冷凝器设计

摘要】本文介绍了强制对流空气冷却式空调冷凝器的结构及特点,并详细论述了其设计过程,最后联系实践,制作出用于指导生产的工序指导卡。

小型制冷装置设计指导

【关键词】空调冷凝器、设计、工序指导卡

引言:换热器是制冷空调系统中最重要的部件之一,其性能的好坏直接影响着整个系统的性能。因此,换热器的研究一直是制冷空调领域中一个非常活跃的研究方向。本文以冷凝器为例,对强制对流空气冷却式空调换热器的设计进行了初步探讨。

一、概述

冷凝器的功能是把由压缩机排出的高温高压制冷剂气体冷凝成液体,把制冷剂在蒸发器中吸收的热量(即制冷量)与压缩机耗功率相当的热量之和排入周围环境中。因此,冷凝器是制冷装置的放热设备,其传热能力将直接影响到整台制冷设备的性能和运行的经济性。

冷凝器按其冷却介质可分为水冷式、空冷式和水/空气混合式。由于空冷式冷凝器使用方便,尤其适合于缺水地区,在小型制冷装置(特别是家用空调)中得到广泛应用。

空冷式冷凝器可分为强制对流式和自然对流式两种。自然对流式冷凝器传热效果差,只用在电冰箱或微型制冷机中。下面仅讨论强制对流式冷凝器。

二、强制对流空气冷却式冷凝器的结构及特点

强制对流空气冷却式冷凝器都采用铜管穿整体铝片的结构(因此又称管翅式冷凝器)。其结构组成主要为——U形弯传热管、翅片、小弯头、分叉管、进(出)口管以及端板等(如图1),其加工工艺流程如图2。

下面简要介绍一下各主要部分:

1、U形弯传热管U形弯传热管俗称大U弯,其材料一般为紫铜。为了减少金属材料消耗量及减少冷凝器重量,在强度允许的条件下,应尽量避免使用厚壁铜管。

U形弯传热管有光管和内螺纹管两种。由于内螺纹管重量轻、成本不高,并且其内表面传热系数较光管要增加2~3倍【1】。因此,现在光管已基本上被内螺纹管代替了。

2、翅片

除非客户特别要求,否则翅片的材料一般为铝。它有平片、波纹片和冲缝片三种形式,并且这三种形式的表面传热系数也相差较大。对使用波纹片和冲缝片的管簇,其空气侧表面传热系数目前尚无简单准确的计算式。实践表明,采用波纹片和冲缝片时,空气侧表面传热系数较一般平翅片分别大20%和60%以上【2】。由于空气通过叉排管簇时的扰动程度大于顺排,空气通过叉排管簇时的表面传热系数较顺排管簇高10%以上,因而,空冷式冷凝器的管簇排列以叉排为好。为了使弯头的规格统一,一般管簇都按等边三角形排列。为了使翅片有较高的翅片效率,保证弯头的加工工艺要求,管中心矩应是传热管外径的2.5倍。按等边三角形叉排布置的翅片管簇,对每根而言,其翅片相当于正六角形(如图3)

为了有效利用空冷式冷凝器的传热面积,并且保证焊接工艺要求,沿空气流动方向的管排数一般为1~4排【3】。

为了增加铜管与翅片的接触面积,进而增加整个冷凝器的换热面积,一般将翅片孔外沿翻边。翅片的翻边保证了翅片的间距,同时也保证了胀管工艺。图4为翅片翻边示意图。

为了提高换热器的传热效果,必须避免或减小翅片与管面之间的接触热阻,使翅片与管面间保证良好接触,因此一般会采用机械胀管方法,其胀紧量一般为0.08~0.15㎜【4】。

三、冷凝器的设计计算

1、设定有关参数【5】

取当地大气压强P=98.07kpa,冷凝温度,蒸发温度,进口空气干球温度,进出口空气温差,则出口空气干球温度,制冷量,选用R22作为冷媒。

翅片采用冲缝普通铝片,管簇排列形式为正三角形叉排,铝片厚度δ=0.105㎜,翻边高度㎜,传热管采用Φ7×0.25×0.1内螺纹紫铜管【6】,则孔中心距㎜。

假定迎面风速,有效单管长即两端板距㎜。

2、设计计算

(1)平均温度及对数平均温差

(2)冷凝热负荷查R22冷凝负荷系数图【7】,当、时,其冷凝负荷系数,因此冷凝热负荷

(3)肋化系数

每米管长翅片侧面面积

【8】

㎡/m

每米管长翅片间管面面积(即翻边面积)

=0.0212㎡/m

则每米管长总外表面积

= 0.2805 + 0.0212 = 0.3017㎡/m

每米管长总内表面积

㎡/m

所以肋化系数

(4)迎风面积

查干空气物理性质表,在大气压力P=98.07kpa、空气平均温度tm=39o C条件下,其性质如下:

在进风温度ta1=35o C条件下,

则冷凝器所需空气的体积流量

所以迎风面积

(5)迎风面高度(即翅片长度)

(6)迎风面上管排数

(7)最窄截面风速

(8)冷凝器的总传热系数目前,对冷凝器的总传热系数的计算主要有三种方法:(1)

通过公式

来求;(2)直接取经验值(比如有的书上直接取K=35W/(㎡.k));(3)通过经验公

式来求。

第一种方法计算精确,但过于复杂,不适合工程应用;第二种方法简单有效,但必须有在同一厂家较长的工作经验;第三种方法适用范围广并且比较简单,适合工程应用。下面将利用第三种方法来求K值。但由于该公式没有考虑冲缝翅片和内螺纹管对K值的影响,因此我针对此问题进行了粗略的研究比较,即利用计算K值的理论公式

,当τ=15并且忽略其分母的中间三项,分别让αo和αi 一步步增加,以此得出它们对K值的影响。其结果如图5和图6。

图5表明了在肋化系数τ=15时管外传热系数αo对K值的影响。数据显示,开始时,αo 每增加10%,K值可增加7%以上,但随着αo的继续增加,K值的增加逐步呈下降趋势。但在αo的增加不超过100%情况下,αo每增加10%,K值平均增加6%左右。

图6表明了在肋化系数τ=15时管内传热系数αi对K值的影响。数据显示,开始时,αi 每增加10%,K值可增加2%以上。和管外传热系数对K值的影响一样,随着αi的继续增加,K值的增加呈下降趋势。当αi的增加达到250%时,αi每增加10%,K值只增加0.5%左右。在αi的增加超过200%但不超过300%情况下,αi每增加10%,K值平均增加0.8%左右。

前面第二部分已经提到过,采用冲缝片和内螺纹传热管时,空气侧表面传热系数αo和制冷剂侧表面传热系数αi分别较一般平翅片和光管大60%和2~3倍以上。因此,计算冲缝片加内螺纹传热管的空冷式冷凝器的总传热系数时,我们可以在经验公式后面再乘以1.36和1.24【9】,即

(9)冷凝器所需的传热面积

(10)所需有效传热管总长

(11)空气流通方向上的管排数

取整数n=2排

(12)翅片宽度

冷凝器的实际有效传热管长为L=nlN=2×0.398×18=14.328m,实际传热面积为A=L·ao=14.328×0.3017=4.323㎡,较传热计算所需传热面积大5.4%,能满足冷凝负荷的传热要求。此外,冷凝器的实际迎面风速与所取迎面风速相一致。

四、工序指导卡的制作【10】

1、冲压工序指导卡

(1)翅片孔径、胀头及扩头的大小

取翅片孔径Φ=7.3 ㎜【11】,胀紧量0.15㎜,则胀头大小为

7.3+0.15 -(0.25+0.1)×2=6.75㎜

取Φ7.1㎜扩头【12】

(2)翅片片数

每片翅片的侧面面积

=0.01632㎡

每片翅片的翻边面积

=0.00136㎡

每片翅片的总面积

则翅片片数

(3)U形传热管开料尺寸

【13】

详细参数见附图1。

2、焊接工序指导卡(见附图2)附图1 冷凝器冲压工序指导卡

附图2 冷凝器焊接工序指导卡

【1】参看《小型制冷装置设计指导》。

【2】参看《小型制冷装置设计指导》。

【3】有的书上是2~6排或2~8排,此处仅以科龙型冷凝器为参考依据。(注:如果排数大于4排,过自动焊时就很难保证焊接质量。)

【4】此数据是依据科龙型冷凝器的工艺参数计算得出的,折算成接触率就是0.4%~2.05%左右,与《小型制冷装置设计指导》里的0%~2%接近,但与有的书上的2.5%~5%相差较远。

【5】相关参数的假定是以国家标准和科龙型冷凝器为参考依据的。

【6】Φ7×0.25×0.1表示铜管外径为7㎜,管壁厚度为0.25㎜,齿高0.1㎜。

【7】请参看《小型制冷装置设计指导》或相关文献。

【8】

【9】1+(60%÷10%)×6%=1.36,1+(3÷10%)×0.8%=1.24

【10】该卡的形式是以科龙空调公司热交换车间的工序指导卡为参考依据的。

【11】该数值是依照科龙型冷凝器的工艺参数选定的。科龙热交换器所用的翅片的孔径只有Φ7.3和Φ9.88两种,分别对应Φ7和Φ9.52两种铜管。

【12】该数值是依照科龙型冷凝器的工艺参数选定的。

【13】此为经验公式,其中l表示两端板距,0.96是铜管的收缩率,30是经验数值。

蒸汽冷凝器设计概要

本科毕业设计 (论文) 蒸汽冷凝器设计 Design of Steam Condenser 学院:机械工程学院 专业班级:过程装备与控制工程装备092 学生姓名:戴晓伟学号:050916105 指导教师:张志文(副教授) 2013 年6 月

目录 1 绪论 (1) 1.1 换热设备冷凝器过内外研究现状水平和发展趋势 (1) 1.2 冷凝器的类型及特点 (1) 2换热器的结构计算与强度校核 (3) 2.1 已知条件 (3) 2.2 确定管子数 (3) 2.3 壳体的内径和厚度 (4) 2.4拉杆的确定 (5) 2.5 确定折流板 (5) 2.6右端管箱的设计 (6) 2.7接管和管法兰的设计 (7) 2.8后端管板的设计 (10) 2.9浮头盖的设计 (15) 2.10右端管箱的设计 (22) 2.11侧法兰的设计 (23) 2.12支座的设计与选择 (27) 2.13吊环螺钉的设计 (27) 2.14防冲板的设计 (28) 2.15滑道的设计 (28) 3设备的维护与检修 (29) 3.1设备的检查 (29) 3.2换热器的清理和维护 (29) 结论 (30) 致谢 (31) 参考文献 (32)

1 绪论 1.1换热设备冷凝器国内外发展现状 冷凝器是一种用于冷却流体的换热设备。把压缩机排出的高温高压制冷剂蒸汽,通过散热冷凝为液体制冷剂,制冷剂从蒸发器中吸收的热量,被冷凝器周围的介质所吸收。有蒸汽冷凝器,锅炉用冷凝器等。冷凝器常被用于空调系统,工业化工程序,发电厂及其他热交换系统中。 早期的换热器只能采用简单的结构,而且传热面积小、体积大和笨重,如蛇管式换热器等。随着制造工艺的发展,逐步形成一种管壳式换热器;二十世纪20年代出现板式换热器,并应用于食品工业;30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热;30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂;60年代左右,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展;70年代中期,在研究和发展热管的基础上又创制出热管式换热器。尽管我国在部分重要换热器产品领域获得了突破,但我国换热器技术基础研究仍然薄弱。与国外先进水平相比较,我国换热器产业最大的技术差距在于换热器产品的基础研究和原理研究,尤其是缺乏介质物性数据,对于流场、温度场、流动状态等工作原理研究不足。近年来,随着我国石化、钢铁等行业的快速发展,换热器的需求水平大幅上涨,但国内企业的供给能力有限,导致换热器行业呈现供不应求的市场状态,巨大的供给缺口需要进口来弥补。目前我国在换热器设计过程中还不能实现虚拟制造、仿真制造,缺乏自主知识产权的大型专业计算软件。根据中华人民共和国国民经济和社会发展第十一个五年规划纲要,“十一五”期间我国经济增长将保持年均7.5%的速度。而石化及钢铁作为支柱型产业,将继续保持快速发展的势头,预计2010年钢铁工业总产值将超过5000亿元,化工行业总产值将突破4000亿元。这些行业的发展都将为换热器行业提供更加广阔的发展空间。国内经济发展带来的良好机遇,以及进口产品巨大的可转化性共同预示着我国换热器行业良好的发展前景。 1.2冷凝器的类型和特点 冷凝器有蒸汽冷凝器和锅炉用冷凝器。 蒸汽冷凝器这种冷凝常应用于多效蒸发器末效二次蒸汽的冷凝,保证末效蒸发器的真空度。 喷淋式冷凝器,冷水从上部喷嘴喷入,蒸汽从侧面入口进入,蒸汽与冷水充分接触后被冷凝为水,同时沿管下流,部分不凝汽体也可能被带出。 充填式冷凝器,蒸汽从侧管进入后一上面喷下的冷水相接触冷凝器里面装了满了瓷环填料,填料被水淋湿后,增大了冷水与蒸汽的接触面积,蒸汽冷凝成水

HTFS冷凝器蒸发器设计

干式蒸发器设计与校核 I.系统参数确定 利用SolKane对系统参数进行设计: 输入蒸发温度、冷凝温度,过热度设定为4℃,过热度太大,会引起蒸发器设计面积过大;蒸发器压降设定为0.5bar,过冷度设定在2.0℃,冷凝器压降为0.3bar。

II.HTFS 设计 1.Problem Definition 项目定义 ⑴Application Options -应用选型 冷侧与热侧的Application 应用会自动根据后面的过程参数中进出口干度调整,在选择时可保持默认状态。。 ⑵Process Data-过程参数 类别 污垢系数/m 2·K·W -1 类别 污垢系数/m 2·K·W -1 远海海水 0.000086 处理过的冷水塔循环用水 0.00017 近海海水 0.00017 经处理的工业循环用水 0.00017 城市生活用水 0.00017 清净河水 0.00034 自来水/井水/湖水 0.00017 未经处理的工业循环用水 0.00043 混浊河水 0.0005 参考换热器设计手册 对于冷凝器和蒸发器来说,因管内外传热系数均很大,所以污垢系数对换热器的面积影响非常大。 估计压降 容许压降

2.Property Data-物性参数 ⑴Hot Stream Compositions 热侧流体组成 ⑵Property Methods 物性方法 第一步:Search Databank 从数据库搜 索组分 删除组分

⑶Search Chemical Components 加入组分 ⑷Hot Stream Properties 生成物性 ⑷冷侧流体物性参数生成操作与热侧流体一样。 第四步:Restore Defaults 重置物性

套管冷凝器设计计算方法

套管冷凝器的设计方法 以R22水冷柜式空调机组L130S/B为例,机组名义制冷量130Kw,套管冷凝器采用低翅片外螺纹铜管,管外径φ19.05mm,无缝钢管外径ф28mm,冷凝器三侧进水,水量qv=24.4m3/h,单根外螺纹传热管总长4.386m,无缝钢管长度4.226m,冷凝温度tk=45℃,进水温度t w1=30℃,进出水温差5℃,试设计该套管冷凝器的传热用面积 假设冷却水在此无缝钢管内的流速w f=2.0m/s,冷却水平均温度t f,冷却水温升t w2-t w1=1.15Q0/q v*ρ =1.15x130x3600/24.4x1000x4.186 =5.26℃ 冷却水平均温度t f=1/2(tw1+tw2)=32.6℃ 查水在32.6℃下的物性参数: νf=0.732x10-6m2/s,Per=4.87,ρf=994kg/m3 λf=623x10-3W/(mK),c p=41868J/(kgK) μw=6.83x10-6Pas 冷却水在管内的雷诺系数,外螺纹铜管内径Di=0.0155m Re f=w f*Di/νf=2.0*0.0155/0.732*10-6 =42349 计算冷凝管内水侧表面传热系数σ1 σ1=C1λf/Di* Ref0.8* Per1/3(uf/uw) 0.14

=0.068*0.623*42349*4.871/3(7.27/6.83)0.14/0.0155 =22473(W/m2K) 管内阻力计算,冷凝器中单程阻力为: ΔP1=ζL/Di*ρω2/2 =0.0421x4.386/0.0155x994x2.02/2 =23.68kPa R22冷凝侧的表面传热系数σ2的计算查传热管在冷凝时的单位管长表面传热系数σ2'=1700W/m2K和每米管长外表面积Ac=0.0597m2/m,得出以管子外径为基础的表面传热系数为σ2: σ2=σ2'/Ac=1700/0.0597=28476W/m2.K 传热管以外表面面积为基础的传热系数K为: 1/K=β/αi+βri+1/σ2 1/K=1.229/22473+2.67x1x10-4+1/28476 =2857W/m2K 其中β=D0/D i=19.05/15.5=1.229 冷凝器传热温差的计算: ΔTk=(tc-tj)/Ln[(tk-tj)/(tk-tc)] =(35-30)/Ln[(45-30)/(45-35)] =12.5℃ 所需ф=19.05mm的内螺纹铜管支数N为:

蒸发器-冷凝器-设计

Q=KFΔtm式中:Q―热流量;K―总传热系数;F―换热面积;Δtm―冷热流体的平均温差。 设计示例: 设计一个R22,10HP,制冷量为28kW 的系统的蒸发器和冷凝器,设计参数如下: 蒸发温度t0,C 7 管内径di,mm 8.82 冷凝温度tk,C 54 管外径do,mm 9.52 蒸发器回风温度t1,C 27C/19 管间距H1,mm 25.4 蒸发器出风温度t2,C 17/70% 排间距H2,mm 22 冷凝器回风温度t1,C 35 蒸发器翅片间距df,mm 2.1 冷凝器出风温度t2,C 45 蒸发器翅片间距df,,mm 1.9 过冷度tsc,C 5 翅片厚度δ,mm 0.115 过热度tsh,C 5 蒸发器风量,m3/h 5600 蒸发器迎面风速,m/s 冷凝器风量,m3/h 10400 冷凝器迎面风速,m/s 蒸发器的设计: Δtm=(Δtmax—Δtmin)/ln(Δtmax/Δtmin)=((27-7)-(17-7))/ln((27-7)/(17-7))=14.4C 选取K=40 W/(m2.C) Q=KFΔtm (W) F=Q/KΔt=28000/(40*14.4)=48.6m2 计算所选翅片管单位长度的外表面积: 外表面铜管面积: S1=3.14*(do+δ*2)*(df- δ)/df=3.14*(9.52+0.115*2)*(2.1-0.115)/2.1/1000=0.0289m2 外表面翅片面积: S2=(H1*H2-(3.14*(do+δ *2)^2/4))/df/1000=(25.4*22-(3.14*(9.52+0.115*2)^2/4))/10^3/2.1=0.4611m2 St=S1+S2=0.0289+0.4611=0.49m2 所需管路总长度: L=F/St=48.6/0.49=99.18m 方案1: 可以先假设每一回路到12m, N’=L/12=8.26, 取整为8,设为3 排,每排取每4 行一个回路, 那么单排为8*4=32 根,高度为32*25.4=812.8mm。3 排有N=96 根,那单根长度L’=99.18/96=1.03m, L’/H=1.23。 方案2: 可以先假设每一回路到10m, N’=L/10=9.9, 取整为10,设为3 排,每排取每2 行一个回路, 那么单排为10*2=20 根,高度为20*25.4=508mm。3 排有N=60 根,那单根长度L’=99.18/60=1.653m, L’/H=3.24。 冷凝器的设计: Δtm=(Δtmax—Δtmin)/ln(Δtmax/Δtmin)=((54-35)-(54-45))/ln((54-35)/(54-45))=13.38C

冷凝器的选型及工艺计算毕业设计

2.105m2冷凝器的选型及工艺设计 2.1冷凝器设计示列 已知一卧式固定管板式换热器的工艺条件如下:换热器工程直径为1000mm,换热管长度3000mm,换热面积105m2;壳程价质为二次蒸汽,轻微腐蚀,操作压力20Kpa(绝压),工作温度60C0,;管程价质为冷却水,操作压力0.4Mpa,工作度38C0,双管程,换热管规格为Φ25mm×2mm,换热管间距36mm,数量545 32 ~ 根,材料0Cr8Ni9;蒸汽进口管Φ377mm×8mm,冷凝水出口管Φ57mm,冷却水进,出口管均为Φ219mm×6mm。 2.2冷凝器结构设计 ①材料选择。根据换热器的工作状况及价质特性,壳程选用0Cr18Ni9,管程选用Q235B,管板选用0Cr18Ni9。 ②换热管。换热管是换热器的元件之一,置于筒体之内,用于两介质之间热量的交换。选用较高等级换热管,管束为I级管束。 换热管的选择 排列方式:正三角形、正方形直列和错列排列。 图2-1换热管排列方式 各种排列方式的优点: 正方形排列:易清洗,但给热效果差; 正方形错列:可提高给热系数; 等边三角形:排列紧凑,管外湍流程度高,给热系数大。 换热管与管板的连接方式有强度焊、强度胀以及胀焊并用。 强度胀接主要适用于设计压力小≤4.0Mpa;设计温度≤300℃;操作中无剧烈振动、无过大的温度波动及无明显应力腐蚀等场合。 除了有较大振动及有缝隙腐蚀的场合,强度焊接只要材料可焊性好,它可用于其它任何场合。 胀焊并用主要用于密封性能要求较高;承受振动和疲劳载荷;有缝隙腐蚀;需采用复合管板等的场合。

③管板。管板选用兼作法兰结构,管板密封面选用JB!T4701标准中的突面 密封面。换热管在管板上的排列采用正三角形排列,分程隔板两侧换热管中心距取44mm,实际排列548跟换热管。 ④分成隔板与分程隔板槽。分成隔板厚度10mm,开设Φ6mm泪孔;分成隔板槽宽12mm,深度4mm;垫片材料为石棉橡胶板,厚度为3mm。 ⑤换热管与管板的连接。换热管与管板的连接采用焊接结构,其中L1=2mm,L3=2mm。 ⑥支持板。换热器的壳程为蒸汽冷凝,不需折流板,但考虑到到换热管的支 撑,姑设置支持板。换热管无支撑最大跨距为1850mm,因此换热管至少需要3块儿支持板。本设计采用3块儿支持板,弓形缺口,垂直左右布置,缺口高度为25%筒体内直径。 ⑦拉杆与拉杆孔。选用8根Φ16mm拉杆,拉杆与管板采用用螺纹连接。拉杆两端螺纹为M16拉杆孔深度为24mm. 定距管及拉杆的选择 拉杆常用的结构型式有: a. 拉杆定距管结构,见图4-7-1(a)。此结构适用于换热管外径d≥19mm的管 束且l 2>L a (L a 按表4-5-5规定) b. 拉杆与折流板点焊结构,见图4-7-1(b)。此结构适用于换热管外径d≤14mm 的管束且l 1 ≥d; c. 当管板较薄时,也可采用其他的连接结构。

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一《食品工程原理》课程设计任务书 (1) (1) ........................................................................................................................................... .设计课题 (2) (2) ........................................................................................................................................... .设计条件 (2) (3) ........................................................................................................................................... .设计要求 (2) (4) ........................................................................................................................................... .设计意义 (2) (5) ........................................................................................................................................... .主要参考资料.. (3) 二设计方案的确定 (3) 三设计计算 (4) 3.1. ......................................................................................................................................... 总蒸发水量 (4) 3.2. ......................................................................................................................................... 加热面积初算. (4) ( 1)估算各效浓度 (4) ( 2)沸点的初算 (4) ( 3)温度差的计算 (5) (4)计算两效蒸发水量V,V2及加热蒸汽的消耗量S (6) (5)总传热系数K的计算 (7) ( 6)分配有效温度差,计算传热面积 (9) 3.3. ............................................................................................................................................ 重算两效传热面积.. (10) ( 1)第一次重算 (10) 3.4 计算结果 (11) 四蒸发器主要工艺尺寸的计算 (13)

冷凝器设计计算资料

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR45S 为例) 1、已知参数 换热参数: 冷凝负荷:Q k =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9.75 mm

铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---= ==3.04 mm 单位长度翅片面积:32 2110/)4 (2-?- =f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ===20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17.5×10-6m 2/s ,λf =0.0264W/mK ,ρf =1.0955kg/m 3,C Pa =1.103kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ??? ? ??= γλαRe '=50.3 W/m 2K 其中: 362)( 103)( 000425.0)( 02315.0518.0eq eq eq d d d A γ γ γ -?-+-==0.1852

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR 45S 为例) 1、已知参数 换热参数: 冷凝负荷:Qk =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22m m 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0。35mm 翅片厚度:δf =0。115m m 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9。75 mm 铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---===3.04 mm 单位长度翅片面积:32 2110/)4(2-?-=f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m2/m

单位长度翅片管总面积:b f t f f f +==0。56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ== =20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17。5×10-6m 2/s,λf =0。0264W /mK ,ρf =1。0955k g/m 3,C Pa =1.103k J/(k g*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ???? ??=γλαRe '=50.3 W/m 2K 其中: 362)(103)(000425.0)(02315.0518.0eq eq eq d d d A γγγ -?-+-==0。1852 ????? ??-=1000Re 24.036.1f A C =0.217 eq d n γ0066 .045.0+==0.5931 ? ?1000Re 08.028.0f m +-==-0。217 铜管差排的修正系数为1。1,开窗片的修正系数为1。2,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证) 'o o αα=×1.1×1.2=66.41 W/m 2K

空冷冷凝器设计

空冷冷凝器设计 摘要:冷凝器是各工业部门中重要的换热设备之一。换热器作为热量传递中的过程设备,在化工、冶金、石油、动力、食品、国防等工业领域中应用极为广泛。换热器性能的好坏,直接影响着能源利用和转换的效率。近年来,节能工作开始被全球所重视,而换热器特别是高效换热器又是节能措施中关键的设备。因此,无论是从上述各工业的发展,还是从能源的有效利用,换热器的合理设计、制造、选型和运行都有非常重要的意义。 本设计是关于管翅式空冷器的设计。主要内容是进行了冷凝器的工艺计算,结构设计和强度校核。设计内容首先是传热计算,主要是根据设计条件计算换热面积。其次是结构设计以确定各部件的尺寸。最后还包括是强度计算与校核,主要包括管箱结构与校核和支架的校核。 关于设计管翅式冷凝器的各个环节,在后面设计书中做详细的说明。 关键词:冷凝器;传热;结构;强度;管翅式换热器;

Design of Air-cooled Condenser Abstract:Condense is one of the most important heat exchanging equipments in industrial field. As a heat transfer in the processing equipment, exchanger is widely applied in chemical industry, metallurgy, oil, power, food, defense industry. In recent years, the problem of energy-saving is beginning to be regarded all over the world. And heat exchanger, particularly efficient heat exchanger,It is the key to energy-saving equipment. Therefore, whether from the foregoing the development of industry, or from efficient energy use, the reasonable heat exchanger design, manufacturing, selection and running all have very important significance. The manual is about the Finned tube condenser,which included process calculation , the structural design and intensity . The first part of this manual is the heat transfer’s calculation. Mainly, it is according to the given design conditions to estimate the heat exchanger area. Next is the structure design to determine the size of the components. Finally also including the strength calculation and checking, mainly including the Tube Box’s structure and the support checking. About the design of the Finned tube condenser,The detailed content is in the back of the design instructions. Key words: Condenser ; Heat transfer; Structure; Strength Finned tube exchanger

蒸发器的设计计算

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .210002.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

冷凝器课程设计

课程设计说明书 设计题目:换热器课程设计 能源与动力工程学院热能与动力专业 学生姓名:张XX 学号:U 指导教师:李何 完成时间:2012.1 华中科技大学

目录 一.设计题目 (3) 二.冷凝器热负荷的计算 (3) 三.冷凝器的结构规划及有关参数 (4) 四.空气进出冷凝器的温差及风量 (5) 五.肋片效率及空气侧传热系数 (5) 六.管内R134a冷凝时的表面传热系数算 (7) 七.计算所需传热面积 (8) 八.空气侧阻力计算及选择风机 (9) 九.参考文献 (10)

一.设计题目 风冷式空调器的换热器设计。室外侧进风温度35度,冷凝温度47度,过冷度5度,室内侧进风干球温度27度,湿球温度19.5度,蒸发温度7度,过热度5度,压缩机指示效率0.75。 换热器类型:冷凝器。 制冷剂:R134a 。 系统制冷量:Q 0=2800W 。 二:冷凝负荷计算 根据题目提供的数据查R134a 的压焓图,如下图所示, 查R134a 压焓图得 t6=7C 0 h6=403kj/kg t1=12C 0 h1=406 kj/kg h2s=433 kj/kg t4=42 C 0 h4=h5=261 kj/kg 21 21 0.75s i h h h h η-==- 得h2=442 kj/kg Q 0=2800W

又制冷剂质量流量s kg h h Q q m /0193.0261 4068 .2510=-=-= 冷凝器的热负荷kw h h q Q m k 49.3)261442(*0193.0)(42=-=-= 三.冷凝器的结构规划及有关参数 ○ 1 肋片及传热管尺寸设置 传热管选用Ф10mm*0.5mm 的紫铜管,则d 0=0.01m , d i =0.09m,肋片选用平直翅片(铝片),片厚δf =0.15mm, 肋片间距S f =2mm .取气流方向的排数为n=2,管排方式采用正三角形排列,管间距s 1=25mm ,排间距s 2=21.5mm ,片, 宽L=ns 2=2×21.5=43mm ○ 2 单位表面积及肋片系数计算 套平后翅片间传热管部分的外径 m d d f b 0103.010*15.0*201.023 0=+=+=-δ 故管外肋片单位表面积为 m s d s s f f b f 4579.0002 .0)4/0103.0*022.0*025.0(2)4/(2221=-=-=ππ 肋间管外单位表面积为 m s d f f f b b 0299.0)002.0/0015.01(*0103.0*)1(=-=- =πδπ 管外单位表面积为 m f f f b f t 4878.00299.04579.0=+=+= kw Q k 49.3= n=2

化工原理课程设计冷凝器的设计说明

化工原理课程设计 设计题目:6000t乙醇水分离精馏塔冷凝器的设计指导教师:郝媛媛 设计者:韦柳敏 学号: 1149402102 班级:食品本111班 专业:食品科学与工程 设计时间: 2014年6月15日

目录 1.设计任务书及操作条件 (2) 设计任务 (2) 设计要求 (2) 设计步骤 (2) 设计原则 (2) 2.设计方案简介 (3) 3.工艺设计及计算 (4) 确定设计方案 (4) 确定定性温度、物性数据并选择列管式换热器形式 (4) 计算总传热系数 (4) 工艺结构尺寸 (6) 4.换热器的核算 (9) 热量核算 (9) 传热面积 (9) 换热器流体的流动阻力 (9) 设计结果一览表 (10) 5.主要符号说明 (12) 6.设计的评述 (13)

1.设计任务书及操作条件 设计任务: 1)生产能力:833.33kg/h 2)乙醇从78.23℃降到40℃ 3)冷却水进口:30℃ 4)冷却水出口:40℃ 设计要求: 1)设计一个固定管板式换热器 2)设计容要包含 a)热力设计 b)流动设计 c)结构设计 d)强度设计 设计步骤 1)根据换热任务和有关要求确定设计方案 2)初步确定换热器的结构和尺寸 3)核算换热器的传热面积和流体阻力 4)确定换热器的工艺结构 设计原则 1)传热系数较小的一个,应流动空间较大,使传热面两侧的传热系数接近 2)换热器减少热损失 3)管、壳程的决定应做到便于除垢和修理,以保证运行的可靠性 4)应减小管子和壳体因受热不同而产生的热应力。从这个角度来讲,顺流式就优于逆流式 5)对于有毒的介质,必使其不泄露,应特别注意其密封性,密封不仅要可靠,而且应要求方便 及简洁 6)应尽量避免采用贵金属,以降低成本

冷凝器换热面积计算方法

冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 水冷凝器换热面积与风冷凝器比例=概算1比18(103/18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 制冷量的计算方法 制冷量=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1库温-35℃ 2速冻量1T/H 3时间2/H内 4速冻物质(鲜鱼) 5环境温度27℃ 6设备维护机构保温板 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40CE-40℃制冷量=31266kcal/n 关于R410A和R22翅片管换热器回路数比的探讨晨怡热管(特灵亚洲研发中心上海200001)申广玉2008-6-15 20:10:07 摘要:通过理论计算得出了相同换热量和相同工况下,采用5/16″管径R410A蒸发器(或冷凝器)与采用3/8″管径R22蒸发器(或冷凝器)时回路数的比值,并指出比值是两工质物性差异和盘管的内径及当量摩擦阻力系数差异共同作用的结果。 关键词:R410A;回路数;蒸发器;冷凝器 中图分类号:TQ051 文献标识码: B

1前言 随着人类环保意识的提高,新冷媒技术的发展和应用已成为空调器发展的方向和关注的焦点。目前,国际上一致看好的R22替代物是混合工质R407C和R410A。其中R410A是HFC 32和HFC 125按照50%:50%的质量百分比组成的二元近共沸混合制冷剂,它的温度滑移不超过0.2℃(R407C温度滑移约7℃左右),这给制冷剂的充灌、设备的更换提供了很多方便。另外,由于R410A系统运行的蒸发压力和冷凝压力比R22高60%,所以系统性能对压力损失不敏感,每个回路工质循环流速可以加大,有利于换热器的强化换热,这为提高R410A系统的整体能效创造了有力条件。 正是由于R410A具有上述优点,在R22用量最大的单元式空调和热泵产品中,R410A是其首要的替代品。美国有望在2007年底将R410A产品在单元式空调的应用比例提高到80%,并在2009年底接近100%[1]。 但是R410A和R22物性存在着上述明显差异而不能在原R22系统中直接充注替代使用,应该对新的R410A 系统中的压缩机、蒸发器、冷凝器、节流机构和系统管路等部件重新设计才能达到系统的最佳匹配。本文仅以R410A和R22翅片管蒸发器和冷凝器的回路数相对比进行说明。 2R410A和R22翅片管蒸发器回路数比计算 目前常用的R22换热器一般采用的是3/8″内螺纹管,R410A换热器一般采用的是5/16″内螺纹。无特殊说明,所述的R410A和R22换热器即分别指这两种结构的换热器。 无论采用何种工质,在设计蒸发器时,一般均要保证工质在蒸发器中的饱和温度降ΔT相同,即:

冷凝器设计

冷凝器设计 Document number:PBGCG-0857-BTDO-0089-PTT1998

摘要】本文介绍了强制对流空气冷却式空调冷凝器的结构及特点,并详细论述了其设计过程,最后联系实践,制作出用于指导生产的工序指导卡。 【关键词】空调冷凝器、设计、工序指导卡 引言:换热器是制冷空调系统中最重要的部件之一,其性能的好坏直接影响着整个系统的性能。因此,换热器的研究一直是制冷空调领域中一个非常活跃的研究方向。本文以冷凝器为例,对强制对流空气冷却式空调换热器的设计进行了初步探讨。 一、概述 冷凝器的功能是把由压缩机排出的高温高压制冷剂气体冷凝成液体,把制冷剂在蒸发器中吸收的热量(即制冷量)与压缩机耗功率相当的热量之和排入周围环境中。因此,冷凝器是制冷装置的放热设备,其传热能力将直接影响到整台制冷设备的性能和运行的经济性。 冷凝器按其冷却介质可分为水冷式、空冷式和水/空气混合式。由于空冷式冷凝器使用方便,尤其适合于缺水地区,在小型制冷装置(特别是家用空调)中得到广泛应用。 空冷式冷凝器可分为强制对流式和自然对流式两种。自然对流式冷凝器传热效果差,只用在电冰箱或微型制冷机中。下面仅讨论强制对流式冷凝器。 二、强制对流空气冷却式冷凝器的结构及特点 强制对流空气冷却式冷凝器都采用铜管穿整体铝片的结构(因此又称管翅式冷凝器)。其结构组成主要为——U形弯传热管、翅片、小弯头、分叉管、进(出)口管以及端板等(如图1),其加工工艺流程如图2。 下面简要介绍一下各主要部分: 1、U形弯传热管U形弯传热管俗称大U弯,其材料一般为紫铜。为了减少金属材料消耗量及减少冷凝器重量,在强度允许的条件下,应尽量避免使用厚壁铜管。 U形弯传热管有光管和内螺纹管两种。由于内螺纹管重量轻、成本不高,并且其内表面传热系数较光管要增加2~3倍1】。因此,现在光管已基本上被内螺纹管代替了。 2、翅片

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .21000 2.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

多效蒸发器设计计算

多效蒸发器设计计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

多效蒸发器设计计算(一)蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。 (4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5)根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至 (5),直到所求得的各效传热面积相等(或满足预先给出的精度要 求)为止。 (二)蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量(1-1)在蒸发过程中,总蒸发量为各效蒸发量之和 W = W1 + W2 + … + W n (1-2) 任何一效中料液的组成为 (1-3)

一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例 如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强 (或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑?- '-=?)(1k T T t ∑?t 1 T k T '∑?

相关文档
最新文档