一般高度杆塔,冲击接地电阻Rch 上的电压降是塔顶电位的主要成分,因此降低接地电阻可以有效的减小塔顶电位和耐雷水平;增加耦合系数K可以减少绝缘子串上电压和减小感应过电压,因此同样可以提高耐雷水平。????

33、防雷措施:架设避雷线;降低杆塔接地电阻;架设耦合地线;采用不平衡绝缘方式;装设自动重合闸;采用消弧线圈接地方式;装设管型避雷器;加强绝缘。

第十章

34、直击雷保护有哪些?目击雷保护有哪些?

35、变电所进线段保护的作用:限制流经避雷器的雷电流和限制入侵波的陡度。原理???

高电压技术复习资料

第一篇绝缘的基本理论 第一章气体的绝缘特性 1、气体中带电质点产生的方式: 热电离、光电离、碰撞电离、表面电离 2、气体中带电质点消失的方式: 流入电极、逸出气体空间、复合 3、电子崩与汤逊理论:电子崩的形成、汤逊理论的基本过程及适用范围 4、巴申定律及其适用范围:击穿电压与气体相对密度和极间距离乘积之间的关系。两者乘积大于0.26cm时,不再适用 5、流注理论: 考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于0.26cm时的情况 6、均匀电场与不均匀电场的划分:以最大场强与平均场强之比来划分。 7、极不均匀电场中的电晕放电:电晕放电的概念、起始场强、放电的极性效应 8、冲击电压作用下气隙的击穿特性:a.雷电和操作过电压波的波形 b. 冲击电压作用下的放电延时与伏秒特性 c.50%击穿电压的概念 9、电场形式对放电电压的影响:均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小 极不均匀电场中极间距离为主要影响因素、极性效应明显。 10、电压波形对放电电压的影响: a.电压波形对均匀和稍不均匀电场影响不大b.对极不均匀电场影响相当大 c.完全对称的极不均匀场:棒棒间隙 d.极大不对称的极不均匀场:棒板间隙 11、气体的状态对放电电压的影响:湿度、密度、海拔高度的影响 12、气体的性质对放电电压的影响: 在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF6 13、提高气体放电电压的措施:a.电极形状的改进b.空间电荷对原电场的畸变作用 c.极不均匀场中屏障的采用 d.提高气体压力的作用 e.高真空 f.高电气强度气体SF6的采用 14、沿面放电的概念:沿着固体介质表面发展的气体放电现象。多发生在绝缘子、套管与空气的分界面上。 15 提高沿面放电电压的措施:a.屏障b.屏蔽c.表面处理d.应用半导体材料e.阻抗调节 习题 1.1 1.3 1.4 1.9 1.13 1.14 1.16 第2章液体和固体介质的绝缘特性 1、电介质的极化 极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。 介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。 极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。 由中性分子构成的电介质。 极化的基本形式:电子式、离子式(不产生能量损失) 转向、夹层介质界面极化(有能量损失) 2、电介质的电导泄漏电流和绝缘电阻 气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离 液体的电导:离子电导和电泳电导 固体的电导离子电导和电子电导 3、电介质的损耗a.介质损耗针对的是交流电压作用下介质的有功功率损耗b.介质损耗一般用介损角的正切值来表示 4、提高液体电介质击穿电压的措施:提高油品质,采用覆盖、绝缘层、极屏障等措施 5、固体电介质的击穿:电击穿、热击穿、电化学击穿的击穿机理及特点 6、影响固体电介质击穿电压的主要因素: 电压作用时间温度电场均匀程度受潮累积效应机械负荷 第二篇电气设备试验 第3章电气设备的绝缘试验 电气绝缘非破坏性试验 1、绝缘电阻与吸收比的测量:a.用兆欧表来测量电气设备的绝缘电阻 b.吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。 c.K恒大于1,且越大表示绝缘性能越好。 d.大容量电气设备中,吸收现象延续很长时间,吸收比不能很好地反映绝缘的真实状态,可用极化指数再判断。 e.测量绝缘电阻能有效地发现总体绝缘质量欠佳;绝缘受潮;两极间有贯穿性的导电通道;绝缘表面情况不良。 2、泄漏电流的测量:测量泄漏电流从原理上来说,与测量绝缘电阻是相似的,能发现一些尚未完全贯通的集中性缺陷,原因在于:a.在试品上的直流电压要比兆欧表的工作电压高得多,故能发现兆欧表所不能发现的某些缺陷.b.加在试品上的直流电压是逐渐增大的,可以在升压过程中监视泄漏电流的增长动向。 3、介质损耗角正切的测量:a.tanδ能反映绝缘的整体性缺陷(例如全面老化)和小电容试品中的严重局部性缺陷。根据tan δ随电压而变化的曲线,可判断绝缘是否受潮、含有气泡及老化的程度。b.西林电桥法测量的基本原理

高电压技术第三版课后习题答案

第一章作

?1-1解释下列术语 (1)气体中的自持放电;(2)电负性气体; (3)放电时延;(4)50%冲击放电电压;(5)爬电比距。 答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象; (2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体; (3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延; (4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压; (5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。

1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合? 答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。所逸出的电子能否接替起始电子的作用是自持放电的判据。流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。 汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。 1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。 解:到达阳极的电子崩中的电子数目为 n a? e?d? e11?1?59874 答:到达阳极的电子崩中的电子数目为59874个。

高电压复习试题附复习资料

1.气体中带电质点的产生有哪几种方式? 碰撞电离(游离),光电离(游离),热电离(游离),表面电离(游离)。 2.气体中带电粒子的消失有哪几种形式? (1)带电粒子向电极定向运动并进入电极形成回路电流,从而减少了气体中的带电离子;(2)带电粒子的扩散;(3)带电粒子的复合;(4)吸附效应。 3.为什么碰撞电离主要由电子碰撞引起? 因为电子的体积小,其自由行程比离子大得多,在电场中获得的动能多;电子质量远小于原子或分子,当电子动能不足以使中性质点电离时,电子遭到弹射而几乎不损失其动能。 4.电子从电极表面逸出需要什么条件?可分为哪几种形式? 逸出需要一定的能量,称为逸出功。获得能量的途径有:a正离子碰撞阴极;b光电子发射;c强场发射;d热电子发射。 5.气体中负离子的产生对放电的发展起什么作用,为什么? 对放电的发展起抑制作用,因为负离子的形成使自由电子数减少。 6.带电粒子的消失有哪几种方式? 带电质点的扩散和复合。 7.什么是自持放电和非自持放电? 自持放电是指仅依靠自身电场的作用而不需要外界游离因素来维持的放电。必须借助外力因素才能维持的放电称为非自持放电 8.什么是电子碰撞电离系数? 若电子的平均自由行程为λ,则在1cm长度内一个电子的平均碰撞次数为1/λ,如果能算出碰撞引起电离的概率,即可求得碰撞电离系数。 9.自持放电的条件是什么? (—1)=1或 1 10.简述汤逊理论和流注理论的主要内容和适用范围。 汤逊理论:汤逊理论认为电子碰撞电离是气体放电的主要原因。二次电子主要来源于正离子碰撞阴极,而阴极逸出电子。二次电子的出现是气体自持放电的必要条件。二次电子能否接替起始电子的作用是气体放电的判据。汤逊理论主要用于解释短气隙、低气压的气体放电。流注理论:流注理论认为气体放电的必要条件是电子崩达到某一程度后,电子崩产生的空间电荷使原有电场发生畸变,大大加强崩头和崩尾处的电场。另一方面气隙间正负电荷密度大,复合作用频繁,复合后的光子在如此强的电场中很容易形成产生新的光电离的辐射源,二次电子主要来源于光电离。流注理论主要解释高气压、长气隙的气体放电现象 11.什么是电场不均匀系数? 间隙中最大场强与平均场强的比值。通常f=1 为均匀电场,f<2时为稍不均匀电场,f>4时为极不均匀电场。 12.什么是电晕放电?为什么电晕是一种局部放电现象?电晕会产生哪些效应? (1)极不均匀电场中放电,间隙击穿前在高场强区(曲率半径极小的电极表面附近)会出现蓝紫色的晕光,称为电晕放电。(2)在极不均匀电场中,由于电晕放电时的起始电压小于气隙击穿电压,气隙总的来说仍保持着绝缘状态,所以电晕放电是一种局部放电现象。(3)a具有声、光、热等效应。b形成所谓的电风,引起电极或导线的振动。c产生的高频脉冲电流造成对无线电的干扰。d促使有机绝缘老化。 13.什么是极性效应?比较棒—板气隙极性不同时电晕起始电压和击穿电压的高低并简述其理由。 极性不同时,同间隙起晕电压和击穿电压各不同称为极性效应;正极性棒-板间隙电晕起始电压比负极性的略高;负极性棒-板间隙的击穿电压比正极性的高得多。 14.比较空气间隙下“棒-棒电极”、“正棒-负板电极”、“负棒-正板电极”、“板-板电极”击穿电压。 击穿电压:“负棒-正板电极”>“棒-棒电极”>“正棒-负板电极” 15.雷电冲击电压和操作冲击电压的标准波形是什么?(p30) 16.什么是50%击穿电压?什么是冲击系数,一般取值范围在多少? (1)在气隙上加N次同一波形及峰值的冲击电压,可能只有几次发生击穿,这时的击穿概率P=n/N,如果增大或减小外施电压的峰值,则击穿电压也随之增加或减小,当击穿概率等于50%时电压即称为气隙的50%击穿电压。(2)同一间隙的50%冲击击穿电压与稳态击穿 电压之比,称为冲击系数β。(3)均匀电场和稍不 均匀电场间隙的放电时延短,击穿的分散性小,冲击击穿通常发生在波峰附近,所以这种情况下冲击系数接近于1,。极不均匀电场间隙的放电时延长,冲击击穿常发生在波尾部分,这种情况下冲击系数大于1。 17.什么叫伏秒特性,如何求取伏秒特性曲线。 工程上用气隙击穿期间出现的冲击电压的最大值和放电时间的关系来表征气隙在冲击电压下的击穿特性,称为伏秒特性。击穿发生在波前或波峰时,U与t均取击穿时的值,击穿发生在波尾时,t取击穿瞬间的时间

高电压技术总结复习资料全

一、填空和概念解释 1、电介质:电气设备中作为绝缘使用的绝缘材料。 2、击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程。 3、击穿电压:击穿时对应的电压。 4、绝缘强度:电介质在单位长度或厚度上承受的最小的击穿电压。 5、耐电强度:电介质在单位长度上或厚度所承受的最大安全电压。 6、游离:电介质中带电质点增加的过程。 7、去游离:电介质中带电质点减少的过程。 8、碰撞游离:在电场作用下带电质点碰撞中性分子产生的游离。 9、光游离:中性分子接收光能产生的游离。 10、表面游离:电极表面的电荷进入绝缘介质中产生的游离。 11、强场发射:电场力直接把电极中的电荷加入电介质产生的游离。 12、二次电子发射:具有足够能量的质点撞击阴极放出电子。 13、电晕放电:气体中稳定的局部放电。 14、冲击电压作用下的放电时间:击穿时间+统计时延+放电形成时延 15、统计时延:从间隙加上足以引起间隙击穿的静态击穿电压的时刻起到产生足以引起碰撞游离导致完全击穿的有效电子时刻。 16、放电形成时延:第一个有效电子在外电场作用下碰撞游离形成流注,最后产生主放电的过程时间。 17、50%冲击放电电压:冲击电压作用下绝缘放电的概率在50%时的电压值。 18、沿面放电:沿着固体表面的气体放电。 19、湿闪电压:绝缘介质在淋湿时的闪络电压。 20、污闪电压:绝缘介质由污秽引起的闪络电压。 21、爬距:绝缘子表面闪络的距离。 22、极化:电介质在电场的作用下对外呈现电极性的过程。 23、电导:电介质在电场作用下导电的过程。 24、损耗:由电导和有损极化引起的功率损耗。 25、老化:电力系统长期运行时电介质逐渐失去绝缘能力的过程。 26、吸收比:t=60s和t=15s时的绝缘电阻的比值。 27、过电压:电力系统承受的超过正常电压的。 28、冲击电晕:输电线路中由冲击电流产生的电晕。 29、雷暴日:一年中听见雷声或者看见闪电的天数。 30、雷暴小时:一年中能听到雷声的小时数。 31、地面落雷密度:每平方公里每雷暴日的落雷次数。 32、耐雷水平:雷击输电电路不引起绝缘闪络的最大的雷电流幅值。 33、雷击跳闸率:每百公里线路每年在雷暴日为40天的标准条件下由雷击引起的跳闸的次数。

高电压技术 第一章课件

绪论 高电压技术的产生和发展: ?有关高电压的几个著名试验 ?1752年6月:富兰克林&风筝 ?1895年11月:伦琴&X射线 ?1919年:E.卢瑟福&元素的人工转变(a射线轰击氮原子)1945年威克斯勒尔和麦克米伦,电子回旋加速器等 ?1931年:范德格拉夫起电机(1000万伏) 直到20世纪初高电压技术才逐渐成为一个独立的科学分支。当时的高电压技术,主要是为了解决高压输电中的绝缘问题。因此,可以这样说高电压与绝缘技术是随着高电压远距离输电和高电压设备的需要而发展起来的一门电力科学技术。 高电压技术:电力系统中涉及过电压、耐压、绝缘等问题的技术。如: ▲雷击变电所、发电厂的过电压及防护措施 ▲绝缘材料的研制 ▲合闸分闸空载运行以及短路引起的过电压 ▲电气设备的耐压试验 一、研究意义 研究意义:如何将电能大容量、远距离、低损耗地输送,提高电力系统运行的经济效益,防止过电压,提高耐压水平,保持电网运行的安全可靠性。 二.研究内容: 1. 提高绝缘能力 电压等级提高,需要相应的高压电气设备,要对各类绝缘电介质的特性及其放电机理进行研究,其中气体放电机理是基础。 电介质理论研究——介质特性 放电过程研究——放电机理 高电压试验技术——高压产生、测量、检验,分预防性和破坏性 2. 降低过电压 雷击或操作→暂态过程→产生高电压→绝缘破坏→故障→防止破坏→恢复 研究过电压的形成及防止措施 高电压种类:大气过电压 内部过电压——操作过电压,暂时过电压 3. 绝缘配合 使作用电压的数值、保护电器的特性和绝缘的电气特性之间相互协调以保证电气装置的可靠运行与高度经济性。 三.学习要求 与电工及物理的基础理论,如电介质理论、电磁场理论、电路中的瞬变理论相关。内容涉及面广,经验公式多,文字叙述多,试验数据、图表多,实践性强

高电压复习资料

1 气体在外加电压作用下产生导通电流的现象为气体放电。辉光放电电晕放电火花和电弧放电非自持放电依靠外界游离因素才能维持的放电自持放电依靠电场作用自行维持 2汤孙理论实质;电子碰撞游离形成电子崩是气态放电主要过程,电极表面游离释放电子是气体放电得以维持的条件。流注理论:而空间的光游离是气体放电自持条件,强调了空间电荷对电场的畸变作用。 3影响气体放电因素;电场形式,外加电压的种类,大气状态 4 电晕放电:不均匀电场,随电压的不断升高,在尖电极附近电场程度先达到引起电子崩等游离过程的数值形成的局部放电。危害1能量损耗2腐蚀绝缘材料3产生电磁干扰措施1分裂导线2加均压罩3均压环 5极性效应:对电场不均匀的尖一板气隙,其击穿电压的高低与尖电极的极性有关。 6冲击电压气体击穿特点;分散性偶然性不确定性 7伏秒特性:间隙在标准波形下不同幅值冲击电压下击穿电压作用下和放电时间关系作用:1比较不同设备绝缘的冲击击穿特性2反映间隙冲击击穿特性。 8提高气体间隙击穿电压措施1改进电极形状及表面状态2在极不均匀电场中采用屏障3采用高气压气体5采用高电气强度气体 9 沿面放电:电压超过一定值,固体介质与空气交界面出现放电现象,这种沿固体介质表面的空气所发生的放电现象。沿面放电发展到整个表面空气层击穿时,为沿面闪络。干闪,湿闪,污闪。措施1增加绝缘子表面泄露距离2定期清扫绝缘子3在绝缘子表面涂憎水性涂料4采用半导体釉绝缘子 1影响液体电介质击穿电压的因素及提高液体介质击穿电压措施;1杂质温度压力电压作用时间2过滤防潮脱气采用油-固体组合绝缘 。。固体。。1 电压作用时间环境温度厚度电压种类潮湿2改进绝缘设计改进制造工艺改善运行条件固体介质击穿(电击穿热击穿电化学击穿) 影响电介质电导(损耗)因素:杂质温度(频率温度电压) 2实际应用:极化;根据极化选择高压电气设备的绝缘材料电导:直流电气设备注意电导率运用电导判断电气设备的绝缘情况或提高介质表面电导,改善绝缘,消除电晕放电损耗: tana 大小是反映绝缘状况的重要指标之一是设备出厂或检修测量的一个基本项目1绝缘预防性试验;对已投入运行的设备,无论其运行情况,按规定的试验条件,试验项目,试验周期进行定期检查或试验。分非破坏和破坏性试验 2高电压试验的安全措施①试验前做好周密的准备工作②试验工作不得少于2人③需断开电气设备接头时,拆前做好标记,恢复后进行检查④试验装置金属外壳接地,高压引线要短,可用绝缘物固定⑤加压前检查接线,表计倍率,调压器零位及仪表状态,无误后加压⑥变更接线,实验结束,先断试验电源,放电,将升压装置的高压部分短路接地⑦试验结束后拆除装置的地线,检查被试设备 4吸收比:加压60S时绝缘的电阻值15S时绝缘的电阻值r15之比k=r60/r15 k越大绝缘状况越好{k>1.3好k~1缺陷 5泄露电流试验与绝缘电阻试验相比:对于发现绝缘的缺陷更为灵敏,有效,能发现绝缘贯通的集中性缺陷,整体受潮,贯通的部分受潮以及一些未贯通的集中性缺陷如开裂,破损等6关于tana: 测量用西林电桥,反映出整个绝缘的分布性缺陷 7局部放电测量方法:(绝缘内部,边缘,非贯穿性放电现象)电测法(脉冲电流法)基于内部放电具有脉冲特性实现{1直接法2平衡法非电测法(压力波转变为电气量,对电气量进

高电压技术(第三版)考试复习题

《高电压技术》复习题 1、雷电对地放电过程分为几个阶段?P38 答:1、先导放电:放电不连续,放电分级先导,持续时间为0.005~0.01S ,雷电流很小 2、主放电:时间极短,50~100s μ,电流极大,电荷高速运动。 3、余光放电:电流不大,电流持续时间较长,约0.03~0.05s 。 2、什么是雷电参数?P242 答:1、雷电放电的等值电路。 2、雷电流波形。 3、雷暴日与雷暴小时:雷暴日是一年中有雷电的日数,在一天内只要听到过雷声,无论(次数多少)均计为(一个雷暴日)。雷暴小时数则是(一年中发生雷电放电的小时数,)即在一个小时内只有(一次雷电),就计作(一个雷电小时)。 4、地面落雷密度和输电线路落雷总次数:地面落雷密度是指每一雷暴日每平方千米地面遭受雷击的次数,以γ表示。与雷暴日数有关,如下:3.0023.0d T =γ 3、什么是波阻抗?波速?P206 答:波阻抗00 C L Z =是(电压波与电流波之间)的比例常数,它反映了波在传播过程中遵循 (储存在单位长度线路周围媒质中的电场能量和磁场能量一定相等)的规律,所以Z 是(一个非常重要)的参数。 波速001 C L v =等于空气中的光速,对电缆来说,其单位长度对地电容C0较大,故电 缆中波速一般为1/2~1/3倍的光速。 4、防雷保护有哪些基本装置?P246 答:现代电力系统中实际采用的防雷保护装置有(避雷针、避雷线、保护间隙、各种避雷器、防雷接地、电抗线圈、电容器、消弧线圈、自动重合闸等等)。 5、避雷针的作用是什么?其保护范围如何确定?P246 答:避雷针高于被保护的物体,其作用是吸引雷电击于自身,并将雷电流迅速汇入大地,从而使避雷针附近的物体得到保护,保护范围指具有0.1%左右概率的空间范围,可以通过模拟实验并结合运行经验来确定,常用的方法有折线法、滚球法。 6、避雷线的作用是什么?其保护范围如何确定?P246 答:同上。 7、各种避雷器的结构特点,适合于哪些场合?P254 答:避雷器的类型有主要有何护间隙、管型避雷器、阀型避雷器和氧化锌避雷器等几种。 8、接地的种类有哪些?P261 答:分为工作接地、保护接地、防雷接地。 9、降低接地电阻的方法是什么?P265 答:1、加大接地物体的尺寸 2、利用自然接地体 3、引外接地 4、换土 5、采用降阻剂 10、线路防雷的四道防线是什么?P268 答:输电线路雷害事故的形成通常要经历这样四个阶段:线路'>输电线路受到雷电过电压的作用;线路'>输电线路发生闪络;线路'>输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代线路'>输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1.防直击,就是使输电线路不受直击雷。采取的措施是沿线路装设避雷线。

高电压复习题

1-1、气体带电质点的产生和消失有哪些主要方式? 气体中带电质点是通过游历过程产生的。游离是中性原子获得足够的能量(称游离能)后成为正、负带电粒子的过程。根据游离能形成的不同,气体中带电质点产生有四种不同方式: 1.碰撞游离方式在这种方式下,游离能为中性原子(分子)碰撞瞬时带电粒子所具有的动能。虽然正、负带电粒子都有可能与中性原子(分子)发生碰撞,但引起气体发生碰撞游离而产生正、负带电质点的主要是自由电子而不是正、负离子。 2.光游离方式在这种方式下,游离能为光能。由于游离能需达到一定的数值,因此引起光游离的光主要是各种高能射线而非可见光。 3.热游离方式在这种方式下,游离能为气体分子的内能。由于内能与绝缘温度成正比,因此只有温度足够高时才能引起热游离。 4.金属表面游离方式严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到带负电的自由电子。使电子从金属电极表面逸出的能量可以是各种形式的能。 气体中带电质点消失的方式有三种: 1.扩散带电质点从浓度大的区域向浓度小的区域运动而造成原区域中带电质点的消失,扩散是一种自然规律。 2.复合复合是正、负带电质点相互结合后成为中性原子(分子)的过程。复合是游离的逆过程,因此在复合过程中要释放能量,一般为光能。 3.电子被吸附这主要是某些气体(如SF6、水蒸汽)分子易吸附气体中的自由电子成为负离子,从而使气体中自由电子(负的带电粒子)消失。 1-2、什么叫自持放电?简述汤逊理论的自持放电条件。 自持放电是指仅靠自身电场的作用而不需要外界游离因素来维持的放电。外界游离因素是指在无电场作用下使气体中产生的少量带电质点的各种游离因素,如宇宙射线。讨论气体放电电压、击穿电压时,都指放电已达到自持放电阶段。汤生放电理论的自持放电条件用公式表达时为Y(eαs-1)=1 此公式表明:由于气体中正离子在电场作用下向阴极运动,撞击阴极,此时已起码撞出一个自由电子(即从金属电极表面逸出)。这样,即便去掉外界游离因素,仍有引起碰撞游离所需的起始有效电子,从而使放电达到自持阶段。 1-3、汤逊理论与流注理论的主要区别在哪里?它们各自的适用范围如何? 汤生放电理论与流注放电理论都认为放电始于起始有效电子通过碰撞游离形成电子崩,但对之后放电发展到自持放电阶段过程的解释是不同的。汤生放电理论认为通过正离子撞击阴极不断从阴极金属表面逸出自由电子来弥补引起的电子碰撞游离所需的有效电子。而流注放电理论则认为形成电子崩后,由于正、负空间电荷对场强的畸变作用导致正、负空间电荷的复合,复合过程所释放的光能又引起光游离,光游离结果所得到的自由电子又引起新的碰撞游离,形成新的电子崩且汇合到最初电子崩中构成流注通道,而一旦形成流注,放电就可自己维持。因此汤生放电理论与流注放电理论最根本的区别在于放电达到自持阶段过程的解释不同,或自持放电的条件不同。汤生放电理论适合于解释低气压、短间隙均匀电场中的气体放电过程和现象,而流注理论适合于大气压下,非短间隙均匀电场中的气体放电过程和现象。 1-4、极不均匀电场中有何放电特性?比较棒—板气隙极性不同时电晕起始电压和击穿电压的高低,简述其理由。 极不均匀电场中的气体放电过程有两个不同于均匀电场、稍不均匀电场中气体放电的特性: 1.持续的电晕放电电晕放电是在不均匀电场中,电场强度大的区域中发生的局部区域的放电,此时整个气体间隙仍未击穿,但在局部区域中气体已击穿。在稍不均匀电场中,电晕放电起始电压很接近(略低于)间隙的击穿电压,也观察不到明显的电晕放电现象。而在极不均匀电场中则可观察到明显的点晕放电现象,且点晕放电起始电压要低于(或大大低于——取决于电场均匀程度)间隙的击穿电压。 2.长间隙气体放电过程中的先导放电当气体距离较长(>1m)时,流注通道是通过具有热游离本质的先导放电不断向前方(另一电极)推进的。由于间隙距离较长,当流注通道发展到一定距离,由于前方电场强度不够强(由于电场不均匀)流注要停顿。此时通过先导放电而将流注通道前方电场加强,从而促使流注通道进一步向前发展。就这样,不断停顿的流注通道通过先导放电而不断推进,从而最终导致整个间隙击穿。 3.不对称极不均匀电场中的极性效应不对称极不均匀电场气体间隙(典型电极为棒—板间隙)的电晕起始电压及间隙击穿电压随电极正负极性的不同而不同。正棒—负板气体间隙击穿电压要低于相同间隙距离负棒—正板气体间隙距离负棒—正板气体间隙的击穿电压,而电晕起始电压则相反。解释这种结点的要点是间隙中正空间电荷产生的电场对原电场的增强或消弱。判断间隙击穿电压高低看放电发展前方的电场是加强还是消弱,而判断电晕起始电压高低则看出现电晕放电电极附近的电场是增强还是消弱。出现正空间电荷的原因是由于气体游离产生的正负带电粒子定向运动速度差异很大,带负电的自由电子很快向正极性电极移动,而正空间电荷(正离子)由于移动缓慢,此时几乎仍停留在原地从而形成正空间电荷。对于正棒—负板气体间隙,正空间电荷的电场加强了放电发展前方的电场,有利于流注向前方发展,有利于放电发展。但此空间电荷的电场对于棒电极附近的电场是起消弱的作用,从而抑制了电晕放电。对于负棒—正板气体间隙,情况则相反。这就导致上面所述击穿电压和电晕起始电压的不同。 1-5、电晕放电是自持放电还是非自持放电?电晕放电有何危害及用途?

高电压技术最后复习资料

2014年秋高电压技术复习资料 一、填空题 1)高电压技术研究的对象主要是_电气装置的绝缘_、_绝缘的测试_和_电力系统 的过电压__等。 2)气体放电的主要形式:辉光放电_、_电晕放电_、_刷状放电_、__火花放电_、 _电弧放电_。 3)根据巴申定律,在某一PS值下,击穿电压存在_极小(最低)__值。 4)在极不均匀电场中,空气湿度增加,空气间隙击穿电压__提高___。 5)流注理论认为,碰撞游离和_光电离____是形成自持放电的主要因素。 6)工程实际中,常用棒-板或__棒-棒___电极结构研究极不均匀电场下的击穿 特性。 7)气体中带电质子的消失有__扩散__、复合、附着效应等几种形式。 8)对支持绝缘子,加均压环能提高闪络电压的原因是_改善(电极附近)电场分布。 9)沿面放电就是沿着__固体介质___表面气体中发生的放电。 10)标准参考大气条件为:温度t0=20℃,压力b0=__101.3___kPa,绝对湿度 h0=11g/ m2。 11)越易吸湿的固体,沿面闪络电压就越__低__。 12)等值盐密法是把绝缘子表面的污秽密度按照其导电性转化为单位面积上__ NaCl _含量的一种方法。 13)常规的防污闪措施有:_增加_爬距,加强清扫,采用硅油、地蜡等涂料 14)我国国家标准规定的标准操作冲击波形成_250/2500____sμ。 15)极不均匀电场中,屏障的作用是由于其对__空间电荷____的阻挡作用,造成电场分布的改变。 16)下行的负极性雷通常可分为3个主要阶段:先导__、_主放电_、_余光__。 17)调整电场的方法:增大_电极曲率半径、改善电极边缘、使电极具有最佳外形。 18)影响液体电介质击穿电压的因素有__杂质___、__温度__、__电压作用时间__、__电场均匀程度__、__压力__。 19)固体介质的击穿形势有_电击穿_、__热击穿_、_电化学击穿_。 20)电介质是指_能在其中建立静电场的物质__,根据化学结构可以将其分成__

高电压复习题讲解

高电压》《一、单项选择题 )1.极性效应出现在( B.稍不均匀电场中A.均匀电场中 C.对称的极不均匀电场中D.不对称的极不均匀电场中 2.若固体介质被击穿的时间很短,又无明显的温升,可判断是( ) A.电化学击穿B.热击穿 D.各类击穿都有C.电击穿 3.下列参数哪项描述的是带电粒子沿电场方向的漂移速度( ) A.电离B.扩散 C.迁移率D.复合 4.电晕放电是极不均匀电场所特有的一种( ) A.自持放电形式B.碰撞游离形式 C.光游离形式D.热游离形式 5、工频耐压试验时,工频变压器的负载大都为() A.电容性B.电感性 C.纯电阻性D.有寄生电感的电阻性 ?取(的地区,地面落雷密度)406、我国有关标准建议在雷暴日为A. .0.07 B.0.09 C.0.8 D.1.2 7.按国家标准规定,进行工频耐压试验时,在绝缘上施加工频试验电压后,要求持续( ) minmin 3 B.1A. minmin.10 D C.5U入侵到末端时,将发生波的折射与反射,则的线路末端开路,入射电压8.波阻抗为Z0( ) A.折射系数α=2,反射系数β=l B.折射系数α=2,反射系数β=-l C.折射系数α=0,反射系数β=1 D.折射系数α=0,反射系数β=-l ) ( .非破坏性试验是9. A. .直流耐压试验B.工频耐压试验 C.电压分布试验D.冲击高压试验 10.下列不同类型的过电压中,不属于内部过电压的是( ) A.工频过电压B.操作过电压 C.谐振过电压D.大气过电压 11.下列极化时间最长的是( )。 A.电子式极化 B.离子式极化 C.偶极子极化 D.夹层极化 12.下列哪种介质存在杂质“小桥”现象() A.气体B.液体 C.固体D.无法确定 13.下列哪个不是发生污闪最危险的情况() A.大雾B.毛毛雨

(完整版)高电压复习题(完整版)

《高电压技术》综合复习资料 一、填空题(占40分) 1、汤逊理论主要用于解释短气隙、低气压的气体放电。 2、“棒—板”电极放电时电离总是从棒开始的。 3、正极性棒的电晕起始电压比负极性棒的电晕起始电压低,原因是崩头电子被正极性棒吸收, 有利于电子崩的发展。 4、电力系统中电压类型包括工频电压、直流电压、雷电冲击电压和操作冲击电压等4种类型。 5、在r/R等于 0.33 时同轴圆筒的绝缘水平最高。 6、沿面放电包括沿面滑闪和沿面闪络两种类型。 7、电介质的电导包括离子电导和电子电导两种类型,当出现电子电导时电介质已经被击穿。 8、弱极性液体介质包括变压器油和蓖麻油等,强极性液体介质包括水和乙醇(至少写出两种)。 9、影响液体介质击穿电压的因素有__电压形式的影响__、_温度__、_含水量__、_含气量的影响、杂质的影响、油量的影响(至少写出四种)。 10、三次冲击法冲击高电压实验是指分别施加三次正极性和三次负极性冲击电压的实验。 11、变压器油的作用包括绝缘和冷却。 12、绝缘预防性实验包括绝缘电阻、介质损耗角正切、工频高压试验、直流高压试验和冲击高电压试验等。 13、雷电波冲击电压的三个参数分别是波前时间、半波时间和波幅值。 14、设备维修的三种方式分别为故障维修、预防维修和状态维修。 15、介质截至损耗角正切的测量方法主要包括基波法和过零相位比较法两种。 16、影响金属氧化物避雷器性能劣化的主要是阻性泄漏电流。 17、发电厂和变电所的进线段保护的作用是降低入侵波陡度和降低入侵波幅值。 18、小波分析同时具有在时域范围和频域范围内对信号进行局部分析的优点,因此被广泛用于电力系统局部放电的检测中。 19、电力系统的接地按其功用可为工作接地、保护接地和防雷接地三类。 20、线路末端短路时电压反射波为与入射波电压相同,电流反射波为与入射波电流相反。 21、反向行波电压和反向行波电流的关系是 u=-Zi 。

高电压技术(第1章)

《高电压技术》第3版常美生主编 第一章 电介质的极化、电导和损耗

概述 ?电介质:指具有很高电阻率(通常为 106~1019Ω·m)的材料。 ?电介质的作用:在电气设备中主要起绝缘作用,即把不同电位的导体分隔开,使之在电气上不相连接。 ?电介质的分类:按状态可分为气体、液体和固体三类。其中气体电介质是电气设备外绝缘(电气设备壳体外的绝缘)的主要绝缘材料;液体、固体电介质则主要用于电气设备的内绝缘(封装在电气设备外壳内的绝缘)。

?极化、电导和损耗:在外加电压相对较低(不超过最大运行电压)时,电介质内部所发生的物理过程。 这些过程发展比较缓慢、稳定,所以一直被用来检测绝缘的状态。此外,这些过程对电介质的绝缘性能也会产生重要的影响。 ?击穿:在外加电压相对较高(超过最大运行电压)时,电介质可能会丧失其绝缘性能转变为导体,即发生击穿现象。

第一节电介质的极化 一、电介质的极性及分类 ?分子键:电介质内分子间的结合力。 ?化学键:分子内相邻原子间的结合力。 根据原子结合成分子的方式的不同,电介质分子的化学键分为离子键和共价键两类。 原子的电负性是指原子获得电子的能力。 电负性相差很大的原子相遇,电负性小的原子的价电子被电负性大的原子夺去,得到电子的原子形成负离子,失去电子的原子形成正离子,正、负离子通过静电引力结合成分子,这种化学键就称为离子键。

电负性相等或相差不大的两个或多个原子相 互作用时,原子间则通过共用电子对结合成分子,这种化学键就称为共价键。 离子键中,正、负离子形成一个很大的键矩,因此它是一种强极性键。共价键中,电负性相同的原子组成的共价键为非极性共价键,电负性不同的原子组成的共价键为极性共价键。 由非极性共价键构成的分子是非极性分子。由极性共价键构成的分子,如果分子由一个极性共价键组成,则为极性分子;如果分子由两个或多个极性共价键组成,结构对称者为非极性分子,结构不对称者为极性分子。

高电压技术复习题

高电压技术复习题 一、填空 1、除了电容器以外,其他电气设备中采用的绝缘材料往往希望介电常数较()。 2、随着温度的升高,电介质的电导()。 3、电缆越长,其绝缘电阻越()。 4、电气设备绝缘受潮后,其吸收比()。 5、断路器性能对()过电压有很大影响。 6、用球隙测压器可以测量各种高电压的()值。 7、山区的绕击率比平原地区的绕击率()。 8、包在电极表面的薄固体绝缘层称为()。 9、由于避雷线对导线的屏蔽作用,会使导线上的感应电压()。 10、电气设备绝缘受潮时,其击穿电压将()。 1、空载线路的合闸过电压属于(操作)过电压。 2、切除空载变压器过电压产生的根本原因是()。 3、电气设备绝缘普遍受潮时,其介质损耗角正切值将()。 4、切除空载变压器过电压产生的根本原因是()。 5、杆塔高度增加,绕击率将()。 6、除去绝缘油中固体杂质的主要方法是()。 7、冲击电晕会使雷电波的陡度()。 8、架空线中行波的速度为()。 9、反映绝缘材料损耗特性的参数是()。 10、标准大气条件下,湿度 h=()。 1、标准雷电冲击电压波形为()。 2、输电线路上避雷线的保护角越()越好。 3、随着温度的升高,电气设备的绝缘电阻将()。 4、在直流电压作用下,电介质损耗主要由()所引起。 5、电场均匀程度越高,间隙的击穿场越强越()。 6、雷电放电现象可用()放电理论加以解释。 7、光辐射的波长越短,其光子的能量越()。 8、雷电放电过程中,()阶段的破坏性最大。 9、50KV的雷电波传到线路末端开路处世哲学,电压变为()KV。 10、等值盐密是用来反映()的参数。 二、判断题 1、阀片的伏安特性是线性的。 2、切除空载变压器过电压的根本原因是电弧重燃。 3、测量绝缘电阻时施加的是交流电压。 4、耐压试验属于非破坏性试验。 5、悬浮状态的水对绝缘油的危害比溶解状态的水要小。 6、汤逊放电理论适用于低气压,短气隙的情况。 7、确定电力变压器内部绝缘水平时应采用统计法。 8、铁磁谐振是一种过渡过程。 9、检查性试验属于非破坏性试验。 10、变压器内部绝缘受潮属于分布性缺陷。 1、电晕放电是极不均匀电场特有的一种非自持放电形式。 2、负离子形成对放电发展起抑制作用。 3、SF6电器内的放电现象可用汤逊放电理论加以解释。 4、220KV架空线路应全线架设避雷线。 5、球----球间隙属于稍不均匀电场。 6、避雷线对边相导线的保护角越小越好。 7、有时可能会在三线导线上同时出现雷电过电压。 8、主变压器门型构架上可以安装避雷针。 9、变压器油一般为强极性液体介质。 10、光辐射频率越低,其光子能量越低。(√) 1、气压升高时,电气设备外绝缘电气强度下降。 2、感应雷过电压的极性与雷电流极性相同。 3、负离子形成对气体放电发展起促进作用。 4、在棒极间隙中,正极性时的击穿电压比负极性时高。 5、电缆越长,其绝缘电阻值越大。 6、空气湿度越大,气隙的击穿电压越高。 7、可见光能引起交电离。 8、异号带电质点的浓度越大,复合越强烈。 9、自由电子的碰撞电离能力比负离子强。 10、均匀电场中,存在极性效应。 三、名词解释 1、绝缘的老化 2、巴申定律 3、雷暴日 4、沿面闪路 1、电晕放电 2、绝缘配合 3、雷击跳闸率 4、流注 1、感应雷过电压 2、组合绝缘 3、伏秒特性 4、沿面放电 四、问答题 1、测量工频高压的方法主要有哪些? 2、简述变电所直击雷防护的基本原则? 3、对电力系统内部过电压进行分类。 4、哪些情况下会导致电气设备绝缘热击穿? 5、简述提高气体介质电气强度的主要方法。 6、检查电气设备绝缘状况时,为什么要进行综合分析判断? 7、画出三角形接线三相进波时绕组的电位分布曲线。 8、输电线路防雷的具体措施主要有哪些? 1、电气设备接地分哪几类?其目的各是什么? 2、简答提高油间隙击穿电压的措施? 3、画出单相变压器绕组末端接地时的电位分布曲线。 4、采用高真空为什么能提高间隙的击穿电压? 5、简述内过电压的分类及特点? 6、哪些因素会影响变压器绕组的波过程? 7、简述变电所的雷害来源及相应的防护措施? 8、避雷线的作用有哪些? 1、良好绝缘和受潮绝缘的吸收现象有何不同? 2、可采用什么方法来改善变压器绕阻的电位分布? 3、画出单相变压器绕组末端开路时的电位分布曲线。 4、简述固体介质热击穿的发展过程。 5、简述切除空载线路过电压产生的根本原因及限制措施? 6、SF6气体为什么能有较高的耐电强度? 7、简述提高绝缘油电气强度的主要方法? 8、耐压试验和检查性试验各有何优缺点? 五、计算题 1、在mmHg p750 =,= t27℃的条件下测得一气隙的击穿电压峰值为 108KV,试近似求取该气隙在标准大气条件下的击穿电压峰值。 2、某变电站母线上有4条架空线(每条线波阻抗约为400Ω)和2条电缆 出线(每条线波阻抗约为32Ω),从一条架空线上入侵幅值为500KV的电 压波,试求进入电缆的电压波和电流波的幅值。 3、绘出图中所示电极的电压与电场强度分布曲线。 1、写出输电线路雷击跳闸率的计算式,并说明式中各符号的意义。 2、某变电站母线上有5条架空线(每条线波阻抗约为400Ω),母线上接有 一只阀型避雷器(其工作电阻为100Ω),从一条架空线上入侵幅值为600KV 的电压波,试求避雷器动作后流过的雷电流的幅值。 3、绘出图中所示电极的电压与电场强度分布曲线。 1、一充油的均匀电场间隙距离为30mm,极间施加工频击穿电压300KV。 若在极间放置一个屏障,其厚度分别为3mm和12mm。 求:油中的电场强度各比没有屏障时提高多少倍? (设油的相对介电常数为2,屏障的相对介电常数为4)。 2、某一变电所的母线上有n条出线,各条线路的波阻抗相等,均是Z,如其 中某一线路落雷,有一幅值为 U的雷电波自该线路侵入变电所,试计算变 电所母线上的电压。 3、绘出图中所示电极的电压与电场强度分布曲线。 1.一充油的均匀电场间隙距离为30mm,极间施加工频击穿电压300KV。 若在极间放置一个屏障,其厚度分别为3mm和12mm。 求:油中的电场强度各比没有屏障时提高多少倍? (设油的相对介电常数为2,屏障的相对介电常数为4)。 解: (1)mm d30 =,mm d3 2 =,2 1 = ε,4 2 = ε U d d U E 57 2 ) ( 2 1 2 2 2 1 = - - = ε ε ε ε 30 1 U E= ' 05 .1 1 1 = 'E E (2)mm d30 =,mm d12 2 =, 2 1 = ε,4 2 = ε

高电压技术复习资料

高电压技术复习资料 一、填空题 1、__________的大小可用来衡量原子捕获一个电子的难易,该能量越大越容易形成__________ 。(电子亲合能、负离子) 、自持放电的形式随气压与外回路阻抗的不同而异。低气压下称为 __________ ,常压2 或高气压下当外回路阻抗较大时称为火花放电,外回路阻抗很小时称为 __________ 。(辉光放电、电弧放电) 3、自持放电条件为__________ 。(γ(-1)=1或γ=1) 4、汤逊放电理论适用于__________ 、__________ 条件下。(低气压、pd较小) 5、流注的特点是电离强度__________ ,传播速度__________ 。(很大、很快) 6、棒—板间隙中棒为正极性时电晕起始电压比负极性时__________ 。(略高) 7、长间隙的放电大致可分为先导放电和__________ 两个阶段,在先导放电阶段中包括__________ 和流注的形成及发展过程。(主放电、电子崩) 8、在稍不均匀场中,高场强电极为正电极时,间隙击穿电压比高场强电极为负时__________ 。在极不均匀场中,高场强电极为负时,间隙击穿电压比高场强电极为正时__________ 。(稍高、高) 9、电晕放电产生的空间电荷可以改善__________ 分布,以提高击穿电压。(极不均匀的电场) 10、电子碰撞电离系数代表一个电子沿电场线方向行径__________ cm时平均发生的碰撞电离次数。(1)

11、提高气体击穿电压的两个途径:改善电场分布,使之尽量均匀,削弱气体中的电离过程。 12、我国采用等值盐密法划分外绝缘污秽等级。 13、沿整个固体绝缘表面发生的放电称为闪络。 14、在电气设备上希望尽量采用棒—棒类对称型的电极结构,而避免棒—板类不对称型的电极结构。 15、对于不同极性的标准雷电波形可表示为 ?1.2/50us 。 16、我国采用 250/2500us 的操作冲击电压标准电压。 17、高压绝缘子从结构上可以分为绝缘子、套筒、套管三类。 18、对于某些不便于根据经验公式求的电场结构,也可以采用E0=30kv/cm 进行大致估算。 19、极不均匀场击穿电压的特点:电厂不均匀程度对击穿电压的影响减弱, 极间距离对击穿电压的影响增大。 20、均匀电场和稍不均匀电场冲击系数?1,极不均匀电场的冲击系数>1。 21、电介质的介电常数也称为______。(电容率) 22、一切电介质在电场作用下都会出现______、______和______等电气物理现象。(极化,电导,损耗) 23、热击穿是由于______所造成的。(电介质内部热不稳定过程) 、不均匀电介质击穿是指包括______、______和______组合构成的绝缘结构中的一种24 击穿形式。(固体,液体,气体) 25、固体电介质的击穿中,常见的有______、______和______等形式。(热击穿,电击穿,不均匀介质局部放电引起击穿)

相关文档
最新文档