高考数学不等式练习题及答案解析

高考数学不等式练习题及答案解析
高考数学不等式练习题及答案解析

高考数学不等式练习题及答案解析:

一、选择题

1.已知定义域为R 的函数()f x 满足()(4)f x f x -=-+,且当2x >时,()f x 单调递增,如果

124

x x +<且

12(2)(2)0

x x --<,则

12()()

f x f x +的值 ( )

A 、恒大于0

B 、恒小于0

C 、可能为0

D 、可正可负

2.已知函数

13

,)(x x x x f --=、2x 、3x R ∈,且021>+x x ,032>+x x ,013>+x x ,则

)

()()(321x f x f x f ++的值 ( )

A 、一定大于零

B 、一定小于零

C 、等于零

D 、正负都有 3.设

(){

}1

2,2++==bx x y y x M ,()(){}b x a y y x P +==2,,(){}φ==P M b a S ,,

则S 的面积是 ( )

A. 1

B. π

C. 4

D. 4π

4.

A B . C .

D

5.,

是( )

B. C.

6.已知实数x,y满足3x2+2y2=6x,则x2+y2的最大值是( )

A B、4 C、5 D、2

7.若0 < a,b,c < 1,并且a + b + c = 2,则a 2 + b 2 + c 2的取值范围是()

(A)+ ∞) (B) 2 ] (C)

2 ) (D) 2 )

8.– log 2 x的解是()

(A)x ≥ 2 (B)x > 1 (C)1 < x < 8 (D)x > 2

9.设,,,其中f ( x ) = log

sin θ x,θ∈( 0,那么()

(A)a ≤ c ≤ b (B)b ≤ c ≤ a (C)c ≤ b ≤ a (D)a ≤ b ≤ c

10.S = 1 …S的整数部分是()

(A)1997 (B)1998 (C)1999 (D)2000

11.设a > b > c,n∈N n的最大值为()

(A)2 (B)3 (C)4 (D)5

12.使不等式2 x – a > arccos x的解是≤ 1的实数a的值是()

(A)1 (B(C)

(Dπ

13.a,b都成立,则m的最小值是()

A. 2

B.

C.

D. 4

14.

()

A B C.

D

15.

A.B.C

D

16.,

,动点

()

A B C.

D

17.已知,且,若恒成立,则实数

是( )

A.或B.或

C D

18.()

A B

C D

19.已知满足条件的点构成的平面区域的面积为

()

A. B. C. D.

20.已知满足条件的点构成的平面区域的面积为

()

A B

C D

域内

21.根据程序设定,机器人在平面上能完成下列动作:先从原点O

方向行走一段时间后,再向正北方向行走一段时间,

. 如右图. 假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S,则S可以用不等式组表示为()

C.

D.

22.根据程序设定,机器人在平面上能完成下列动作:先从原点O

的大小以及何时改变方向不定. 如右图. 假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S,则S的面积(单位:平方米)等于()

B.

C.

D.

使得对定义域D 内的任意两个不同的实数

D 上满足利普希茨条件.对于函数

k 的最小值应是

A .2

B .1

C D

24.如果直线y =kx +1M 、N 两点,且M 、N 关于直线x +y =0对

A B C.1D.2

25. 给出下列四个命题:

②“a<2

③若向量p=e1+e2,其中e1,e2是两个单位向量,则|p|的取值范围是[0,2];

④命题“若lgx>lgy,则x>y”的逆命题.

其中正确的命题是()

A.①②B.①③C.③④D.①②③

26.已知点(x, y m为常数),在平面区域内取得最大值优解有无数多个,则m的值为

A.B. C D.

27. ()

A.2 B.3 C.4 D.5

C.4 D.

29.

A

B

C

D

30. )

A.9

B.4

C.3

D.2

31.设两个向量和其中为实数.若

则的取值范围是( )

A. B. C. D.

32.某厂生产甲产品每千克需用原原料别为

要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大;在这个问题中,设全月生产甲、乙两种产品分别为

(A(B(C(D

33.

(A(B)3 (C)2 (D

34.)

(A(B(C(D)

35. 对任意实数x,)

B.

二、填空题

36.已知函定义在R上的偶函数,0时,

是单调递增的,则不等解集是_________________________.

37.已知集合,集合,若,则实数

________________________.

38.设,若,则的取值范围是___ __

39.已知,且,则的取值范围是_____________.

40.

的取值范围是.

41.不等式在R上恒成立,则的取值范围是_________________.

42.下列四个命题中:,若

12则

其中所有真命题的序号是___________________.

43.已知是正数, 是正常数,且

______________.

44.已等差数列等比数列,则

______.

45.已知a2+b2+c2=1, x2+y2+z2=9, 则ax+by+cz的最大值为

三、解答题

46.(本小题满分12分)

(1)求数列的通项公式;w.w.w.k.s.5.u.c.o.m

(2OPn平行(O是坐标原点)。求证:当

47.(本题满分14分)

已知实数,曲线与直线的交点为

(异于原点),在曲线上取一点

点,过点作平行于

,如此下去,可以得到点,

….

.

48.

a >0,上存在极值,求实数a的取值范围;

k的取值范围;

49.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?

50.已知函数f(x)=logax(a>0,且a≠1),x∈[0,+∞).

若x1,x2∈[0,+∞),f(x1)+f(x2)]

与f.

51.解关于x x,(a∈R).

52.二次函一都解不等式

53.

54.a的取值范围。

55.R, 当x<0时, 1, 且对于任意的实

.

(1)求证: R上的减函数;

(2)

(3)若不等k 一成立, 求

《选修4-5 不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲 最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法. 1.含有绝对值的不等式的解法

(1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a ; (2)|f (x )|0)?-a

高考数学全国卷选做题之不等式

2010——2016《不等式》高考真题 2010全国卷设函数f(x)=241 x-+ (Ⅰ)画出函数y=f(x)的图像; (Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围. 2011全国卷设函数()||3 =-+,其中0 f x x a x a>. (I)当a=1时,求不等式()32 ≥+的解集. f x x (II)若不等式()0 x≤-,求a的值. f x≤的解集为{x|1}

2012全国卷已知函数f (x ) = |x + a | + |x -2|. (Ⅰ)当a =-3时,求不等式f (x )≥3的解集; (Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。 2013全国卷Ⅰ 已知函数()f x =|21||2|x x a -++,()g x =3x +. (Ⅰ)当a =-2时,求不等式()f x <()g x 的解集; (Ⅱ)设a >-1,且当x ∈[2a -,12 )时,()f x ≤()g x ,求a 的取值范围.

2013全国卷Ⅱ 设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13; (2)2221a b c b c a ++≥. 2014全国卷Ⅰ 若,0,0>>b a 且ab b a =+11 (I )求33b a +的最小值; (II )是否存在b a ,,使得632=+b a ?并说明理由.

2014全国卷Ⅱ设函数() f x=1(0) ++-> x x a a a (Ⅰ)证明:() f<,求a的取值范围. f x≥2 (Ⅱ)若()35 2015全国卷Ⅰ已知函数=|x+1|-2|x-a|,a>0. (Ⅰ)当a=1时,求不等式f(x)>1的解集; (Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

不等式选讲习题(含答案)

不等式选讲习题 1.(2014全国新课标I 卷)若0,0,a b >>且 11a b += (I )求33a b +的最小值; (II )是否存在,,a b 使得236?a b +=并说明理由. 2.(2014全国新课标II 卷)设函数1()(0).f x x x a a a =++-> (I )证明:()2;f x ≥ (II )若(3)5,f <求a 的取值范围. 3.(2013全国新课标I 卷)已知函数()212,() 3.f x x x a g x x =-++=+ (I )当2a =-时,求不等式()()f x g x <的解集; (II )设1,a >-且当1,22a x ??∈-??? ?时,()()f x g x ≤,求a 的取值范围. 4.(2013全国新课标II 卷)设,,a b c 均为正数,且1,a b c ++=证明: (I )1;3 ab bc ac ++≤ (II )222 1.a b c b c a ++≥. 5.(2012全国新课标卷)已知函数() 2.f x x a x =++- (I )当3a =-时,求不等式()3f x ≥的解集; (II )若()4f x x ≤-的解集包含[]1,2,求a 的取值范围. 6.(2011全国新课标卷)设函数 ()3f x x a x =-+,其中0a >. (I )当1a =时,求不等式()32f x x ≥+的解集; (II )若不等式()0f x ≤的解集为{|1},x x ≤-,求a 的值. 7.(2015第一次省统测)已知a 是常数,对任意实数x ,不等式|2||1||2||1|x x a x x -++≤≤--+都成立. (I )求a 的值; (II )设,0>>n m 求证:.22122 2a n n mn m m +≥+-+

2014年全国大纲卷高考理科数学试题真题含答案

2014年普通高等学校统一考试(大纲) 理科 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设103i z i =+,则z 的共轭复数为 ( ) A .13i -+ B .13i -- C .13i + D .13i - 【答案】D . 2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N = ( ) A .(0,4] B .[0,4) C .[1,0)- D .(1,0]- 【答案】B. 3.设sin33,cos55,tan35,a b c =?=?=?则 ( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 【答案】C . 4.若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( ) A .2 B C .1 D . 2 【答案】B . 5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种 B .70种 C .75种 D .150种 【答案】C .

6.已知椭圆C :22 221x y a b +=(0)a b >>的左、右焦点为1F 、2F 2F 的 直线l 交C 于A 、B 两点,若1AF B ?的周长为C 的方程为 ( ) A .22132x y += B .2213x y += C .221128x y += D .22 1124 x y += 【答案】A . 7.曲线1x y xe -=在点(1,1)处切线的斜率等于 ( ) A .2e B .e C .2 D .1 【答案】C . 8.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814 π B .16π C .9π D .274π 【答案】A . 9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则 21cos AF F ∠=( ) A .14 B .13 C .4 D .3 【答案】A . 10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( ) A .6 B .5 C .4 D .3 【答案】C . 11.已知二面角l αβ--为60?,AB α?,AB l ⊥,A 为垂足,CD β?,C l ∈,135ACD ∠=?,则异面直线AB 与CD 所成角的余弦值为 ( )

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

2018江苏高考数学试题及答案解析

2018年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 . 6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<- +=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条渐近线的距离为

c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()() 15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最 小值的和为 . 12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB 为直径的圆C 与 直线l 交于另一点D .若0=?,则点A 的横坐标为 . 13.在ABC ?中,角C B A 、、所对的边分别为c b a 、、,ο 120=∠ABC ,ABC ∠的平分线交AC 于点D , 且1=BD ,则c a +4的最小值为 . 14.已知集合{ }* ∈-==N n n x x A ,12|,{}* ∈==N n x x B n ,2|.将B A ?的所有元素从小到大依次排 列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

高考真题不等式选讲专题答案

不等式选讲专题答案 1.(2020?全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像; (2)求不等式()(1)f x f x >+的解集. 2.(2020?全国2卷)已知函数2 ()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 3.(2020?全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0; (2)用max {a ,b ,c }表示a ,b ,c 中的最大值,证明:max {a ,b ,c } 4.(2020?江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤.

不等式选讲专题答案 1.(2020?全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像; (2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6? ?-∞- ??? . 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ??+≥??=--<

(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示: 由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6??-∞- ?? ?. 【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题. 2.(2020?全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 【答案】(1)32x x ? ≤??或112x ?≥??;(2)(][),13,-∞-+∞. 【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()2 1f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时, ()43f x x x =-+-. 当3x ≤时,()43724f x x x x =-+-=-≥,解得:3 2x ≤; 当34x <<时, ()4314f x x x =-+-=≥,无解;

2015-2019高考数学全国卷真题(不等式选讲)

2015-2019高考数学全国卷真题(不等式选讲) 2019-3-23.设,,,x y z R ∈且1x y z + +=. (1)求()()()222111x y z -++++的最小值; (2)()()()2221213x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 2019-2-23.已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 2019-1-23.已知a ,b ,c 为正数,且满足1=abc .证明: (1)22211 1 a b c a b c ++≤++; (2)333()()()24a b b c c a +++≥++. 2018-3-23.已知函数()211f x x x =++-. (1)画出()y f x =的图像; (2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 2018-2-23.设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 2018-1-23.已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范. 2017-3-23.已知函数21)(--+=x x x f . (1)求不等式1)(≥x f 的解集; (2)若不等式m x x x f +-≥2)(的解集非空,求m 的取值范围.

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

2019高考真题名校模拟(文数) 不等式选讲(含答案)

第十六章 不等式选讲 五年高考 A 组统一命题·课标卷题组 考点一不等式的证明 1.(2017课标全国II .23,10分)[选修4-5:不等式选讲] 已知.2,0,03 3=+>>b a b a 证明: ;4))()(1(55≥++b a b a .2)2(≤+b a 2.(2015课标II .24,10分,0.353)选修4-5:不等式选讲设a ,b ,c ,d 均为正数,且a+b=c+d 证明: (1)若ab>cd ,则;d c b a +>+ d c b a +>+)2(是︱a-b ︱<︱c-d ︱的充要条件. 3.(2014课标I .24,10分.0.111选修4-5:不等式选讲 若a>O,b>0.且 .11ab b a =+ (1)求33b a +的最小值: (2)是否存在a ,b ,使得?632=+b a 并说明理由. 考点二绝对值不等式

1.(2018课标全国I ,23,10分)[选修4-5:不等式选讲] 已知.|1||1|)(--+=ax x x f (1)当a=l 时,求不等式1)(>x f 的解集: (2)若)1,0(∈x 时不等式x x f >)(成立,求a 的取值范围. 2.(2018课标全国II .23,10分)[选修4-5:不等式选讲] 设函数.|2|||5)(--+-=x a x x f (1)当a=l 时,求不等式0)(≥x f 的解集: (2)若,1)(≤x f 求a 的取值范围. 3.(2018课标全国Ⅲ,23,10分)[选修4-5:不等式选讲] 设函数.|1||12|)(-++=x x x f (1)画出)(x f y =的图象: (2)当),0[+∞∈x 时,,)(b ax x f +≤求a+b 的最小值. 4.(2016课标全国II .24,10分)选修4-5:不等式选讲 已知函数M x x x f |,21||21|)(++=为不等式2)(

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

2020届高三高考数学复习练习题(七)【含答案】

2020届高三高考数学复习练习题 一、单项选择题: 1.设集合A={}{} |1,,2,.x x a x R B x x b x R -<∈=-∈若A ?B,则实数a,b 必满足 A .3a b +≤ B .3a b +≥ C .3a b -≤ D .3a b -≥ 【答案】D 【解析】{}{}|1,|11A x x a x R x a x a =-<∈=-<<+, {} {}222B x x b x x b x b =-=+<-或,若A ?B ,则有21b a +≤-或 21b a -≥+3a b ∴-≥ 2.已知向量(,1)m a =-,(21,3)n b =-(0,0)a b >>,若m n ,则21 a b +的最小值为( ) A .12 B .843+ C .15 D .1023+ 【答案】B 【解析】∵m =(a ,﹣1),n =(2b ﹣1,3)(a >0,b >0),m ∥n , ∴3a +2b ﹣1=0,即3a +2b =1, ∴21a b +=(21a b +)(3a +2b ) =843b a a b + + ≥8432 b a a b +?

=843+, 当且仅当 43b a a b =,即a 33-=,b 31-=,时取等号, ∴21 a b +的最小值为:843+. 故选:B . 3.在数列{}n a 中,11a =,12n n a a +?=-(123)n =,,, ,那么8a =( ) A .2- B .1 2 - C .1 D .2 【答案】A 【解析】由11a =,12n n a a +?=-可得, 22a =-,31a =,42a =-,故数列是以2周期的数列, 所以82a =-. 故选:A 4.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

不等式选讲知识点归纳及近年高考真题

不等式选讲知识点归纳及近年高考真题 考点一:含绝对值不等式的解法 例1.(2011年高考辽宁卷理科24)已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集. 解:(I )3, 2,()|2||5|27,25,3, 5.x f x x x x x x -≤?? =---=-<+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{} 1-≤x x ,求a 的值。

相关文档
最新文档